
This is the authors’ version of the work. The definitive version is accepted for publication at
SWQD 2024

On the Interaction between Software Engineers

and Data Scientists when building Machine

Learning-Enabled Systems

Gabriel Busquim, Hugo Villamizar, Maria Julia Lima, and

Marcos Kalinowski

Pontifical Catholic University of Rio de Janeiro, Brazil
{gbusquim,hvillamizar,kalinowski}@inf.puc-rio.br,

mjulia@tecgraf.puc-rio.br

Abstract. In recent years, Machine Learning (ML) components have been
increasingly integrated into the core systems of organizations. Engineering
such systems presents various challenges from both a theoretical and
practical perspective. One of the key challenges is the effective interaction
between actors with different backgrounds who need to work closely
together, such as software engineers and data scientists. This paper
presents an exploratory case study that aims to understand the current
interaction and collaboration dynamics between these two roles in ML
projects. We conducted semi-structured interviews with four practitioners
with experience in software engineering and data science of a large ML-
enabled system project and analyzed the data using reflexive thematic
analysis. Our findings reveal several challenges that can hinder collaboration
between software engineers and data scientists, including differences in
technical expertise, unclear definitions of each role’s duties, and the lack
of documents that support the specification of the ML-enabled system.
We also indicate potential solutions to ad dress these challenges, such as
fostering a collaborative culture, encouraging team communication, and
producing concise system documentation. This study contributes to
understanding the complex dynamics between software engineers and data
scientists in ML projects and provides in- sights for improving collaboration
and communication in this context. We encourage future studies
investigating this interaction in other projects.

Keywords: Machine Learning, ML-enabled System, Data Science, Soft-
ware Engineering, Collaboration.

1 Introduction

Integrating Machine Learning (ML) components into existing systems has in-
creased as companies seek to leverage vast amounts of data to enhance the
business outcomes of their software products. In this paper, we refer to these
systems as ML-enabled systems. Typically, the ML component is only a small
part of a larger system [1], which usually comprises other components for data
collection, model consumption, and infrastructure requirements.

mailto:mjulia@tecgraf.puc-rio.br

2 G. Busquim et al.

This transition from developing traditional software systems to those inte-
grated with ML components introduces new challenges from the viewpoint of
Software Engineering (SE). The development of ML-enabled systems often in-
volves completely separate workflows, as well as different actors [2]: data sci-
entists build ML models while engineers must deploy and integrate them with
other services. An ineffective interaction between team members can cause ML
mismatches capable of harming the system [3]. This scenario raises the question
of whether proper alignment and communication between the actors occurs and
how they share responsibilities when developing ML-enabled systems.

Following the guidelines by Runeson et al. [4] for case study research in soft-
ware engineering, we tackle this issue by conducting an exploratory case study fo-
cused on two key roles within ML projects: software engineers and data scientists.
The selected case concerns an ML-enabled system for Online Dispute Resolution
(ODR) created to help parties settle legal disputes in the state of Rio de Janeiro.
Beyond describing the team and system context, we conducted semi-structured
interviews with four experienced team members, two software engineers and two
data scientists, to understand their current interactions, collaboration dynamics,
and problems in ML projects. To this end, we asked practitioners about activities
covering the development process end-to-end. Our questions range from defining
requirements to analyzing data and integrating the ML model with the rest of
the system. We transcribed and analyzed the interviews using reflexive thematic
analysis [5,6], one of the Thematic Analysis (TA) family methods. This research
approach guided us while analyzing the data and finding patterns among the
interviewees’ points of view.

We divided our findings into five main categories: requirements, planning,
data management, model management, and team interaction. We illustrate the
participants’ perceptions and the main improvement opportunities they noted for
each category. Respondents expressed several challenges regarding their tasks and
current collaboration practices. For example, data scientists and software
engineers were not always aware of each other’s activities, which led to inaccurate
planning and errors when integrating the model with the rest of the system. Even
though they viewed their relationship positively, they recognized that a more
efficient collaboration could have prevented the late discovery of errors in the
system. Our main contribution with this work is highlighting the importance of
having well-defined responsibilities and collaboration procedures inside teams
developing ML-enabled systems. By reporting challenges faced by professionals,
we seek to instigate practitioners to evaluate their collaboration practices since
the beginning of the project.

2 Background and Related Work

2.1 Challenges in Building ML-enabled Systems

Villamizar et al. [7] define ML-enabled systems as software systems with an ML
component. The development of ML-enabled systems presents several challenges
that can significantly impact the interaction between team members. This is the

On the Interaction between Software Engineers and Data Scientists 3

case especially for software engineers and data scientists, who often share respon-
sibilities for handling data and deploying models [8]. For example, designing an
appropriate architecture for these systems is not trivial, as the team must eval-
uate factors such as model performance degradation, uncertainty management,
and proper integration between the model and other system components [9].

Furthermore, requirements engineering practices for non-ML software de-
velopment are not entirely applicable when developing systems with an ML
component [10]. There is a typical lack of requirements specifications for such
systems [11] that provide a clear definition of the input data, expected model
outputs, and how the ML component should integrate into the larger system [7].
Without these specifications, data scientists may create models with assump-
tions that software engineers are unaware of, leading to integration issues when
transitioning from development to production.

The different backgrounds of data scientists and software engineers can also
impact their interactions. While data scientists may have strong mathematical and
statistical skills [12], software engineers have expertise in programming, software
design, and system architecture. This diversity can lead to variations in problem-
solving approaches. In addition, their cultural differences can also play an
important role. While the tasks performed by data scientists revolve around
experimentation and dealing with the uncertainty of unpredictable results [2],
software engineers often adhere to structured development methodologies. These
cultural disparities can cause barriers in a collaborative environment.

2.2 Communication and Collaboration in ML-enabled Systems

Amershi et al. [13] presented a case study with Microsoft software teams to
gather best practices for ML engineering. Results showed how respondents con-
sistently cited collaboration as a challenge. Communication and collaboration are
also mentioned in papers examining the role of data scientists. Kim et al. [12]
presented a survey with data science employees at Microsoft to uncover the chal-
lenges they face. Some were related to team communication, such as effectively
transmitting insights to leaders and achieving agreement among all stakeholders.

Specifically focusing on collaboration, Zhang et al. [14] conducted a survey on
how data science workers, including data scientists and software engineers,
collaborate. The results depicted how data scientists were engaged throughout all
steps of data science projects, while software engineers were more involved in
core technical activities, such as acquiring data for the model. Lewis et al. [3] studied
the consequences of ML mismatches between data scientists, software en- gineers,
and operations staff developing ML-enabled systems. They interviewed practitioners
to understand examples and recommendations for avoiding these problems. Results
showed that most mismatches were related to incorrect as- sumptions about the
model. They also refer to a lack of model specifications and test cases for
integration testing. These issues are directly related to the interaction between data
scientists and software engineers.

More recently, Mailach and Siegmund [15] investigated sociotechnical chal-
lenges for bringing ML-enabled software into production. They identified chal-

4 G. Busquim et al.

lenges related to organizational silos, especially between the data science and
software engineering teams. The paper reported tension and communication is- sues
when the teams collaborated, which led to production delays. Nahar et al. [16]
focused on identifying challenges and recommendations for the inter- action
between software engineers and data scientists. They mapped several collaboration
points between the two actors, from project planning to product- model integration.
As in Mailach and Siegmund’s study [15], participants also reported problems with
data scientists working in isolation and communication issues between them and
software engineers.

When discussing the state of the art, Nahar et al. [16] mentioned they were
unaware of other studies examining challenges between software engineers and
data scientists. With our work, we intend to expand the literature on this topic
and provide additional insights through a case study strategy. Hence, differently
from Nahar et al., who covered perspectives from multiple teams from different
organizations, we qualitatively analyzed a selected case, providing its context
and conducting thematic analysis. Beyond examining the collaboration between
data scientists and software engineers, the case study strategy also allowed us to
qualitatively understand the responsibilities these actors had during the execu-
tion of the selected case project.

3 Case Study Design

We conducted a case study to enhance our comprehension of the interaction and
collaboration dynamics between software engineers and data scientists. Here- after,
we describe its design following the guidelines by Runeson et al. [4].

3.1 Goal and Research Questions

The goal of this study, described following the Goal-Question-Metric (GQM)
template for goal definition [17], can be seen in Table 1. From this goal, we derived
the following research questions.

Table 1. Case Study Goal

Analyze the interaction between software engineers and data
scientists

for the purpose of characterization

with respect to responsibility sharing and collaboration
from the point of view of experienced software engineers and data scientists

in the context of a large ML-enabled system project for Online Dispute
Resolution (ODR) to help settle legal disputes.

RQ1: How do software engineers and data scientists share responsibilities

when developing an ML-enabled system?

On the Interaction between Software Engineers and Data Scientists 5

This research question focuses on how responsibilities are shared, providing
insights into the task allocations and synergies that contribute to the successful
creation of ML-based solutions. To answer RQ1, we evaluated the participation
of software engineers and data scientists in multiple stages of the ML-enabled
system’s creation, such as during the system’s design and model development.
For each activity, we mapped the actors and if any collaboration happened.

RQ2: How do software engineers and data scientists collaborate when devel- oping
an ML-enabled system?

This question focuses on the collaboration between software engineers and
data scientists during the development of ML-enabled systems. It seeks to un-
cover the nature of their interactions, communication methods, and joint efforts,
contributing to understanding the collaborative processes. To this end, we asked
participants about their perceptions of how this interaction unfolded inside the
team. We encouraged them to highlight challenges and improvement possibil-
ities, which we used to formulate recommendations for other teams building ML-
enabled systems.

3.2 Case and Subject Selection

The selected case concerns an Online Dispute Resolution (ODR) system project.
It was created to help parties settle legal disputes in Rio de Janeiro. The system
uses ML to generate settlement agreements for cases with low legal complexity,
therefore avoiding litigation. We chose to focus on this particular project because
it is centered around the development of an ML-enabled system, aligning with the
scope of our intended investigation. Furthermore, we had easy access to project
participants and the complete system documentation.

The project started in 2021 inside PUC-Rio’s Tecgraf Institute through a
partnership with the Rio de Janeiro State Court. After applying the Lean In- ception
methodology [18], the team defined the product’s main functionalities. Given the
system’s goal, developing an ML component to aid in dispute res- olution was
considered an interesting choice. This led to the incorporation of data scientists
into the team, which also began participating in meetings to un- derstand business
rules and discuss model characteristics. For the system’s first version, the team
partnered with an electric power company and established their focus on disputes
involving consumer complaints directed to this company. The company
representatives then developed external APIs that the system would consume to
obtain all the data required by the model.

Process and Team Configuration. The project follows the Scrum framework
with sprints of two weeks. Ceremonies include sprint planning, daily meetings,
sprint review, and sprint retrospectives. The team responsible for developing
the system is multidisciplinary. It comprises a project manager, domain experts,
UX designers, data scientists, and software engineers. All team members par-
ticipated in meetings to understand business rules and discuss solution ideas.
Customer representatives also attended these meetings to ensure decisions fol-
lowed their expectations. Besides providing requirements, they also evaluated

6 G. Busquim et al.

the team’s deliveries through release versions made available by the software en-
gineers every two months. With respect to the target roles, the team comprises
six software engineers and two data scientists, considered part of two separate
squads. Each squad has its tasks, as well as its own planning and daily meetings.
However, the teams share the same product owner.

Architecture and ML Component. Figure 1 provides an overview of the
system’s architecture. Users have access to the system’s functionalities through
a web application that communicates with back-end services through a REST
API. The back-end architecture is based on microservices, with each service
having a single responsibility. The services communicate both synchronously
and asynchronously. Synchronous communication happens through REST APIs,
while asynchronous communication occurs via message queues.

Fig. 1. Simplified System Architecture

One of the system’s back-end services communicates with the ML component
through a REST API. The model’s input consists of data entered by users on the
web system and complementary data obtained from the external APIs. As
output, the model returns whether it can generate a settlement agreement. If the
result is positive, the model returns all agreement parameters. If it is negative, the
model returns why it could not create an agreement.

The model consists of a decision tree with a set of fixed rules, defined by
customer representatives and the partner company, that must be validated before
the system can generate a settlement agreement. These rules were created to
restrain the model’s possible outputs and improve transparency. Having verified
all rules with a positive outcome, the model evaluates data from other previously
resolved disputes. After selecting and analyzing the most similar disputes, the
model defines the ideal value for each settlement agreement parameter, such
as the value for compensating moral damages. The text classification method
behind the model’s functionality is described in the work of Coelho et al. [19].

3.3 Data Collection

We formulated our interview questions based on the work of Villamizar et al. [7],
which offers a conceptual diagram that models tasks and related concerns typ-
ically faced by different stakeholders in ML projects. Using such diagram, we

On the Interaction between Software Engineers and Data Scientists 7

initially mapped tasks associated with the infrastructure perspective involving
either a software engineer or a data scientist, presented in Table 2.

Table 2. Tasks of the Infrastructure Perspective

Task Description

Update the Model Involves specifying how the ML-enabled system can continuously
learn from new data.

Observe the Model Concerns determining how model performance and results will be
monitored.

Integrate the Model Addresses how communication between components is established

to provide functionality for the ML-enabled system.

We also investigated tasks from perspectives outside the system’s infrastruc-
ture, described in Table 3. We did this to have a broader view of the responsi-
bilities of software engineers and data scientists inside the project. Given that
all perspectives may instigate interaction between a data scientist and a soft- ware
engineer, we designed our interview script to investigate how participants
handled these tasks in the context of the project. Specifically, we had questions
about (i) the interviewee’s participation in each task, (ii) the interaction with a
data scientist or software engineer on that task, (iii) the perceived difficulties or
improvement opportunities during task execution, and (iv) the documentation
originated by that task. We used this interview design to guide the discussions
we had with the participants while allowing them to share their thoughts and in-
sights freely. We recorded all interviews and, to transcribe them, we used Google
Cloud’s Speech-to-Text API1.

Table 3. Evaluated Perspectives

Perspective Description

System Objectives Involves understanding the problem to be solved by the ML-
enabled system and defining the model’s goals.

Data Addresses how data is obtained and analyzed to build the model.

3.4 Analysis Procedure

After acquiring all text files, we analyzed each transcription and made corrections
while listening to the recordings. We also removed direct references to employee

1 https://cloud.google.com/speech-to-text

Make the Model Available Concerns defining how the model will be consumed, e.g., through
a web endpoint.

https://cloud.google.com/speech-to-text

8 G. Busquim et al.

names to guarantee anonymity. The revised interview transcriptions can be found
in our online open science repository2.

For analyzing the data, we followed the guidelines for reflexive thematic anal-
ysis (RTA) defined by Braun and Clarke [5, 6]. Although RTA is widely used in
psychology research, studies have shown that it can be applied in other fields, such
as software engineering [20] and human-computer interaction [21]. We de- cided to
use RTA in our research since it allows us to engage analytically with the data. In
other types of TA methodologies, such as coding reliability approaches, the
analysis provides summaries of what was said about a particular topic [22]. In our
case, we were interested in finding and interpreting patterns inside the data to
fully understand the scenario illustrated by our participants and extract the main
challenges they reported. Following the recommendations of Brown and Clarke
[22], we did not consider using grounded theory due to the small size of our sample
and the fact we do not have the goal of developing a theory.

The first phase of RTA is to familiarize with the data, which we did while re-
viewing the transcriptions and listening to the recordings. After that, we started
the coding process. With this process, we aim to group together different data
components so that all information covering a given topic is in the same category.
To do this, we first read each transcript thoroughly. Then, for each relevant text
fragment, we create a code. As we keep reading, we either assign more sentences
to one of the codes or create a new one. We followed an inductive approach for
coding, where codes are developed using the data itself as a starting point.

With the codes defined, we grouped them into themes. To find them, we
looked for similarities between the codes. Themes should be objective and un-
derpinned by a central concept. They must contain useful information about
the dataset, directly addressing at least one research question. Following RTA
recommendations, we iteratively refined the themes until they met these criteria.

4 Case Study Results

4.1 Participant Characterization

The participants verbally agreed to participate voluntarily in the study and have
their interviews recorded. All subjects identified as male and hold a master’s or
a doctorate degree. Table 4 shows the roles, education level, and years of work
experience for each one.

4.2 Results

We summarized our findings into five main categories: requirements, plan-
ning, data management, model management, and team interaction. We
included direct quotes and paraphrased statements from the practitioners to
support the analysis and interpretations.

2 https://doi.org/10.5281/zenodo.10035304

https://doi.org/10.5281/zenodo.10035304

On the Interaction between Software Engineers and Data Scientists 9

Table 4. Demographic Data about the Respondents

Participant ID Role Education Level
Years of

Requirements. An overview of the case study findings related to requirements
can be seen in Figure 2. An explanation for each one follows.

Fig. 2. Findings for the Requirements category

Managing the requirements for the ML-enabled system was a chal- lenge.
Participants emphasized that requirements constantly changed. DS1 pro- vided an
example: “In the beginning, we had defined that the model would be as flexible as
possible. We realized during later meetings this would not be well ac- cepted, as
it would make the model’s results less predictable.”

Customer representatives helped to define requirements for the model.
SE1 gave examples of their participation: “I noticed that customer rep-
resentatives could actively suggest model parameter adjustments. Another topic
they discussed was keeping information about the model’s operation private from
end users. This was done to prevent them from learning how to manipulate the
model in their favor.” DS2 also recognized the importance of customer involve-
ment, mentioning that he felt like customer representatives could have partic-
ipated more: “We had difficulties because we did not include more customer
representatives when we defined the product’s concepts. They could have helped
us by making decisions. Instead, we made decisions internally. We had to revisit
some of these decisions later, while we were lucky not to in others.”

The team struggled with requirements for the model. Data scientists
mentioned that model requirements were unrealistic and unclear at the beginning
of the project. DS2 stated: “The requirements were abstract, like ’the model needs
to be fast’ or ’the system needs to be easy to use.’ There was a misalignment
between what was desired and what was possible, which led to many meetings.”

 Experience

DS1 Data Scientist Doctorate 8
DS2 Data Scientist Doctorate 8
SE1 Software Engineer Master’s degree 11
SE2 Software Engineer Master’s degree 12

10 G. Busquim et al.

The team documented the ML-enabled system’s definitions and rec-
ognized the importance of doing so. DS2 explained: “Each model definition was
documented through presentations we did in meetings to showcase what our team
was proposing. The architecture of the model was also described in a document.”
DS1 highlighted the importance of documenting each meeting: “We created a
flowchart with all the rules the model considered and documented the meetings
through minutes. We even had an episode where it was necessary to resort to
these minutes to prove that the team had made certain decisions in a previous
encounter.” DS1 also mentioned how these documents helped him learn about
the project when joining the team: “Reports were developed at the beginning of
the project [...]. These documents helped me understand the business faster.”

Planning. An overview of the findings related to planning is provided in Figure
3. An explanation of the results that emerged from the analysis follows.

Fig. 3. Findings for the Planning category

Data scientists performed activities out of their field of expertise, such
as eliciting requirements for the system. DS2 explained: “Our team was
responsible for understanding the entire business flow and legal procedures so
that we could build the model. Someone else could have done this survey and
delivered the requirements to us.” The data science team also developed the
model consumption API. In DS2’s view, this should have been done by the
software engineers: “We were a research team, not a development team. Still, we
needed to develop versions and generate specifications for the model. Our team
was responsible for developing and maintaining the model consumption API.
This responsibility could have been given to the software engineering team.”

Software engineers and data scientists struggled when planning their
tasks; they tried to plan their activities separately, only communicating when
necessary. SE2 explained this process: “We created a REST API to allow the model
integration with the system. We defined a communication interface for the API,
and then each team did its part. It was outside the data science team’s interest to
understand how we stored the data as long as this service existed.”. Nevertheless,
some participants were unhappy with this decision, especially with the
coordination between the two teams. Each team had its own goals for each sprint,
and dependencies between them were not always correctly mapped. DS2 stated:
“There was a misalignment in planning regarding each team’s dependen- cies. For
example, software engineers sometimes depended on a change in the

On the Interaction between Software Engineers and Data Scientists 11

model that was not in our backlog. The roles of each team ended up not being
clear, which led to problems in the API used to consume the model. We lacked
comprehensive planning that involved both teams more.”

Data Management. The findings that emerged from the qualitative analysis
related to data management are shown in Figure 4.

Fig. 4. Findings for the Data Management category

It took time to obtain the data needed for the model. DS2 described how

this situation led to undesired development tasks: “We also had problems with
data availability. It took us some months to get all the valid data needed for
testing. Therefore, we had to initially use mocked data, which later became
different from the real data, leading to rework.”

There was a collaboration effort between software engineers and data
scientists to collect data for the model. All participants confirmed the data
science team was responsible for analyzing and documenting the data, and no
software engineer participated in these activities. Even though software
engineers did not directly analyze data, they collaborated with data scientists
on other tasks. They were responsible for obtaining the data from customer
representatives and making it available to the data science team, as explained by
DS1: “Since we worked with legal processes containing sensitive data, we needed
a secure way to obtain them. The development team defined how this would be
done together with customer representatives. They created a tool to download the
data and make it available on our server.”

Data scientists continuously analyzed data during model creation. Both
data scientists agreed that the analysis was not trivial. DS2 explained: “Pre-
processing the data was complex. We received raw data, so cleaning proce- dures
were necessary, and we also put a lot of effort into annotating the data. It took
a lot of effort to analyze and process the data received so that we could work on
the model. This situation also affected what algorithms we could use for the
model.” Data analysis also uncovered new model input fields that needed to be
included, as explained by DS1: “[...] it took us a while to figure out what

12 G. Busquim et al.

data we needed to request from the customer. We defined some data fields during
development, while others were defined during meetings ”.

Collaboration enabled data analysis to be less challenging. As raw data
was received in files, the software engineers created a tool to help with the
analysis. DS1 explained: “The development team helped us to create a text an-
notation system and make it available to the domain experts. They [the domain
experts] indicated which document parameters were most interesting for extrac-
tion and annotated the data we used for model training. They were always by
our side to answer questions, which was essential for building the model.

Model Management. Results that emerged from our analysis related to model
management are portrayed in Figure 5.

Fig. 5. Findings for the Model Management category

Data scientists were responsible for evaluating the model’s perfor- mance,
which was a challenge. DS1 and DS2 mentioned that it was not easy to define
metrics for the model, such as a target accuracy. DS2 mentioned “the time taken
to obtain valid data hindered the time to create a better performance evaluation
framework.” To solve this, the team agreed to validate the model results together
with customer representatives. DS2 explained: “We presented model studies to
the project’s stakeholders for them to evaluate if the results were adequate or not.”
DS1 also mentioned that “a committee of customer represen- tatives was
responsible for validating the results produced by the model.”. When asked about
implementing incremental learning for the model, participants DS1 and DS2 both
said this was a future goal.

Software engineers handled the model’s deployment and infrastruc- ture.
SE1 stated: “We are responsible for deploying the model consumption API. The
deployment of this service [...] is automated through a CI/CD pipeline.” SE2
explained why the software engineers had this responsibility:“We already had a
pattern for deployment beforehand, and we knew the data scientists did not spe-
cialize in DevOps, so we left this structure ready for them.” Furthermore, the
software engineering team developed the web application and the back-end ser-
vices that consume the model.

Team Interaction Finally, Figure 6 presents our findings related to team in-
teraction. Each finding is discussed below.

On the Interaction between Software Engineers and Data Scientists 13

Fig. 6. Findings for the Team Interaction category

There were communication issues between software engineers and data
scientists, which caused problems in the ML-enabled system. SE1 ex- plained the
discovery of errors in the data received by the model: “I did not have the
necessary knowledge to analyze if the data was correct and what fields were
required or optional. Problems only appeared when we started testing. [...] If the
teams had not been so distant, we could have anticipated these problems.” SE2,
on the other hand, exemplified communication issues by explaining how the team
should have discussed how to store the model artifacts: “We provided Git
repositories for this storage, but the teams did not discuss how the data scientists
would store the artifacts. This eventually caused issues because the model had a
lot of artifacts, such as the training scripts, which were not separated from the API
code. For this reason, large files were loaded unnecessarily every time a new model
release was generated.”

Software engineers did not know much about the model. Since data
scientists and software engineers had different responsibilities, they became un-
aware of each other’s activities. SE1 explained his view of this situation: “We
were very separated, and I did not like that. We did not know much about the
model. It was like a ’black box’ [...]. Even with a well-defined API, things that
were obvious to the data science team were unclear to us. [...] We only developed
the services that consumed it, so we did not know what was being done.” This
situation proved to be a problem when defining the model’s input, as SE1 high-
lighted: “When we met with customer representatives and data scientists to map
the data required by the model, I was unsure if the data we requested was correct
since I did not know what the data scientists expected for the model input.”

Software engineers and data scientists did not cooperate much when
producing documentation, as each team was responsible for document- ing
different parts of the system. DS1 explained: “The software engineers docu-
mented the input data, while we documented the output data.” However, changes
in the system harmed this process, as explained by SE2: “Our biggest challenge
was regarding the changes. The system’s initial state was well-documented, but
then changes started happening. These changes were not documented properly,
which harmed the alignment between the teams. We did not correctly update the

14 G. Busquim et al.

documentation throughout the project, and we also did not communicate these
changes efficiently. We discovered them as system components stopped working.”
Likewise, SE1 was not fully satisfied with the system’s documentation: ”It is not
documented well enough. We currently have the model’s output and input data
documented. But, for example, in the middle of this integration, there is a map-
per that converts data to the format expected by the model. We could have doc-
umented this conversion better.” SE1, who joined the team in the middle of the
project, explained that initially he did not know about documentation that could
have helped him during his onboarding: “I became aware of the model’s objec-
tives and the system architecture during the project. I would ask the data science
team questions when I had doubts. There was no formal passage of knowledge
but instead explanations on demand.”

Software engineers and data scientists had to communicate with other
stakeholders of the project. SE2 gave an example: “We had several discussions
with customer representatives to understand their product vision and define what
was possible. From there, the UX designers started to prototype ideas that we later
used to model the system database”. Data scientists also interacted with customer
representatives to define requirements and explain the business rules behind the
model’s behavior.

Software engineers and data scientists communicated with each other
during development, and we noticed how they had a good relationship inside the
team. DS1 emphasized this by stating:“We do not have any problems in terms of
communication between the teams, as the software engineers are very attentive
and available to us. When there is a change, like new data that needs to be
included in the API, or when there is an issue, we communicate directly through
messages.”

Software engineers and data scientists struggled with communicat- ing
changes in the model’s API. SE2 stated: “Problems in the ML-enabled system
were caused by changes in the communication interface established for the API.”
DS2 expressed dissatisfaction with errors in the model’s input: “Problems with
input data formats when calling the model’s API should not have been our
responsibility, as this data had to be in the expected form before communication
happened. [...] we had to build workarounds to correct input data formats, which
made the system’s integration with the model take time and generate rework.”

5 Discussion

5.1 How do software engineers and data scientists share
responsibilities when developing an ML-enabled system?

Data scientists and software engineers had specific responsibilities in the project.
Data scientists focused on analyzing data and developing the model together with
its consumption API. Software engineers, on the other hand, were responsible
for the model’s infrastructure and the back-end services that access it.

Both teams shared responsibilities with other project members and stake-
holders. For example, they participated in meetings with customer representa-

On the Interaction between Software Engineers and Data Scientists 15

tives to define the ML-enabled system’s goals and functionalities. Data scientists
worked closely with domain experts to understand data fields and discover new
ones subsequently included in the model’s input. Software engineers discussed
interface layouts with UX designers before implementing them on the system’s
web application. These findings are in line with Zhang et al.’s work [14], which in-
dicates that software engineers and data scientists are present in different stages
of the project, from developing the system to communicating with stakeholders.

Participants illustrated multiple interaction points between the software en-
gineering and data science teams. They had several meetings to define model
inputs and outputs and to enable model integration with the rest of the system.
The same happened during data collection, when software engineers helped data
scientists obtain the data for model training. Both teams also interacted during
data annotation, as the software engineers created a system to help with this
process. The developed tool allowed domain experts to select text areas inside
the files and associate them with a data field, structuring the data for the model.

The interviews revealed that DS2 was not pleased with all the responsibilities
his team received. They had to map the business flow behind processing legal
disputes, elicit requirements for the model, and present ideas to stakeholders.
They also had to make several decisions regarding model features; not all could
be validated with customer representatives. DS2 also explained the data science
team’s participation in developing the model consumption API. Even though
they were a research team, they developed all the API’s code, a skill they did
not have much experience with. For this reason, software engineers helped them
during the process. Software engineers also handled the model’s infrastructure
and deployment pipeline since this was another skill the data scientists did not
possess. Data scientists struggling with ML infrastructure was a concern men-
tioned in Nahar et al.’s work [16].

Team members performing activities outside their field of expertise high-
lights an opportunity to improve planning, which was another topic mentioned
during the interviews. Participants revealed that features developed by software
engineers could not be deployed because data scientists had to prioritize other
functionalities. Although both teams tried to work as independently as possible,
having such dependencies effectively mapped and planned could have enhanced
the team’s delivery speed and avoided problems during the model’s integration.

5.2 How do software engineers and data scientists collaborate when

developing an ML-enabled system?

Participants viewed communication between the software engineering and data
science teams positively. Both teams had a good relationship and were always
helpful when a member had doubts. They had a group chat where they could
interact at any given time.

However, their communication could have been more efficient. Both teams
worked almost independently. This reduced the frequency of interactions be-
tween them, which led to software engineers not having much knowledge about
the model. Even though the model had a well-defined API, which was discussed

16 G. Busquim et al.

by both teams, SE1 and SE2 used the term “black box” to describe the ML com-
ponent. This lack of knowledge became evident during meetings with customer
representatives, as there was a mismatch between the participants’ understand-
ing of the data. For example, one of the software engineers could not evaluate if
the requested data was sufficient for the model, nor if they were in the expected
format. This situation caused errors in the ML-enabled system that were only
discovered during testing, resulting in avoidable rework.

Constant changes in requirements, also observed in Wan et al.’s work [23],
worsened the ineffective communication between data scientists and software
engineers. As new requirements appeared, the model and the system had to be
updated. The data science team had to implement new data fields for the model’s
input and business rules for the model’s output. At the same time, software
engineers needed to change the system to capture such data fields, either by user
input or through accessing an external API. These changes provoked errors in
the system because they were not communicated properly among the teams. For
this reason, data scientists had to develop adaptations in the model consumption
API to accommodate different input data formats.

The team made an effort to document product definitions and the ML-
enabled system architecture. Meeting decisions were registered in minutes, and
data scientists and software engineers were responsible for documenting different
system components. Software engineers documented the model’s input data and
the back-end services that consume the model. Data scientists documented the
business rules behind the model’s behavior and its output responses.

This separation of responsibilities made maintaining the documentation harder.
New features were constantly being developed, and the team struggled with
keeping documents up to date. The aforementioned inefficient communication
of changes in the system was another obstacle when updating documentation.
For example, problems with changes in the model’s input were fixed by creat-
ing mappers that corrected the format of input data fields, and one participant
mentioned that these mappers could be better documented.

Communication between the data science and software engineering teams
was essential for one participant who joined the team after product development
had started. SE1’s understanding of the ML-enabled system’s objectives and
architecture was acquired through conversations and questions to the team, as
no formal documentation was presented to him. The data fields used by the model
are very specific to its domain, which makes understanding them difficult for
someone unfamiliar with all the business rules of legal procedures.

5.3 Comparison with Literature

Our findings are consistent with results from previous studies regarding the col-
laboration between data scientists and software engineers developing ML-enabled
systems. Many collaboration challenges discussed by Nahar et al. [16] were re-
ported in our interviews, such as data scientists working isolated from software
engineers, insufficient system documentation, and problems with responsibility

On the Interaction between Software Engineers and Data Scientists 17

sharing. The authors identified three collaboration points: identifying and de-
composing requirements, negotiating training data quality and quantity, and
integrating data science and software engineering work. All of these points were
also present in our case study project. Our findings even reported a new col-
laboration point, where software engineers developed a system used by domain
experts to help in data annotation for model training.

We could also identify several challenges illustrated by Mailach and Nor-
bert [15]. For instance, it was clear that the software engineers did not know
enough about the model, describing it as a black box. In addition, we noticed
disconnections between the development team and some project stakeholders,
especially when defining requirements for the model. In our research, however,
the participants did not explicitly mention production delays due to these ad-
versities.

5.4 Implications for Practitioners

Based on our findings, we present recommendations for practitioners to improve
collaboration between software engineers and data scientists. We seek to aid
teams developing ML-enabled systems to avoid the abovementioned pitfalls.

One of the key challenges that software engineers and data scientists face
when interacting and collaborating on ML-enabled systems is the lack of clear
requirements specifications. Without well-defined requirements, it can be difficult
for these actors to understand each other’s needs and expectations, leading to
miscommunication and inefficiencies in the development process. This highlights
the importance of establishing and maintaining clear requirements specifications
that can serve as a shared understanding between software engineers and data
scientists, enabling them to work together more efficiently.

Fostering a collaborative culture from the start of the project is fundamental.
We believe this can be achieved by establishing a comprehensive planning of the
system that involves all actors and stakeholders. While planning, the responsi- bilities
of each actor must be clear to everyone on the team. Moreover, actors should
be comfortable with the tasks they will perform or at least be willing to learn
how to execute them. If there are any dependencies between actors that require their
cooperation, these should be mapped in advance to prevent any delays during
development.

Despite their background and cultural differences, software engineers and
data scientists should avoid working isolated from one another. Even though some
tasks can be executed independently, they need to communicate frequently. Teams
should also encourage knowledge exchange between them, which can be done by
pairing a member from each role to work on a task together. Another possibility
is to have members of a role present their work to the rest of the team so that
other actors can become familiar with their activities.

ML-enabled system architecture and definitions documentation can also en-
hance the interaction between these two actors. These documents should provide
a concise and unambiguous description of what the ML-enabled system and each

18 G. Busquim et al.

of its components should do. This facilitates the discussion between team mem-
bers, who can use this documentation as a reference, preventing misconceptions.
As illustrated by our results, such documentation can also be extremely useful
while onboarding new team members.

5.5 Threats to Validity

This section discusses threats to validity, focusing on four types of threats: con-
struct validity, internal validity, external validity, and reliability [4].

Construct validity refers to whether the applied research methodology is
suited to answer our research questions. To mitigate threats, two of the au-
thors had access to project documents, such as use case diagrams and system
architecture documents. This documentation was used to cross-check the par-
ticipants’ statements. In addition, all authors revised the transcriptions, codes,
and themes generated during the analysis. At the same time, the coding process
in RTA is inherently subjective [6], where researchers use their own experiences
while interpreting the data.

Internal validity is the extent to which our study presents truthful results
for our population. To mitigate threats, we formulated the interview questions
based on the findings of Villamizar et al. [7], which were acquired through a lit-
erature review [11] and reports of industrial experiences with ML systems [24].
We also explained the questions in detail when the participants expressed doubts
to leave as little room for misunderstandings as possible. We recognize the num-
ber of participants, which was limited because of the team’s size, may affect
the credibility of our results. To mitigate this, we interviewed the team’s most
experienced software engineers and data scientists.

External validity concerns how our findings can be generalized. We under-
stand that our case study only discussed challenges from a single team working in
a specific ML-enabled system. It is possible to have scenarios where, for example,
the same team is responsible for all tasks carried out by software engineers and
data scientists. In other cases, a project manager might define responsibilities
more formally, which can alter the team’s collaboration procedures. However,
given that some of our results are also present in the current literature, we be-
lieve that our case study provides additional insights that may be considered when
analyzing the interaction between these two actors.

Reliability assesses to what extent the study is dependent on the specific
researchers. To improve reliability, besides the peer-reviewed qualitative proce-
dures, we uploaded the transcription of each interview to an online repository3,
enabling auditing our analyses and facilitating the replication of our study.

6 Concluding Remarks

This paper investigated the interaction between data scientists and software en-
gineers through a case study with a team developing an industry ML-enabled

3 https://doi.org/10.5281/zenodo.10035304

https://doi.org/10.5281/zenodo.10035304

On the Interaction between Software Engineers and Data Scientists 19

system. We interviewed two experienced members of each role about their ac-
tivities and collaboration practices. We used RTA to inspect the transcriptions and
extract relevant data to answer our research questions. The results gave us an
overview of how the team organized their tasks inside the project and the
challenges data scientists and software engineers faced. These include actors
being unaware of each other’s activities, frequent requirement changes, unsyn-
chronized planning, and outdated documentation of the ML-enabled system.
Our study provides concrete examples of these challenges based on a case study
of a real ML-enabled system development context. These challenges were also
mentioned in related work employing different empirical strategies.

Understanding how the collaboration between software engineers and data
scientists unfolds inside teams with different compositions and companies with
other organizational structures can enhance our findings and verify the occur-
rence of the challenges we reported. Therefore, we invite the community to con-
duct additional case studies in a variety of contexts to increase external validity.
Furthermore, future work could also consider expanding our study focus to col-
laboration with other roles, such as business stakeholders and domain experts.
These actors were continuously cited during the interviews, given their impor-
tance in defining requirements and explaining the data.

References

1. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,
V., Young, M., Crespo, J.F., Dennison, D.: Hidden technical debt in machine
learning systems. Advances in neural information processing systems 28 (2015)

2. Aho, T., Sievi-Korte, O., Kilamo, T., Yaman, S., Mikkonen, T.: Demystifying
data science projects: A look on the people and process of data science today.
In: Product-Focused Software Process Improvement: 21st International Confer-
ence, PROFES 2020, Turin, Italy, November 25–27, 2020, Proceedings 21, Springer
(2020) 153–167

3. Lewis, G.A., Bellomo, S., Ozkaya, I.: Characterizing and detecting mismatch in
machine-learning-enabled systems. In: 2021 IEEE/ACM 1st Workshop on AI
Engineering-Software Engineering for AI (WAIN), IEEE (2021) 133–140

4. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software
engineering: Guidelines and examples. John Wiley & Sons (2012)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative research
in psychology 3(2) (2006) 77–101

6. Braun, V., Clarke, V.: Reflecting on reflexive thematic analysis. Qualitative re-
search in sport, exercise and health 11(4) (2019) 589–597

7. Villamizar, H., Kalinowski, M., Lopes, H., Mendez, D.: Identifying concerns when
specifying machine learning-enabled systems: A perspective-based approach. arXiv
preprint arXiv:2309.07980 (2023)

8. Kalinowski, M., Escovedo, T., Villamizar, H., Lopes, H.: Engenharia de Software para
Ciência de Dados: Um guia de boas práticas com ̂enfase na construção de sistemas
de Machine Learning em Python. Casa do Código (2023)

9. Nazir, R., Bucaioni, A., Pelliccione, P.: Architecting ML-enabled systems: Chal-
lenges, best practices, and design decisions. Journal of Systems and Software (2023)
111860

20 G. Busquim et al.

10. Ishikawa, F., Yoshioka, N.: How do engineers perceive difficulties in engineering of
machine-learning systems? - questionnaire survey. In: 2019 IEEE/ACM Joint 7th
International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th
International Workshop on Software Engineering Research and Industrial Practice
(SER&IP), IEEE (2019) 2–9

11. Villamizar, H., Escovedo, T., Kalinowski, M.: Requirements engineering for ma-
chine learning: A systematic mapping study. In: 2021 47th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), IEEE (2021) 29–36

12. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists in software teams:
State of the art and challenges. IEEE Transactions on Software Engineering 44(11)
(2017) 1024–1038

13. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi, B., Zimmermann, T.: Software engineering for machine learning: A case
study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE (2019) 291–300

14. Zhang, A.X., Muller, M., Wang, D.: How do Data Science Workers Collaborate?
Roles, Workflows, and Tools. Proceedings of the ACM on Human-Computer In-
teraction 4(CSCW1) (May 2020) 22:1–22:23

15. Mailach, A., Siegmund, N.: Socio-technical anti-patterns in building ML-enabled
software: Insights from leaders on the forefront. In: 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE), IEEE (2023) 690–702

16. Nahar, N., Zhou, S., Lewis, G., Kästner, C.: Collaboration challenges in building
ML-enabled systems: communication, documentation, engineering, and process. In:
Proceedings of the 44th International Conference on Software Engineering. ICSE
’22, New York, NY, USA, Association for Computing Machinery (July 2022) 413–
425

17. Basili, V.R., Rombach, H.D.: The tame project: Towards improvement-oriented
software environments. IEEE Transactions on software engineering 14(6) (1988)
758–773

18. Caroli, P.: Lean inception. São Paulo, BR: Caroli. org (2017)
19. Coelho, G.M., Ramos, A.C., de Sousa, J., Cavaliere, M., de Lima, M.J., Mangeth,

A., Frajhof, I.Z., Cury, C., Casanova, M.A.: Text classification in the brazilian legal
domain. In: ICEIS (1). (2022) 355–363

20. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 international symposium on empirical software engineering
and measurement, IEEE (2011) 275–284

21. Brown, N., Stockman, T.: Examining the use of thematic analysis as a tool for
informing design of new family communication technologies. In: 27th International
BCS Human Computer Interaction Conference (HCI 2013) 27. (2013) 1–6

22. Braun, V., Clarke, V.: Can i use ta? should i use ta? should i not use ta? com- paring
reflexive thematic analysis and other pattern-based qualitative analytic ap-
proaches. Counselling and psychotherapy research 21(1) (2021) 37–47

23. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change soft-
ware development practices? IEEE Transactions on Software Engineering 47(9)
(2019) 1857–1871

24. Villamizar, H., Kalinowski, M., et al.: A catalogue of concerns for specifying machine
learning-enabled systems. In: Workshop on Requirements Engineering (WER).
(2022) 1–14

