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Abstract. In recent years, Machine Learning (ML) components have been 
increasingly integrated into the core systems of organizations. Engineering 
such systems presents various challenges from both a theoretical and 
practical perspective. One of the key challenges is the effective interaction 
between actors with different backgrounds who need to work closely 
together, such as software engineers and data scientists. This paper 
presents an exploratory case study that aims to understand the current 
interaction and collaboration dynamics between these two roles in ML 
projects.  We conducted semi-structured interviews with four practitioners 
with experience in software engineering and data science of a large ML-
enabled system project and analyzed the data using reflexive thematic 
analysis. Our findings reveal several challenges that can hinder collaboration 
between software engineers and data scientists, including differences in 
technical expertise, unclear definitions of each role’s duties, and the lack 
of documents that support the specification of the ML-enabled system. 
We also indicate potential solutions to ad dress these challenges, such as 
fostering a collaborative culture, encouraging team communication, and 
producing concise system documentation. This study contributes to 
understanding the complex dynamics between software engineers and data 
scientists in ML projects and provides in- sights for improving collaboration 
and communication in this context. We encourage future studies 
investigating this interaction in other projects. 

 

Keywords: Machine Learning, ML-enabled System, Data Science, Soft- 
ware Engineering, Collaboration. 

 

1 Introduction 

Integrating Machine Learning (ML) components into existing systems has in- 
creased as companies seek to leverage vast amounts of data to enhance the 
business outcomes of their software products. In this paper, we refer to these 
systems as ML-enabled systems. Typically, the ML component is only a small 
part of a larger system [1], which usually comprises other components for data 
collection, model consumption, and infrastructure requirements. 
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This transition from developing traditional software systems to those inte- 
grated with ML components introduces new challenges from the viewpoint of 
Software Engineering (SE). The development of ML-enabled systems often in- 
volves completely separate workflows, as well as different actors [2]: data sci- 
entists build ML models while engineers must deploy and integrate them with 
other services. An ineffective interaction between team members can cause ML 
mismatches capable of harming the system [3]. This scenario raises the question 
of whether proper alignment and communication between the actors occurs and 
how they share responsibilities when developing ML-enabled systems. 

Following the guidelines by Runeson et al. [4] for case study research in soft- 
ware engineering, we tackle this issue by conducting an exploratory case study fo- 
cused on two key roles within ML projects: software engineers and data scientists. 
The selected case concerns an ML-enabled system for Online Dispute Resolution 
(ODR) created to help parties settle legal disputes in the state of Rio de Janeiro. 
Beyond describing the team and system context, we conducted semi-structured 
interviews with four experienced team members, two software engineers and two 
data scientists, to understand their current interactions, collaboration dynamics, 
and problems in ML projects. To this end, we asked practitioners about activities 
covering the development process end-to-end. Our questions range from defining 
requirements to analyzing data and integrating the ML model with the rest of 
the system. We transcribed and analyzed the interviews using reflexive thematic 
analysis [5,6], one of the Thematic Analysis (TA) family methods. This research 
approach guided us while analyzing the data and finding patterns among the 
interviewees’ points of view. 

We divided our findings into five main categories:  requirements,  planning, 
data management, model management, and team interaction. We illustrate the 
participants’ perceptions and the main improvement opportunities they noted for 
each category. Respondents expressed several challenges regarding their tasks and 
current collaboration practices. For example, data scientists and software 
engineers were not always aware of each other’s activities, which led to inaccurate 
planning and errors when integrating the model with the rest of the system. Even 
though they viewed their relationship positively, they recognized that a more 
efficient collaboration could have prevented the late discovery of errors in the 
system. Our main contribution with this work is highlighting the importance of 
having well-defined responsibilities and collaboration procedures inside teams 
developing ML-enabled systems. By reporting challenges faced by professionals, 
we seek to instigate practitioners to evaluate their collaboration practices since 
the beginning of the project. 

 
2 Background and Related Work 

2.1 Challenges in Building ML-enabled Systems 

Villamizar et al. [7] define ML-enabled systems as software systems with an ML 
component. The development of ML-enabled systems presents several challenges 
that can significantly impact the interaction between team members. This is the 
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case especially for software engineers and data scientists, who often share respon- 
sibilities for handling data and deploying models [8]. For example, designing an 
appropriate architecture for these systems is not trivial, as the team must eval- 
uate factors such as model performance degradation, uncertainty management, 
and proper integration between the model and other system components [9]. 

Furthermore, requirements engineering practices for non-ML software de- 
velopment are not entirely applicable when developing systems with an ML 
component [10]. There is a typical lack of requirements specifications for such 
systems [11] that provide a clear definition of the input data, expected model 
outputs, and how the ML component should integrate into the larger system [7]. 
Without these specifications, data scientists may create models with assump- 
tions that software engineers are unaware of, leading to integration issues when 
transitioning from development to production. 

The different backgrounds of data scientists and software engineers can also 
impact their interactions. While data scientists may have strong mathematical and 
statistical skills [12], software engineers have expertise in programming, software 
design, and system architecture. This diversity can lead to variations in problem-
solving approaches. In addition, their cultural differences can also play an 
important role. While the tasks performed by data scientists revolve around 
experimentation and dealing with the uncertainty of unpredictable results [2], 
software engineers often adhere to structured development methodologies. These 
cultural disparities can cause barriers in a collaborative environment. 

 
2.2 Communication and Collaboration in ML-enabled Systems 

Amershi et al. [13] presented a case study with Microsoft software teams to 
gather best practices for ML engineering. Results showed how respondents con- 
sistently cited collaboration as a challenge. Communication and collaboration are 
also mentioned in papers examining the role of data scientists. Kim et al. [12] 
presented a survey with data science employees at Microsoft to uncover the chal- 
lenges they face. Some were related to team communication, such as effectively 
transmitting insights to leaders and achieving agreement among all stakeholders. 

Specifically focusing on collaboration, Zhang et al. [14] conducted a survey on 
how data science workers, including data scientists and software engineers, 
collaborate. The results depicted how data scientists were engaged throughout all 
steps of data science projects, while software engineers were more involved in 
core technical activities, such as acquiring data for the model. Lewis et al. [3] studied 
the consequences of ML mismatches between data scientists, software en- gineers, 
and operations staff developing ML-enabled systems. They interviewed practitioners 
to understand examples and recommendations for avoiding these problems. Results 
showed that most mismatches were related to incorrect as- sumptions about the 
model. They also refer to a lack of model specifications and test cases for 
integration testing. These issues are directly related to the interaction between data 
scientists and software engineers. 

More recently, Mailach and Siegmund [15] investigated sociotechnical chal- 
lenges for bringing ML-enabled software into production. They identified chal- 
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lenges related to organizational silos, especially between the data science and 
software engineering teams. The paper reported tension and communication is- sues 
when the teams collaborated, which led to production delays. Nahar et al. [16] 
focused on identifying challenges and recommendations for the inter- action 
between software engineers and data scientists. They mapped several collaboration 
points between the two actors, from project planning to product- model integration. 
As in Mailach and Siegmund’s study [15], participants also reported problems with 
data scientists working in isolation and communication issues between them and 
software engineers. 

When discussing the state of the art, Nahar et al. [16] mentioned they were 
unaware of other studies examining challenges between software engineers and 
data scientists. With our work, we intend to expand the literature on this topic 
and provide additional insights through a case study strategy. Hence, differently 
from Nahar et al., who covered perspectives from multiple teams from different 
organizations, we qualitatively analyzed a selected case, providing its context 
and conducting thematic analysis. Beyond examining the collaboration between 
data scientists and software engineers, the case study strategy also allowed us to 
qualitatively understand the responsibilities these actors had during the execu- 
tion of the selected case project. 

 
3 Case Study Design 

 

We conducted a case study to enhance our comprehension of the interaction and 
collaboration dynamics between software engineers and data scientists. Here- after, 
we describe its design following the guidelines by Runeson et al. [4]. 

 
3.1 Goal and Research Questions 

The goal of this study, described following the Goal-Question-Metric (GQM) 
template for goal definition [17], can be seen in Table 1. From this goal, we derived 
the following research questions. 

 

Table 1. Case Study Goal 
 

Analyze the interaction between software engineers and data 
scientists 

for the purpose of characterization 

with respect to responsibility sharing and collaboration 
from the point of view of experienced software engineers and data scientists 

in the context of a large ML-enabled system project for Online Dispute 
Resolution (ODR) to help settle legal disputes. 

 

 
RQ1: How do software engineers and data scientists share responsibilities 

when developing an ML-enabled system? 
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This research question focuses on how responsibilities are shared, providing 
insights into the task allocations and synergies that contribute to the successful 
creation of ML-based solutions. To answer RQ1, we evaluated the participation 
of software engineers and data scientists in multiple stages of the ML-enabled 
system’s creation, such as during the system’s design and model development. 
For each activity, we mapped the actors and if any collaboration happened. 

RQ2: How do software engineers and data scientists collaborate when devel- oping 
an ML-enabled system? 

This question focuses on the collaboration between software engineers and 
data scientists during the development of ML-enabled systems. It seeks to un- 
cover the nature of their interactions, communication methods, and joint efforts, 
contributing to understanding the collaborative processes. To this end, we asked 
participants about their perceptions of how this interaction unfolded inside the 
team. We encouraged them to highlight challenges and improvement possibil- 
ities, which we used to formulate recommendations for other teams building ML-
enabled systems. 

 
3.2 Case and Subject Selection 

The selected case concerns an Online Dispute Resolution (ODR) system project. 
It was created to help parties settle legal disputes in Rio de Janeiro. The system 
uses ML to generate settlement agreements for cases with low legal complexity, 
therefore avoiding litigation. We chose to focus on this particular project because 
it is centered around the development of an ML-enabled system, aligning with the 
scope of our intended investigation. Furthermore, we had easy access to project 
participants and the complete system documentation. 

The project started in 2021 inside PUC-Rio’s Tecgraf Institute through a 
partnership with the Rio de Janeiro State Court. After applying the Lean In- ception 
methodology [18], the team defined the product’s main functionalities. Given the 
system’s goal, developing an ML component to aid in dispute res- olution was 
considered an interesting choice. This led to the incorporation of data scientists 
into the team, which also began participating in meetings to un- derstand business 
rules and discuss model characteristics. For the system’s first version, the team 
partnered with an electric power company and established their focus on disputes 
involving consumer complaints directed to this company. The company 
representatives then developed external APIs that the system would consume to 
obtain all the data required by the model. 

 
Process and Team Configuration. The project follows the Scrum framework 
with sprints of two weeks. Ceremonies include sprint planning, daily meetings, 
sprint review, and sprint retrospectives. The team responsible for developing 
the system is multidisciplinary. It comprises a project manager, domain experts, 
UX designers, data scientists, and software engineers. All team members par- 
ticipated in meetings to understand business rules and discuss solution ideas. 
Customer representatives also attended these meetings to ensure decisions fol- 
lowed their expectations. Besides providing requirements, they also evaluated 
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the team’s deliveries through release versions made available by the software en- 
gineers every two months. With respect to the target roles, the team comprises 
six software engineers and two data scientists, considered part of two separate 
squads. Each squad has its tasks, as well as its own planning and daily meetings. 
However, the teams share the same product owner. 

 
Architecture and ML Component. Figure 1 provides an overview of the 
system’s architecture. Users have access to the system’s functionalities through 
a web application that communicates with back-end services through a REST 
API. The back-end architecture is based on microservices, with each service 
having a single responsibility. The services communicate both synchronously 
and asynchronously. Synchronous communication happens through REST APIs, 
while asynchronous communication occurs via message queues. 

 
 

 

Fig. 1. Simplified System Architecture 
 
 

One of the system’s back-end services communicates with the ML component 
through a REST API. The model’s input consists of data entered by users on the 
web system and complementary data obtained from the external APIs. As 
output, the model returns whether it can generate a settlement agreement. If the 
result is positive, the model returns all agreement parameters. If it is negative, the 
model returns why it could not create an agreement. 

The model consists of a decision tree with a set of fixed rules, defined by 
customer representatives and the partner company, that must be validated before 
the system can generate a settlement agreement. These rules were created to 
restrain the model’s possible outputs and improve transparency. Having verified 
all rules with a positive outcome, the model evaluates data from other previously 
resolved disputes. After selecting and analyzing the most similar disputes, the 
model defines the ideal value for each settlement agreement parameter, such 
as the value for compensating moral damages. The text classification method 
behind the model’s functionality is described in the work of Coelho et al. [19]. 

 
3.3 Data Collection 

We formulated our interview questions based on the work of Villamizar et al. [7], 
which offers a conceptual diagram that models tasks and related concerns typ- 
ically faced by different stakeholders in ML projects. Using such diagram, we 
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initially mapped tasks associated with the infrastructure perspective involving 
either a software engineer or a data scientist, presented in Table 2. 

 

Table 2. Tasks of the Infrastructure Perspective 
 

Task Description 
 

Update the Model Involves specifying how the ML-enabled system can continuously 
learn from new data. 

Observe the Model Concerns determining how model performance and results will be 
monitored. 

 
Integrate the Model Addresses how communication between components is established 

to provide functionality for the ML-enabled system. 

 

We also investigated tasks from perspectives outside the system’s infrastruc- 
ture, described in Table 3. We did this to have a broader view of the responsi- 
bilities of software engineers and data scientists inside the project. Given that 
all perspectives may instigate interaction between a data scientist and a soft- ware 
engineer, we designed our interview script to investigate how participants 
handled these tasks in the context of the project. Specifically, we had questions 
about (i) the interviewee’s participation in each task, (ii) the interaction with a 
data scientist or software engineer on that task, (iii) the perceived difficulties or 
improvement opportunities during task execution, and (iv) the documentation 
originated by that task. We used this interview design to guide the discussions 
we had with the participants while allowing them to share their thoughts and in- 
sights freely. We recorded all interviews and, to transcribe them, we used Google 
Cloud’s Speech-to-Text API1. 

 
Table 3. Evaluated Perspectives 

 

Perspective Description 
 

System Objectives Involves understanding  the  problem  to  be  solved  by  the  ML- 
enabled system and defining the model’s goals. 

 
Data Addresses how data is obtained and analyzed to build the model. 

 
 
 
 

3.4 Analysis Procedure 

After acquiring all text files, we analyzed each transcription and made corrections 
while listening to the recordings. We also removed direct references to employee 

1 https://cloud.google.com/speech-to-text 

  
 

  
 

  
 

Make the Model Available Concerns defining how the model will be consumed, e.g., through 
a web endpoint. 

https://cloud.google.com/speech-to-text


8 G. Busquim et al. 
 

 

names to guarantee anonymity. The revised interview transcriptions can be found 
in our online open science repository2. 

For analyzing the data, we followed the guidelines for reflexive thematic anal- 
ysis (RTA) defined by Braun and Clarke [5, 6]. Although RTA is widely used in 
psychology research, studies have shown that it can be applied in other fields, such 
as software engineering [20] and human-computer interaction [21]. We de- cided to 
use RTA in our research since it allows us to engage analytically with the data. In 
other types of TA methodologies, such as coding reliability approaches, the 
analysis provides summaries of what was said about a particular topic [22]. In our 
case, we were interested in finding and interpreting patterns inside the data to 
fully understand the scenario illustrated by our participants and extract the main 
challenges they reported. Following the recommendations of Brown and Clarke 
[22], we did not consider using grounded theory due to the small size of our sample 
and the fact we do not have the goal of developing a theory. 

The first phase of RTA is to familiarize with the data, which we did while re- 
viewing the transcriptions and listening to the recordings. After that, we started 
the coding process. With this process, we aim to group together different data 
components so that all information covering a given topic is in the same category. 
To do this, we first read each transcript thoroughly. Then, for each relevant text 
fragment, we create a code. As we keep reading, we either assign more sentences 
to one of the codes or create a new one. We followed an inductive approach for 
coding, where codes are developed using the data itself as a starting point. 

With the codes defined, we grouped them into themes. To find them, we 
looked for similarities between the codes. Themes should be objective and un- 
derpinned by a central concept. They must contain useful information about 
the dataset, directly addressing at least one research question. Following RTA 
recommendations, we iteratively refined the themes until they met these criteria. 

 

4 Case Study Results 
 

4.1 Participant Characterization 
 

The participants verbally agreed to participate voluntarily in the study and have 
their interviews recorded. All subjects identified as male and hold a master’s or 
a doctorate degree. Table 4 shows the roles, education level, and years of work 
experience for each one. 

 

4.2 Results 
 

We summarized our findings into five main categories: requirements, plan- 
ning, data management, model management, and team interaction. We 
included direct quotes and paraphrased statements from the practitioners to 
support the analysis and interpretations. 

2 https://doi.org/10.5281/zenodo.10035304 

https://doi.org/10.5281/zenodo.10035304
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Table 4. Demographic Data about the Respondents 
 

Participant ID Role Education Level 
Years of

 

 
 
 
 

 
Requirements. An overview of the case study findings related to requirements 
can be seen in Figure 2. An explanation for each one follows. 

 
 

 

Fig. 2. Findings for the Requirements category 
 
 

Managing the requirements for  the  ML-enabled  system  was  a  chal- lenge. 
Participants emphasized that requirements constantly changed. DS1 pro- vided an 
example: “In the beginning, we had defined that the model would be as flexible as 
possible. We realized during later meetings this would not be well ac- cepted, as 
it would make the model’s results less predictable.” 

Customer  representatives  helped  to  define  requirements   for   the model. 
SE1 gave examples of their participation: “I noticed that customer rep- 
resentatives could actively suggest model parameter adjustments. Another topic 
they discussed was keeping information about the model’s operation private from 
end users. This was done to prevent them from learning how to manipulate the 
model in their favor.” DS2 also recognized the importance of customer involve- 
ment, mentioning that he felt like customer representatives could have partic- 
ipated more: “We had difficulties because we did not include more customer 
representatives when we defined the product’s concepts. They could have helped 
us by making decisions. Instead, we made decisions internally. We had to revisit 
some of these decisions later, while we were lucky not to in others.” 

The team struggled with requirements for the model. Data scientists 
mentioned that model requirements were unrealistic and unclear at the beginning 
of the project. DS2 stated: “The requirements were abstract, like ’the model needs 
to be fast’ or ’the system needs to be easy to use.’ There was a misalignment 
between what was desired and what was possible, which led to many meetings.” 

 Experience 

DS1 Data Scientist Doctorate 8 
DS2 Data Scientist Doctorate 8 
SE1 Software Engineer Master’s degree 11 
SE2 Software Engineer Master’s degree 12 
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The team documented the ML-enabled system’s definitions and rec- 
ognized the importance of doing so. DS2 explained: “Each model definition was 
documented through presentations we did in meetings to showcase what our team 
was proposing. The architecture of the model was also described in a document.” 
DS1 highlighted the importance of documenting each meeting: “We created a 
flowchart with all the rules the model considered and documented the meetings 
through minutes. We even had an episode where it was necessary to resort to 
these minutes to prove that the team had made certain decisions in a previous 
encounter.” DS1 also mentioned how these documents helped him learn about 
the project when joining the team: “Reports were developed at the beginning of 
the project [...]. These documents helped me understand the business faster.” 

 
Planning. An overview of the findings related to planning is provided in Figure 
3. An explanation of the results that emerged from the analysis follows. 

 
 

 

Fig. 3. Findings for the Planning category 
 
 

Data scientists performed activities  out  of  their  field  of  expertise, such 
as eliciting requirements for the system. DS2 explained: “Our team was 
responsible for understanding the entire business flow and legal procedures so 
that we could build the model. Someone else could have done this survey and 
delivered the requirements to us.” The data science team also developed the 
model consumption API. In DS2’s view, this should have been done by the 
software engineers: “We were a research team, not a development team. Still, we 
needed to develop versions and generate specifications for the model. Our team 
was responsible for developing and maintaining the model consumption API. 
This responsibility could have been given to the software engineering team.” 

Software   engineers   and   data   scientists   struggled   when   planning their 
tasks; they tried to plan their activities separately, only communicating when 
necessary. SE2 explained this process: “We created a REST API to  allow the model 
integration with the system. We defined a communication interface for the API, 
and then each team did its part. It was outside the data science team’s interest to 
understand how we stored the data as long as this service existed.”. Nevertheless, 
some participants were unhappy with this decision, especially with the 
coordination between the two teams. Each team had its own goals for each sprint, 
and dependencies between them were not always correctly mapped. DS2 stated: 
“There was a misalignment in planning regarding each team’s dependen- cies. For 
example, software engineers sometimes depended on a change in the 
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model that was not in our backlog. The roles of each team ended up not being 
clear, which led to problems in the API used to consume the model. We lacked 
comprehensive planning that involved both teams more.” 

 
 

Data Management. The findings that emerged from the qualitative analysis 
related to data management are shown in Figure 4. 

 
 

 

Fig. 4. Findings for the Data Management category 
 

 
It took time to obtain the  data  needed  for  the  model.  DS2  described how 

this situation led to undesired development tasks: “We also had problems with 
data availability. It took us some months to get all the valid data needed for 
testing. Therefore, we had to initially use mocked data, which later became 
different from the real data, leading to rework.” 

There  was  a  collaboration  effort  between   software   engineers   and data  
scientists  to  collect  data  for   the   model.  All  participants  confirmed the data 
science team was responsible for analyzing and documenting the data, and no 
software engineer participated in these activities. Even though software 
engineers did not directly analyze data, they collaborated with data scientists 
on other tasks. They were responsible for obtaining the data from customer 
representatives and making it available to the data science team, as explained by 
DS1: “Since we worked with legal processes containing sensitive data, we needed 
a secure way to obtain them. The development team defined how this would be 
done together with customer representatives. They created a tool to download the 
data and make it available on our server.” 

Data  scientists  continuously  analyzed   data   during   model   creation. Both 
data scientists agreed that the analysis was not trivial. DS2 explained: “Pre-
processing the data was complex. We received raw data, so cleaning proce- dures 
were necessary, and we also put a lot of effort into annotating the data. It took 
a lot of effort to analyze and process the data received so that we could work on 
the model. This situation also affected what algorithms we could use for the 
model.” Data  analysis also uncovered new model input  fields that  needed to be 
included, as explained by DS1: “[...] it took us a while to figure out what 
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data we needed to request from the customer. We defined some data fields during 
development, while others were defined during meetings ”. 

Collaboration  enabled  data  analysis  to   be   less   challenging.  As  raw data 
was received in files, the software engineers created a tool to help with the 
analysis. DS1 explained: “The development team helped us to create a text an- 
notation system and make it available to the domain experts. They [the domain 
experts] indicated which document parameters were most interesting for extrac- 
tion and annotated the data we used for model training. They were always by 
our side to answer questions, which was essential for building the model. 

 
Model Management. Results that emerged from our analysis related to model 
management are portrayed in Figure 5. 

 
 

 

Fig. 5. Findings for the Model Management category 
 
 

Data scientists were responsible for  evaluating  the  model’s  perfor- mance, 
which was a challenge. DS1 and DS2 mentioned that it was not easy to define 
metrics for the model, such as a target accuracy. DS2 mentioned “the time taken 
to obtain valid data hindered the time to create a better performance evaluation 
framework.” To solve this, the team agreed to validate the model results together 
with customer representatives. DS2 explained: “We presented model studies to 
the project’s stakeholders for them to evaluate if the results were adequate or not.” 
DS1 also mentioned that “a committee of customer represen- tatives was 
responsible for validating the results produced by the model.”. When asked about 
implementing incremental learning for the model, participants DS1 and DS2 both 
said this was a future goal. 

Software engineers handled the model’s deployment and infrastruc- ture. 
SE1 stated: “We are responsible for deploying the model consumption API. The 
deployment of this service [...] is automated through a CI/CD pipeline.” SE2 
explained why the software engineers had this responsibility:“We already had a 
pattern for deployment beforehand, and we knew the data scientists did not spe- 
cialize in DevOps, so we left this structure ready for them.” Furthermore, the 
software engineering team developed the web application and the back-end ser- 
vices that consume the model. 

 
Team Interaction Finally, Figure 6 presents our findings related to team in- 
teraction. Each finding is discussed below. 
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Fig. 6. Findings for the Team Interaction category 
 
 

There  were  communication  issues  between  software  engineers   and data 
scientists, which caused problems in the ML-enabled system. SE1 ex- plained the 
discovery of errors in the data received by the model: “I did not have the 
necessary knowledge to analyze if the data was correct and what fields were 
required or optional. Problems only appeared when we started testing. [...] If the 
teams had not been so distant, we could have anticipated these problems.” SE2, 
on the other hand, exemplified communication issues by explaining how the team 
should have discussed how to store the model artifacts: “We provided Git 
repositories for this storage, but the teams did not discuss how the data scientists 
would store the artifacts. This eventually caused issues because the model had a 
lot of artifacts, such as the training scripts, which were not separated from the API 
code. For this reason, large files were loaded unnecessarily every time a new model 
release was generated.” 

Software engineers did not know much about the model. Since data 
scientists and software engineers had different responsibilities, they became un- 
aware of each other’s activities. SE1 explained his view of this situation: “We 
were very separated, and I did not like that. We did not know much about the 
model. It was like a ’black box’ [...]. Even with a well-defined API, things that 
were obvious to the data science team were unclear to us. [...] We only developed 
the services that consumed it, so we did not know what was being done.” This 
situation proved to be a problem when defining the model’s input, as SE1 high- 
lighted: “When we met with customer representatives and data scientists to map 
the data required by the model, I was unsure if the data we requested was correct 
since I did not know what the data scientists expected for the model input.” 

Software  engineers  and   data   scientists   did   not   cooperate   much when 
producing documentation, as each team was responsible for document- ing 
different parts of the system. DS1 explained: “The software engineers docu- 
mented the input data, while we documented the output data.” However, changes 
in the system harmed this process, as explained by SE2: “Our biggest challenge 
was regarding the changes. The system’s initial state was well-documented, but 
then changes started happening. These changes were not documented properly, 
which harmed the alignment between the teams. We did not correctly update the 
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documentation throughout the project, and we also did not communicate these 
changes efficiently. We discovered them as system components stopped working.” 
Likewise, SE1 was not fully satisfied with the system’s documentation: ”It is not 
documented well enough. We currently have the model’s output and input data 
documented. But, for example, in the middle of this integration, there is a map- 
per that converts data to the format expected by the model. We could have doc- 
umented this conversion better.” SE1, who joined the team in the middle of the 
project, explained that initially he did not know about documentation that could 
have helped him during his onboarding: “I became aware of the model’s objec- 
tives and the system architecture during the project. I would ask the data science 
team questions when I had doubts. There was no formal passage of knowledge 
but instead explanations on demand.” 

Software  engineers  and  data  scientists  had   to   communicate   with other 
stakeholders of the project. SE2 gave an example: “We had several discussions 
with customer representatives to understand their product vision and define what 
was possible. From there, the UX designers started to prototype ideas that we later 
used to model the system database”. Data scientists also interacted with customer 
representatives to define requirements and explain the business rules behind the 
model’s behavior. 

Software  engineers  and   data   scientists   communicated   with   each other 
during development, and we noticed how they had a good relationship inside the 
team. DS1 emphasized this by stating:“We do not have any problems in terms of 
communication between the teams, as the software engineers are very attentive 
and available to us. When there is a change, like  new data that needs to be 
included in the API, or when there is an issue, we communicate directly through 
messages.” 

Software engineers and  data  scientists  struggled  with  communicat- ing 
changes in the model’s API. SE2 stated: “Problems in the ML-enabled system 
were caused by changes in the communication interface established for the API.” 
DS2 expressed dissatisfaction with errors in the model’s input: “Problems with 
input data formats when calling the model’s API should not have been our 
responsibility, as this data had to be in the expected form before communication 
happened. [...] we had to build workarounds to correct input data formats, which 
made the system’s integration with the model take time and generate rework.” 

 
5 Discussion 

5.1 How do software engineers and data scientists share 
responsibilities when developing an ML-enabled system? 

Data scientists and software engineers had specific responsibilities in the project. 
Data scientists focused on analyzing data and developing the model together with 
its consumption API. Software engineers, on the other hand, were responsible 
for the model’s infrastructure and the back-end services that access it. 

Both teams shared responsibilities with other project members and stake- 
holders. For example, they participated in meetings with customer representa- 
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tives to define the ML-enabled system’s goals and functionalities. Data scientists 
worked closely with domain experts to understand data fields and discover new 
ones subsequently included in the model’s input. Software engineers discussed 
interface layouts with UX designers before implementing them on the system’s 
web application. These findings are in line with Zhang et al.’s work [14], which in- 
dicates that software engineers and data scientists are present in different stages 
of the project, from developing the system to communicating with stakeholders. 

Participants illustrated multiple interaction points between the software en- 
gineering and data science teams. They had several meetings to define model 
inputs and outputs and to enable model integration with the rest of the system. 
The same happened during data collection, when software engineers helped data 
scientists obtain the data for model training. Both teams also interacted during 
data annotation, as the software engineers created a system to help with this 
process. The developed tool allowed domain experts to select text areas inside 
the files and associate them with a data field, structuring the data for the model. 

The interviews revealed that DS2 was not pleased with all the responsibilities 
his team received. They had to map the business flow behind processing legal 
disputes, elicit requirements for the model, and present ideas to stakeholders. 
They also had to make several decisions regarding model features; not all could 
be validated with customer representatives. DS2 also explained the data science 
team’s participation in developing the model consumption API. Even though 
they were a research team, they developed all the API’s code, a skill they did 
not have much experience with. For this reason, software engineers helped them 
during the process. Software engineers also handled the model’s infrastructure 
and deployment pipeline since this was another skill the data scientists did not 
possess. Data scientists struggling with ML infrastructure was a concern men- 
tioned in Nahar et al.’s work [16]. 

Team members performing activities outside their field of expertise high- 
lights an opportunity to improve planning, which was another topic mentioned 
during the interviews. Participants revealed that features developed by software 
engineers could not be deployed because data scientists had to prioritize other 
functionalities. Although both teams tried to work as independently as possible, 
having such dependencies effectively mapped and planned could have enhanced 
the team’s delivery speed and avoided problems during the model’s integration. 

 
5.2 How do software engineers and data scientists collaborate when 

developing an ML-enabled system? 

Participants viewed communication between the software engineering and data 
science teams positively. Both teams had a good relationship and were always 
helpful when a member had doubts. They had a group chat where they could 
interact at any given time. 

However, their communication could have been more efficient. Both teams 
worked almost independently. This reduced the frequency of interactions be- 
tween them, which led to software engineers not having much knowledge about 
the model. Even though the model had a well-defined API, which was discussed 
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by both teams, SE1 and SE2 used the term “black box” to describe the ML com- 
ponent. This lack of knowledge became evident during meetings with customer 
representatives, as there was a mismatch between the participants’ understand- 
ing of the data. For example, one of the software engineers could not evaluate if 
the requested data was sufficient for the model, nor if they were in the expected 
format. This situation caused errors in the ML-enabled system that were only 
discovered during testing, resulting in avoidable rework. 

Constant changes in requirements, also observed in Wan et al.’s work [23], 
worsened the ineffective communication between data scientists and software 
engineers. As new requirements appeared, the model and the system had to be 
updated. The data science team had to implement new data fields for the model’s 
input and business rules for the model’s output. At the same time, software 
engineers needed to change the system to capture such data fields, either by user 
input or through accessing an external API. These changes provoked errors in 
the system because they were not communicated properly among the teams. For 
this reason, data scientists had to develop adaptations in the model consumption 
API to accommodate different input data formats. 

The team made an effort to document product definitions and the ML- 
enabled system architecture. Meeting decisions were registered in minutes, and 
data scientists and software engineers were responsible for documenting different 
system components. Software engineers documented the model’s input data and 
the back-end services that consume the model. Data scientists documented the 
business rules behind the model’s behavior and its output responses. 

This separation of responsibilities made maintaining the documentation harder. 
New features were constantly being developed, and the team struggled with 
keeping documents up to date. The aforementioned inefficient communication 
of changes in the system was  another obstacle when updating  documentation. 
For example, problems with changes in the model’s input were fixed by creat- 
ing mappers that corrected the format of input data fields, and one participant 
mentioned that these mappers could be better documented. 

Communication between the data science and software engineering teams 
was essential for one participant who joined the team after product development 
had started. SE1’s understanding of the ML-enabled system’s objectives and 
architecture was acquired through conversations and questions to the team, as 
no formal documentation was presented to him. The data fields used by the model 
are very specific to its domain, which makes understanding them difficult for 
someone unfamiliar with all the business rules of legal procedures. 

 

5.3 Comparison with Literature 
 

Our findings are consistent with results from previous studies regarding the col- 
laboration between data scientists and software engineers developing ML-enabled 
systems. Many collaboration challenges discussed by Nahar et al. [16] were re- 
ported in our interviews, such as data scientists working isolated from software 
engineers, insufficient system documentation, and problems with responsibility 
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sharing. The authors identified three collaboration points: identifying and de- 
composing requirements, negotiating training data quality and quantity, and 
integrating data science and software engineering work. All of these points were 
also present in our case study project. Our findings even reported a new col- 
laboration point, where software engineers developed a system used by domain 
experts to help in data annotation for model training. 

We could also identify several challenges illustrated by Mailach and Nor- 
bert [15]. For instance, it was clear that the software engineers did not know 
enough about the model, describing it as a black box. In addition, we noticed 
disconnections between the development team and some project stakeholders, 
especially when defining requirements for the model. In our research, however, 
the participants did not explicitly mention production delays due to these ad- 
versities. 

 

5.4 Implications for Practitioners 
 

Based on our findings, we present recommendations for practitioners to improve 
collaboration between software engineers and data scientists. We seek to aid 
teams developing ML-enabled systems to avoid the abovementioned pitfalls. 

One of the key challenges that software engineers and data scientists face 
when interacting and collaborating on ML-enabled systems is the lack of clear 
requirements specifications. Without well-defined requirements, it can be difficult 
for these actors to understand each other’s needs and expectations, leading to 
miscommunication and inefficiencies in the development process. This highlights 
the importance of establishing and maintaining clear requirements specifications 
that can serve as a shared understanding between software engineers and data 
scientists, enabling them to work together more efficiently. 

Fostering a collaborative culture from the start of the project is fundamental. 
We believe this can be achieved by establishing a comprehensive planning of the 
system that involves all actors and stakeholders. While planning, the responsi- bilities 
of each actor must be clear to everyone on the team. Moreover, actors should 
be comfortable with the tasks they will perform or at least be willing to learn 
how to execute them. If there are any dependencies between actors that require their 
cooperation, these should be mapped in advance to prevent any delays during 
development. 

Despite their background and cultural differences, software engineers and 
data scientists should avoid working isolated from one another. Even though some 
tasks can be executed independently, they need to communicate frequently. Teams 
should also encourage knowledge exchange between them, which can be done by 
pairing a member from each role to work on a task together. Another possibility 
is to have members of a role present their work to the rest of the team so that 
other actors can become familiar with their activities. 

ML-enabled system architecture and definitions documentation can also en- 
hance the interaction between these two actors. These documents should provide 
a concise and unambiguous description of what the ML-enabled system and each 
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of its components should do. This facilitates the discussion between team mem- 
bers, who can use this documentation as a reference, preventing misconceptions. 
As illustrated by our results, such documentation can also be extremely useful 
while onboarding new team members. 

 
5.5 Threats to Validity 

This section discusses threats to validity, focusing on four types of threats: con- 
struct validity, internal validity, external validity, and reliability [4]. 

Construct validity refers to whether the applied research methodology is 
suited to answer our research questions. To mitigate threats, two of the au- 
thors had access to project documents, such as use case diagrams and system 
architecture documents. This documentation was used to cross-check the par- 
ticipants’ statements. In addition, all authors revised the transcriptions, codes,  
and themes generated during the analysis. At the same time, the coding process 
in RTA is inherently subjective [6], where researchers use their own experiences 
while interpreting the data. 

Internal validity is the extent to which our study presents truthful results 
for our population. To mitigate threats, we formulated the interview questions 
based on the findings of Villamizar et al. [7], which were acquired through a lit- 
erature review [11] and reports of industrial experiences with ML systems [24]. 
We also explained the questions in detail when the participants expressed doubts 
to leave as little room for misunderstandings as possible. We recognize the num- 
ber of participants, which was limited because of the team’s size, may affect 
the credibility of our results. To mitigate this, we interviewed the team’s most 
experienced software engineers and data scientists. 

External validity concerns how our findings can be generalized. We under- 
stand that our case study only discussed challenges from a single team working in 
a specific ML-enabled system. It is possible to have scenarios where, for example, 
the same team is responsible for all tasks carried out by software engineers and 
data scientists. In other cases, a project manager might define responsibilities 
more formally, which can alter the team’s collaboration procedures. However,  
given that some of our results are also present in the current literature, we be- 
lieve that our case study provides additional insights that may be considered when 
analyzing the interaction between these two actors. 

Reliability assesses to what extent the study is dependent on the specific 
researchers. To improve reliability, besides the peer-reviewed qualitative proce- 
dures, we uploaded the transcription of each interview to an online repository3, 
enabling auditing our analyses and facilitating the replication of our study. 

 
6 Concluding Remarks 

This paper investigated the interaction between data scientists and software en- 
gineers through a case study with a team developing an industry ML-enabled 

3 https://doi.org/10.5281/zenodo.10035304 

https://doi.org/10.5281/zenodo.10035304
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system. We interviewed two experienced members of each role about their ac- 
tivities and collaboration practices. We used RTA to inspect the transcriptions and 
extract relevant data to answer our research questions. The results gave us an 
overview of how the team organized their tasks inside the project and the 
challenges data scientists and software engineers faced. These include actors 
being unaware of each other’s activities, frequent requirement changes, unsyn- 
chronized planning, and outdated documentation of the ML-enabled system. 
Our study provides concrete examples of these challenges based on a case study 
of a real ML-enabled system development context. These challenges were also 
mentioned in related work employing different empirical strategies. 

Understanding how the collaboration between software engineers and data 
scientists unfolds inside teams with different compositions and companies with 
other organizational structures can enhance our findings and verify the occur- 
rence of the challenges we reported. Therefore, we invite the community to con- 
duct additional case studies in a variety of contexts to increase external validity. 
Furthermore, future work could also consider expanding our study focus to col- 
laboration with other roles, such as business stakeholders and domain experts. 
These actors were continuously cited during the interviews, given their impor- 
tance in defining requirements and explaining the data. 
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