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Abstract
Rotation symmetric Boolean functions represent an interesting class of Boolean

functions as they are relatively rare compared to general Boolean functions. At
the same time, the functions in this class can have excellent properties, making
them interesting for various practical applications. The usage of metaheuristics to
construct rotation symmetric Boolean functions is a direction that has been explored
for almost twenty years. Despite that, there are very few results considering
evolutionary computation methods. This paper uses several evolutionary algorithms
to evolve rotation symmetric Boolean functions with different properties. Despite
using generic metaheuristics, we obtain results that are competitive with prior work
relying on customized heuristics. Surprisingly, we find that bitstring and floating
point encodings work better than the tree encoding. Moreover, evolving highly
nonlinear general Boolean functions is easier than rotation symmetric ones.

Keywords rotation symmetry, Boolean functions, metaheuristics, nonlinearity

1 Introduction
Boolean functions are mathematical objects with various applications, including cryp-
tography [17], combinatorics [27], coding theory [20, 14], sequences [20], telecom-
munications [22], and computational complexity theory [1]. Naturally, for Boolean
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Table 1: The number of Boolean functions. Note that there is no known bound on the
number of bent rotation symmetric functions.

n

criterion 4 5 6 7 8 9 10 11 12 13 14 15 16

# general 216 232 264 2128 2256 2512 21024 22048 24096 28192 216384 232768 265536

# bent 896 − 5425430528 − 2106.3 − 2638 − 22510 − 29908 − 239203

# RS 26 28 214 220 236 260 2108 2188 2352 2632 21182 22192 24116

functions to be useful across various applications, they must fulfill various properties,
such as being balanced and exhibiting high nonlinearity. Finding Boolean functions
with specific properties can be rather difficult, which is why the research community
has been actively investigating the design of Boolean functions for nearly 50 years. In
that respect, approaches to constructing Boolean functions can be divided into alge-
braic construction and various search techniques.1. Within search techniques, the most
common division is into random search and metaheuristics. Unfortunately, sometimes
even those approaches are not sufficient due to the vast number of Boolean functions of
n inputs, which is equal to 22n

(see Table 1). Clearly, for n = 6, an exhaustive search
already becomes impossible. In such cases, it might be beneficial to focus on special
classes of Boolean functions that are smaller and, thus, more amenable to search and
enumeration but still large enough to contain many interesting functions. One such class
is rotation symmetric Boolean functions - those functions that are invariant under cyclic
shifts of the input coordinates. These functions have played a pivotal role in surpassing
the quadratic bound.

The initial motivation for studying rotation-symmetric Boolean functions can be
traced back to the reason above: this class is significantly smaller than the class of
general Boolean functions while still containing a large number of interesting functions.
Moreover, such functions have a nice structure and allow for a compact representa-
tion [18]. We provide comparisons of class sizes for general Boolean functions, bent
functions, and rotation symmetric functions in Table 1. Finally, the class of rotation
symmetric Boolean functions is rich with cryptographically significant Boolean func-
tions. For instance, Kavut et al. found Boolean functions in 9 variables with nonlinearity
241 [12]. This achievement resolved an almost three-decade-old open problem and,
notably, was accomplished using heuristics.

Unfortunately, despite belonging to a much smaller class, the space of rotation
symmetric Boolean functions still becomes too large for exhaustive search already for
n = 9. This motivates the need to investigate further diverse metaheuristic techniques
and the construction of rotation symmetric Boolean functions.

Multiple works leverage evolutionary algorithms to construct Boolean functions with
specific properties, commonly focusing on properties like balancedness and nonlinearity,
which we also consider in this work. However, most of these studies do not consider
rotation symmetric Boolean functions but remain confined to the classes of balanced,
highly nonlinear functions or bent functions. On the other hand, the literature on rotation
symmetric Boolean functions and metaheuristics is much more sparse. Despite this
dearth of research, some significant findings were made more than 15 years ago [12].
The first work considering evolutionary algorithms in this context appeared only in
2022 [30].

1Some works also combine theory and search techniques, e.g., [12, 25]
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This paper investigates how various evolutionary algorithms can construct rotation
symmetric Boolean functions, including both bent and balanced functions. We consider
three solution encodings: bitstring, tree, and floating point, and two fitness functions.
To the best of our knowledge, we are the first to investigate tree and floating-point
encodings for this problem. The tree encoding represents an especially intriguing option,
as state-of-the-art results indicate its superior performance over bitstring (see, e.g., [5]).
As far as we know, no prior work has applied evolutionary algorithms to construct bent
rotation symmetric Boolean functions. Our main findings are:

• We managed to find rotation symmetric Boolean functions for every tested dimen-
sion. Still, we mention that genetic programming (GP) evolving general Boolean
functions finds functions with the same or higher nonlinearity. Therefore, we
cannot conclude that finding a rotation-symmetric Boolean function is simpler
due to the smaller search space.

• While tree encoding is considered the best approach for general Boolean functions,
we observe that both bitstring and floating point encodings perform better for ro-
tation symmetric functions. This is because the latter two encodings significantly
reduce the search space due to efficient encoding, while this is not the case for
GP (tree encoding).

• While the best results in related works are reported with customized heuristics,
we reached the same (or even better) values with general metaheuristics. As such,
we question whether developing custom heuristics is worthwhile compared to,
e.g., developing more powerful fitness functions.

2 Background
Let us denote positive integers with n and m: n,m ∈ N+. Next, we denote the Galois
(finite) field with two elements as F2 and the Galois field with 2n elements by F2n . An
(n,m)-function represents a mapping F from Fn

2 to Fm
2 .

When m = 1, the function f is called a Boolean function (in n inputs/variables). We
endow the vector space Fn

2 with the structure of that field, since for every n, there exists
a field F2n of order 2n that is an n-dimensional vector space. The usual inner product of
a and b equals a ·b =

⊕n
i=1 aibi in Fn

2.

2.1 Boolean Function Representations
The simplest way to uniquely represent a Boolean function f on Fn

2 is by its truth table
(TT). The truth table of a Boolean function f is the list of pairs of function inputs (in Fn

2)
and function values, with the size of the value vector being 2n. The value vector is the
binary vector composed of all f (x),x ∈ Fn

2, with a certain order selected on Fn
2 . Usually,

as seen in, e.g., [3], one uses a vector ( f (0), . . . , f (1)) that contains the function values
of f , ordered lexicographically. While the truth table representation is simple and
“human-readable”, little can be deduced from it except if the function is balanced (as
discussed in Section 2.2).

The Walsh-Hadamard transform Wf is a unique representation of a Boolean function
f that measures the correlation between f (x) and the linear functions a · x, see, e.g.,
[3]:2

Wf (a) = ∑
x∈Fn

2

(−1) f (x)+a·x. (1)

2Note that the sum is calculated in Z.
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The Walsh-Hadamard transform is very useful as many Boolean function properties
can be evaluated through it. Since the complexity of calculating the Walsh-Hadamard
transform with a naive approach equals 22n, it is common to employ a more efficient
method called the fast Walsh-Hadamard transform, where the complexity is reduced to
n2n.

2.2 Boolean Function Properties and Bounds
Balancedness. A Boolean function f is called balanced if it takes the value one exactly
the same number of times (2n−1) as the value zero when the input ranges over Fn

2.

Nonlinearity. The minimum Hamming distance between a Boolean function f and
all affine functions, i.e., the functions with the algebraic degree3 at most 1 (in the same
number of variables as f ), is called the nonlinearity of f . The nonlinearity nl f of a
Boolean function f can be easily calculated from the Walsh-Hadamard coefficients, see,
e.g., [3]:

nl f = 2n−1 − 1
2

max
a∈Fn

2

|Wf (a)|. (2)

The Parseval relation ∑
a∈Fn

2

Wf (a)2 = 22n implies that the arithmetic mean of Wf (a)2

equals 2n. Since the maximum of W 2
f (a) is equal to or larger than its arithmetic mean,

we can deduce that maxa∈Fn
2
|Wf (a)| must be equal to or larger than 2

n
2 . This implies

that for every n-variable Boolean function, f satisfies the so-called covering radius
bound (CRB):

nl f ≤ 2n−1 −2
n
2−1. (3)

Eq. (3) cannot be tight when n is odd. For n odd, the bound equals 2⌊2n−2 −2
n
2−2⌋ [6].

We will consider Boolean functions that approach the covering radius bound as highly
nonlinear. We show the values for the covering radius bound for each n in Table 2.

Bent Boolean Functions. The functions whose nonlinearity equals the maximal value
2n−1 − 2n/2−1 are referred to as bent, and they exist only for n even, see, e.g., [3].
Bent Boolean functions are a very active research topic with applications in, e.g.,
coding theory [14] and telecommunications [20]. They are also commonly discussed
in cryptography but are not used since they are not balanced (despite being maximally
nonlinear). Bent Boolean functions are rare, and we know the exact numbers of bent
Boolean functions for n ≤ 8 only. We also know a naive upper bound 22n−1+ 1

2 (
n

n/2). The
numbers of Boolean functions (or upper bound values) are given in Table 1.

2.3 Rotation Symmetric Boolean Functions
A Boolean function over Fn

2 is called rotation symmetric (RS) if invariant under any
cyclic shift of input coordinates. Stated differently, it is invariant under a primitive
cyclic shift, for instance:

(x0,x1, . . . ,xn−1)→ (xn−1,x0,x1, . . . ,xn−2).

3The algebraic degree deg f of a Boolean function f is defined as the number of variables in the largest
product term of the function’s algebraic normal form having a non-zero coefficient, see, e.g., [16].
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Table 2: Nonlinearities of Boolean functions. Note that the bound equals the covering
radius bound when n is even. Moreover, the best-known nonlinearities when the function
is imbalanced and n is even are obtained for bent functions. The best-known results are
taken from [3].

n

condition 4 5 6 7 8 9 10 11 12 13 14 15 16

2⌊2n−2 −2
n
2 −2⌋ 6 12 28 58 120 244 496 1000 2016 4050 8128 16292 32640

balanced

best-known nl f 4 12 26 56 116 240 492 992 2010 4036 8120 16272 NA

imbalanced

best-known nl f 6 12 28 56 120 242 496 996 2016 4040 8128 16276 32640

Notice that this definition implies that the function f takes the same value for vectors
with the same Hamming weight.

Since the above expression holds, the number of rotation symmetric Boolean func-
tions will be less than the number of Boolean functions, as the output value remains the
same for certain input values. Let us provide a small example of a rotation symmetric
Boolean function when n = 3. We obtain the following partitions:

{(0,0,0)} (4)
{(0,0,1) ,(0,1,0) ,(1,0,0)}
{(0,1,1,) ,(1,1,0) ,(1,0,1)}

{(1,1,1)}

Thus, four different subsets partition the eight input patterns, and any 3-variable rotation
symmetric Boolean function can have a specific value corresponding to each subset. An
orbit is a rotation symmetric partition composed of vectors equivalent under rotational
shifts.

While it is trivial to determine the number of rotation symmetric Boolean functions
when n is small, the question remains whether there is a formal way for doing so. Stanica
and Maitra use the Burnside lemma to show that the number of rotation symmetric
Boolean functions equals 2gn , where gn equals [29]:

gn =
1
n ∑

t|n
φ(t)2

n
t , (5)

where φ is the Euler phi function.
Bent rotation symmetric functions are maximally nonlinear and invariant under any

cyclic shift of input coordinates. Rotation symmetric bent functions are much rarer than
general bent functions [18]. The motivation for considering bent rotation symmetric
Boolean functions stems from the fact that such functions can have a simple structure
(leading to new bent functions, e.g., Niho bent functions) and representation. Moreover,
it is possible to compute them efficiently. However, there are some drawbacks, the most
notable being that they are not new, as they belong to the well-known general classes
of bent functions [18]. We provide results on the upper bounds of nonlinearity and the
best-known nonlinearities in Table 2.
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More information about Boolean functions and their properties can be found in,
e.g., [16, 3].

3 Related Work
Many works consider metaheuristics and the construction of Boolean functions with
specific properties (most often, balancedness and nonlinearity) [5]. Consequently,
we divide this section into two parts. First, we briefly discuss relevant works using
evolutionary algorithms to construct bent or balanced and highly nonlinear Boolean
functions. Next, we discuss various efforts with metaheuristics to construct rotation
symmetric Boolean functions.

The research community has been active in evolving Boolean functions with specific
cryptographic properties for almost 30 years [19]. While many settings have been tried,
the most used solution encodings are the bitstring encoding and the tree encoding [5].
As far as we know, Fuller et al. were the first to consider evolving bent Boolean
functions [7]. The authors started with a low-order Boolean function of input size n,
and then generated bent functions of higher algebraic order by iteratively adding ANF
terms and checking whether the resulting function is bent. Yang et al. used evolutionary
algorithms to evolve bent Boolean functions [31]. They used the trace representation of
Boolean functions. Radek and Vaclav used Cartesian Genetic Programming to evolve
bent Boolean functions up to 16 inputs [9]. To achieve this goal, the authors used various
parallelization techniques. Picek and Jakobovic used Genetic Programming to evolve
algebraic constructions, which were then used to construct bent Boolean functions [23].
The authors showcased that the approach is highly efficient and provided results for up
to 24 inputs, marking the first time that EC successfully constructed such large bent
Boolean functions. Husa and Dobai employed linear genetic programming to evolve
bent Boolean functions, reporting superior results compared to related works, as they
managed to evolve bent Boolean functions up to 24 inputs [10].

Stanica et al. used simulated annealing to evolve rotation symmetric Boolean
functions [28]. By reducing the search space in this manner, the authors could construct
9-variable plateaued functions with nonlinearity 240 (among other properties). Kavut
et al. utilized a steepest descent-like iterative algorithm to discover highly nonlinear
Boolean functions [12]. The authors found imbalanced Boolean functions in 9 variables
with a nonlinearity of 241. This represented a significant breakthrough, as the question
of whether such functions existed had remained unanswered for nearly three decades.
Moreover, the authors found Boolean functions in 10 variables with nonlinearity 492.
Kavut and Yucel used a steepest-descent-like iterative algorithm to construct imbalanced
Boolean functions in 9 variables with nonlinearity 242 [13]. Liu and Youssef used
simulated annealing to construct balanced rotation symmetric Boolean functions with
nonlinearity equal to 488 [15]. Wang et al. employed genetic algorithms to construct
rotation symmetric Boolean functions [30]. The authors reported constructing balanced,
highly nonlinear rotation symmetric functions.

4 Experimental Settings

4.1 Representations
We consider three encodings: bitstring, floating point, and tree-based GP.
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Table 3: The number of the encoding bits (genotype size) for rotation symmetric Boolean
functions

variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
gn 2 3 4 6 8 14 20 36 60 108 188 352 632 1182 2192 4116

4.1.1 Bitstring Encoding

The most widely used method for encoding a Boolean function is the bitstring repre-
sentation [5]. The bitstring represents the truth table of the function with which the
algorithm works directly. For a general Boolean function with n inputs, the truth table is
encoded as a bit string with a length of 2n. In the case of rotation symmetric Boolean
functions, the number of truth table entries that need to be encoded is considerably
smaller. For instance, for a 3-variable function, instead of 23 = 8 bits, we only need to
encode 4 bits, which is equal to the number of partitions in the example in the previous
section (see Eq. (4)). The number of distinct bits that need to be encoded, corresponding
to the genotype length, is shown in Table 3 for a given number of variables.

In each evaluation, the bitstring genotype is first decoded into the full Boolean
truth table, and the desired property is calculated. Although the bitstring representation
usually performs worse than other encodings [5], especially for a larger number of
variables, this might not be the case here due to the largely reduced genotype size.

The corresponding variation operators we use are the simple bit mutation, which
inverts a randomly selected bit, and shuffle mutation, which shuffles the bits within a
randomly selected substring. For the crossover operators, we use the one-point crossover,
which combines a new solution from the first part of one parent and the second part
of the other parent with a randomly selected breakpoint. The second operator is the
uniform crossover that randomly selects one bit from both parents at each position in the
child bitstring that is copied. Each time the evolutionary algorithm invokes a crossover
or mutation operation one of the previously described operators is randomly selected.

4.1.2 Floating Point Encoding

The second approach we use for representing a Boolean function is the floating point
genotype, defined as a vector of continuous variables. With this representation, one needs
to define the translation of a vector of floating point numbers into the corresponding
genotype, which is then translated into a full truth table (binary values). The idea behind
this translation is that each continuous variable (a real number) of the floating point
genotype represents a subsequence of bits in the genotype. All the real values in the
floating point vector are constrained to the interval [0,1]. If the genotype size is gn, the
number of bits represented by a single continuous variable of the floating point vector
can vary and is defined as:

decode =
gn

dimension
, (6)

where the parameter dimension denotes the floating point vector size (number of real
values). This parameter can be modified as long as the genotype size is divisible by this
value. The first step of the translation is to convert each floating point number to an
integer value. Since each real value must represent decode bits, the size of the interval
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decoding to the same integer value is given as:

interval =
1

decode
. (7)

To obtain a distinct integer value for a given real number, every element di of the
floating point vector is divided by the calculated interval size, generating a sequence of
integer values:

int_valuei =

⌊
di

interval

⌋
. (8)

The final translation step consists of decoding the integer values to a binary string
that can be used for evaluation. As an example, consider a genotype of 8 bits. Suppose
we want to represent it with 4 real values; in this case, each real value encodes 2 bits
from the truth table. A string of two bits may have 4 distinct combinations. Therefore,
a single real value must be decoded into an integer value from 0 to 3. Since each real
value is constrained to [0,1], the corresponding integer value is obtained by dividing the
real value by 2−2 = 0.25 and truncating it to the nearest smaller integer. Finally, the
integer values are translated into the sequence of bits they encode.

4.1.3 Tree Encoding

In the third approach, we use tree-based GP to evolve a function in the symbolic form
using a tree representation. The terminal set includes a given number of Boolean
variables, x0, x1, . . . , xn−1. The function set consists of several Boolean primitives
that can be used to represent any Boolean function. In our experiments, we use the
following function set: OR, XOR, AND, AND2, XNOR, IF, and function NOT that
takes a single argument. The function AND2 behaves the same as the function AND
but with the second input inverted. The function IF takes three arguments and returns
the second one if the first one evaluates to true and the third one otherwise. The output
of the root node is the output value of the Boolean function. The corresponding truth
table of the function f : Fn

2 → F2 is determined by evaluating the tree over all possible
2n assignments of the input variables at the leaf nodes. The genetic operators used in
our experiments with tree-based GP are simple tree crossover, uniform crossover, size
fair, one-point, and context preserving crossover [26] (selected at random), and subtree
mutation.

Since GP, in this manner, evolves any Boolean function, and not solely rotation
symmetric ones, we do not use the GP-derived truth table directly. Instead, it is treated
as the bitstring genotype, the same as in the previous two representations, and decoded
into a rotation symmetric function. This allows GP to use fewer variables than n since
the genotype size is considerably smaller than the resulting truth table; for instance,
for n = 8, the genotype size gn = 36 (instead of 256), and GP will need to use only 6
variables to produce a bitstring of at least the required size. Unfortunately, since the
genotype size (see Table 3) is not a power of 2, a part of the GP-produced bitstring
(e.g. of size 64 with six variables) will not be used in any way. More importantly, there
is no direct translation between the truth table of the GP-produced Boolean function,
with fewer variables, and the actual rotation symmetric function being decoded and
optimized, which may prove detrimental to the GP.
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4.2 Fitness Functions
In our experiments, we optimize two different types of Boolean functions: 1) maxi-
mally nonlinear (bent) functions and 2) balanced, highly nonlinear functions. The first
fitness function maximizes the nonlinearity value, nl f , but is designed to consider the
whole Walsh-Hadamard spectrum and not only its extreme value (see Eq. (2)). More
specifically, we count the number of occurrences of the maximal absolute value in the
spectrum, denoted as #max_values. Since higher nonlinearity corresponds to a lower
maximal absolute value, we aim for as few occurrences of the maximal value as possible
to make it easier for the algorithm to reach the next nonlinearity value. With this in
mind, the fitness function is defined as:

f itness1 : nl f +
2n −#max_values

2n . (9)

The second term never reaches the value of 1 since, in that case, we effectively reach
the next nonlinearity level.

With the second criterion, we aim to find balanced, highly nonlinear functions.
We use a two-stage objective function in which a bonus equal to the previous fitness
value is awarded only to a balanced function; otherwise, the objective value is only
the balancedness penalty. The balancedness penalty BAL is the difference up to the
balancedness (i.e., the number of bits to be changed to make the function balanced).
This difference is included in the objective function with a negative sign to act as a
penalty in maximization scenarios. The delta function δBAL,0 assumes the value one
when BAL = 0 and is zero otherwise.

f itness2 : −BAL+δBAL,0 · (nl f +
2n −#max_values

2n ). (10)

5 Experimental Results
Regarding bitstring (denoted as TT) and tree encoding (denoted as GP), we employ the
same evolutionary algorithm: a steady-state selection with a 3-tournament elimination
operator. In each iteration of the algorithm, three individuals are chosen at random
from the population for the tournament, and the worst one in terms of fitness value is
eliminated. The two remaining individuals in the tournament are used with the crossover
operator to generate a new child individual, which then undergoes mutation with in-
dividual mutation probability pmut = 0.5. Finally, the mutated child takes the place
of the eliminated individual in the population. The population size in all experiments
was 500, and the termination criteria were set to 106 evaluations. Each experiment was
repeated for 30 runs. We consider Boolean function sizes from 8 to 16 inputs, as with
less, finding rotation symmetric functions is easy and well within reach of an exhaustive
search (see Table 3).

The floating point representation can be used with any continuous optimization
algorithm, which increases its versatility. In our experiments, we used the following
optimization algorithms: Artificial Bee Colony (ABC) [11], Clonal Selection Algorithm
(CLONALG) [2], CMA-ES [8], Differential Evolution (DE) [21], Optimization
Immune Algorithm (OPTIA) [4], and a GA-based algorithm with steady-state selection
(GA-SST), as described above.
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Table 4: General (30 runs with GP) and rotational symmetric balanced Boolean functions,
the best-obtained nonlinearities.

Size

8 9 10 11 12 13 14 15 16

general 116 240 492 992 2000 4032 8120 16256 32608
rot sym 116 240 488 988 1992 4012 8058 16186 32456

Table 5: General (30 runs with GP) and rotational symmetric imbalanced Boolean
functions, the best-obtained nonlinearities.

Size

8 10 12 14 16

general 120 496 2016 7994 32332
rot sym 120 488 1992 8062 32468

5.1 General vs Rotation Symmetric Functions
To facilitate easier comparison with related work, we also provide results for general
balanced, highly nonlinear functions and general bent functions, along with the corre-
sponding rotation symmetric ones (Tables 4 and 5). The results for general Boolean
functions were reproduced with GP, since in that scenario existing research points to GP
as the most efficient approach [5, 24]. Observe that in the case of balanced functions, the
results are better for general functions than for rotation symmetric ones. Our results (the
general ones) are also competitive with the best-known nonlinearities up to n = 12 and
for n = 14 (see Table 2). The nonlinearities when using rotation symmetric functions are
the same as the best-known ones only for n = 8,9. The results are slightly different for
imbalanced functions (as we do not manage to obtain bent functions in all the cases). For
small sizes (up to n = 12), the results for general functions are better than for rotation
symmetric functions, but for n = 14,16, the opposite is true. We suspect this happens
due to the large search space size for such n values, where GP is known to face issues for
such large Boolean functions. The general results are competitive with the best-known
nonlinearities up to n = 12, while the rotation symmetric ones are competitive for n = 8
only. We note that for general functions, we do not reach bent ones for n = 14,16; for
rotation symmetric ones, bent functions are reached only for n = 8.

5.2 Rotation Symmetric Balanced, Highly Nonlinear Boolean Func-
tions

We provide results for balanced rotation symmetric functions in Table 6 and Figure 1.
Interestingly, the best results for most sizes are attained by the TT representation, except
n = 14 and n = 16, for which the FP-SST representation provides the best results. When
FP encoding is used, one can vary the number of bits that a single FP value will represent
(decode, eq. 6). In our preliminary experiments, the best results were obtained with a
relatively small decode (i.e. with one FP value representing a small number of bits),
consequently resulting with larger number of FP variables. This analysis is not included
for brevity, but all FP-based algorithms used the same optimized setting.
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Table 6: Median of nonlinearity values obtained for balanced Boolean functions for
different numbers of variables. The N.F. entry denotes that the algorithm could not
obtain a balanced Boolean function.

Representation Size
8 9 10 11 12 13 14 15 16

TT 116.94 240.61 484.99 985 1988 4009 8049 16179 32435
GP 116.72 236.97 480.99 981 1976 3993 8032 16143 32394
FP-ABC 116.69 236.95 480.99 981 1977 3992 8033 16147 32406
FP-CLONALG 116.88 239.73 484.98 985 1988 4005 8036 16137 32385
FP-CMAES 116.81 236.95 480.99 977 1971 3983 8014 16113 N.F.
FP-DE 116.80 236.93 480.98 977 1969 3969 7954 N.F. N.F.
FP-OPTIA 115.83 237.94 484.98 985 1981 3988 8019 16117 32362
FP-SST 116.88 240.59 484.98 985 1987 4005 8053 16169 32443

TT GP FP-SST

113

114

115

116

117

(a) 8 variables

TT GP FP-SST

237

238

239

240

241

(b) 9 variables

TT GP FP-SST

482

484

486

488

(c) 10 variables

TT GP FP-SST
976

978

980

982

984

986

988

990

(d) 11 variables

TT GP FP-SST

1,965

1,970

1,975

1,980

1,985

1,990

1,995

(e) 12 variables

TT GP FP-SST

3,985

3,990

3,995

4,000

4,005

4,010

4,015

(f) 13 variables

TT GP FP-SST

8,020

8,030

8,040

8,050

8,060

(g) 14 variables

TT GP FP-SST
1.612

1.613

1.614

1.615

1.616

1.617

1.618

1.619
·104

(h) 15 variables

TT GP FP-SST

3.236

3.238

3.24

3.242

3.244

3.246
·104

(i) 16 variables

Figure 1: Box plots for nonlinearity values obtained for balanced Boolean functions
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Table 7: Median of nonlinearity values obtained for bent Boolean functions for a
different number of variables.

Representation Size

8 10 12 14 16

TT 120.00 488.71 1990.97 8056.99 32455.50
GP 120.00 484.88 1979.99 8038.00 32411.50
FP-ABC 119.53 484.41 1980.00 8037.00 32410.00
FP-CLONALG 120.00 487.89 1990.98 8045.00 32414.00
FP-CMAES 118.78 483.96 1976.00 8025.50 32382.50
FP-DE 120.00 482.98 1974.99 8007.50 32348.00
FP-OPTIA 119.53 486.93 1987.98 8036.50 32398.50
FP-SST 120.00 487.90 1990.96 8056.00 32458.50

TT GP FP-SST
116.5
117

117.5
118

118.5
119

119.5
120

(a) 8 variables

TT GP FP-SST

483

484

485

486

487

488

489

(b) 10 variables

TT GP FP-SST

1,975

1,980

1,985

1,990

(c) 12 variables

TT GP FP-SST

8,030

8,040
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Figure 2: Box plots for nonlinearity values obtained for bent Boolean functions

5.3 Rotation Symmetric Bent Boolean Functions
We provide results for bent (imbalanced) rotation symmetric functions in Table 7
and Figure 2. TT provides superior results mainly because of the greatly reduced
search space size compared to general Boolean functions. FP-SST is among the best,
probably because our implementation includes a variety of floating-point crossover
and mutation operators. Remark that GP provides worse results than TT because
there is no semantic link between the GP genotype and the resulting decoded rotation
symmetric Boolean function. Among the FP-based algorithms, CMAES and DE exhibit
surprisingly unsatisfactory performance, not even managing to find balanced functions
for larger n values. We lastly note that the results for rotation symmetric functions
are better than general Boolean results for imbalanced nonlinear functions for sizes 14
and 16, possibly again because of the reduced search size in the rotation symmetric
encoding.

Finally, we compare our results with the two most relevant related works. Kavut et
al. considered rotation symmetric functions in sizes 9 to 11 [12]. For n = 9, the best
nonlinearity for a balanced function equals 240, the same as we achieve. For n = 10,
Kavut et al. report nonlinearity equal to 488 and 492, but the functions are imbalanced
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in both cases. We reach balanced functions with nonlinearity 488. For n = 11, the
authors report a nonlinearity of 988 for the balanced function and 992 for the imbalanced
function; we also reach the nonlinearity of 988 for balanced functions. Later, Kavut
et al. applied affine transformation and changed imbalanced functions into balanced
ones, but the resulting functions are not rotation symmetric anymore, prohibiting direct
comparison. Moreover, to reach such results, they utilize custom heuristics.

Wang et al. used a custom version of the genetic algorithm (GA) for their experi-
ments and considered only balanced rotation symmetric functions [30]. More precisely,
they use “vanilla” GA, followed by two custom algorithm modifications where good
results are reached only for those modified algorithms. For n= 8, they reach nonlinearity
116, the same as we. For n = 10, they obtain a nonlinearity of 488, which is again the
same as we achieve. Finally, for n = 12, they reported a nonlinearity of 1996 but only
provided an example with nonlinearity 1992, which is the same as our best result.

6 Conclusions and Future Work
This paper explores the difficulty of evolving rotation symmetric Boolean functions.
While this class of Boolean functions is much smaller than general Boolean functions,
we did not observe the problem to be simpler. Nevertheless, the obtained results are
good and rival the related works even though they use customized heuristics while
we use generic metaheuristics. Interestingly, we observe that tree encoding is not the
best for evolving rotation symmetric functions, but bitstring and floating point work
much better (differing from the situation when evolving general Boolean functions).
The reason is that the reduction of the search space for bitstring and floating points is
significant, while for tree encoding, we can reduce it only marginally.

For future work, we consider two directions to be especially interesting. First,
considering (bent) rotation symmetric Boolean functions, it would be interesting to
see whether constructions of such functions could be found following the approach
from [23]. Indeed, since we observe that all tested techniques struggle with larger
Boolean function sizes, circumventing this problem through constructions seems a valid
approach. Next, while this work considers rotation symmetric Boolean functions, it
would be interesting (and highly relevant from the practical perspective) to consider
vectorial rotation symmetric functions (rotation symmetric S-boxes).
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