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Abstract. Lexicase selection has been shown to provide advantages over
other selection algorithms in several areas of evolutionary computation
and machine learning. In its standard form, lexicase selection filters a
population or other collection based on randomly ordered training cases
that are considered one at a time. This iterated filtering process can be
time-consuming, particularly in settings with large numbers of training
cases, including many symbolic regression and deep learning applica-
tions. In this paper, we propose a new method that is nearly equivalent
to lexicase selection in terms of the individuals that it selects, but which
does so in significantly less time. The new method, called DALex (for
Diversely Aggregated Lexicase selection), selects the best individual with
respect to a randomly weighted sum of training case errors. This allows
us to formulate the core computation required for selection as matrix
multiplication instead of recursive loops of comparisons, which in turn
allows us to take advantage of optimized and parallel algorithms designed
for matrix multiplication for speedup. Furthermore, we show that we can
interpolate between the behavior of lexicase selection and its “relaxed”
variants, such as epsilon and batch lexicase selection, by adjusting a
single hyperparameter, named “particularity pressure,” which represents
the importance granted to each individual training case. Results on pro-
gram synthesis, deep learning, symbolic regression, and learning classifier
systems demonstrate that DALex achieves significant speedups over lexi-
case selection and its relaxed variants while maintaining almost identical
problem-solving performance. Under a fixed computational budget, these
savings free up resources that can be directed towards increasing popula-
tion size or the number of generations, enabling the potential for solving
more difficult problems.
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1 Introduction

Genetic algorithms [26] is a subfield of evolutionary computation that uses con-
cepts from biological evolution—random variation and fitness-based survival—to
solve a wide array of difficult problems. Genetic programming (GP) is a subfield
of genetic algorithms that evolves programs or functions that take some inputs
and produce some outputs. Common subfields of GP include software synthesis,
in which a population of programs evolves to satisfy user-defined training cases,
and symbolic regression (SR), in which a population of mathematical expres-
sions evolves to fit a regression dataset. Central to these genetic algorithms is
the concept of parent selection, in which members of the current population with
desirable characteristics are chosen as the starting point from which to create
the next generation of individuals. Lexicase selection [24] and epsilon lexicase
selection [32] are state-of-the-art selection algorithms developed for the discrete-
error domain and the continuous-error domain, respectively. The key idea behind
lexicase selection is that it can be helpful to disaggregate the fitness function,
selecting parents by considering training cases one at a time in a random order,
all the while filtering out individuals which are not elite relative to the other
remaining individuals on the current training case. This selection method has
been shown to maintain beneficial diversity in evolved populations [36,17], espe-
cially in terms of “specialists": individuals which may have high total error but
have very low errors on a subset of the training cases [19,20]. However, due to its
iterative nature, lexicase selection can often take a long time, and there is not an
obvious way to take advantage of parallelism or single-instruction-multiple-data
(SIMD) architectures to speed up its runtime.

In this work, we reexamine the lexicase intuition behind disaggregating the
fitness function and we develop an efficient selection method based on randomly
aggregating the fitness function at each individual selection event. Specifically,
we quantify the idea that training cases occurring earlier in a lexicase ordering
exert greater selection pressure by taking a randomly weighted average of each
individual’s error vector. We formulate this selection mechanism as a matrix
multiplication, which allows us to take advantage of modern advancements in
matrix multiplication algorithms and SIMD architectures to achieve significantly
faster runtime compared to lexicase selection.

This paper is organized as follows: In Section 2, we give a brief overview
of lexicase selection and its variants. In Section 3, we describe the Diversely
Aggregated Lexicase Selection (DALex) algorithm and give a brief theoretical
treatment of its properties. In Section 4, we describe our experiments and results
in three popular domains in which lexicase selection has seen demonstrated suc-
cess. Empirical results show that DALex replicates the problem-solving success
of lexicase selection and its most successful variants while offering significantly
reduced runtime.
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2 Background and Related Work

Lexicase selection is a parent selection method that assesses individuals based on
each training case in turn, instead of constructing a single scalar fitness value for
each individual [24]. During each individual selection event, the training cases
are randomly shuffled. For each training case in the order determined by the
random shuffle, candidate individuals in the population that are not “elite" with
respect to that training case, i.e., have an error greater than the minimum error
on that training case among the remaining candidates, are filtered out. If at any
point only a single individual remains, then that individual is selected. If all
of the training cases are exhausted, then a random individual is selected from
those individuals still remaining. In other words, lexicase selection chooses an
individual based on the first training case, using the rest of the cases in order
to break ties. This mechanism has been shown to better maintain population
diversity than methods based on aggregated fitness measures [17], which has been
shown to improve problem-solving performance [15]. Lexicase selection and its
variants have been successfully applied in many diverse problem domains beyond
software synthesis, such as learning classifier systems [1], symbolic regression [32],
SAT solvers [35], deep learning [9], and evolutionary robotics [44].

In continuous-valued domains like SR, it is often unlikely for more than one
individual to share the minimum error on a training case. Therefore, the selection
pressure exerted by each training case will be too large, and lexicase selection
will not proceed beyond one training case. To combat this, the epsilon-lexicase
selection method was developed as a relaxation of lexicase selection [32]. Instead
of requiring individuals to have the minimum error out of the current candidates
on a training case, epsilon-lexicase selection filters out individuals with errors
exceeding an epsilon threshold above the minimum error. This epsilon threshold
is adaptively determined by the population dynamics, specifically as the median
of the absolute deviations from the median error on each training case.

Batch-lexicase selection [1,34,40] is another lexicase relaxation with improved
performance on noisy datasets. Instead of considering each training case in turn,
batch-lexicase selection considers groups of training cases, filtering out individ-
uals whose average accuracy on that group is lower than some threshold. Batch-
lexicase selection has been successfully applied to the field of Learning Classifier
Systems (LCS) in Aenugu et al. [1], showing improved performance on noisy
datasets compared to lexicase selection.

There have been many attempts to speed up lexicase selection. Dolson et
al. [10] showed that the exact calculation of lexicase selection probabilities is NP-
hard. However, Ding et al. [8] are able to calculate an approximate probability
distribution from which to sample individuals. They show that their selection
method achieves significantly faster runtime while achieving similar selection
frequencies compared to lexicase selection. Ding et al. [7] also propose to use a
weighted shuffle of training cases so that more difficult cases are considered first.
They show that this technique can significantly reduce the number of training
cases considered while suffering minimal degradation of problem-solving power.
Batch tournament selection (BTS) [34] orders the training cases by difficulty,
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then groups them into batches. BTS then performs tournament selection once
per batch of cases, using the average error on that batch as the fitness function.
They show that BTS achieves similar problem-solving performance to epsilon
lexicase selection on SR datasets with significantly faster runtime.

Furthermore, many selection methods based on aggregated fitness measures
have been proposed for multiobjective genetic algorithms. Fitness sharing is a
selection method that attempts to maintain diversity by penalizing individuals
for being too close to other individuals in the population with respect to a user-
defined distance metric [6]. On the other hand, implicit fitness sharing (IFS) does
not require a distance metric, and instead scales the reward for each training
case by the rest of the population’s performance on that training case before
computing the aggregated fitness function [33]. Historically assessed hardness
(HAH) is another form of fitness sharing in which errors on each training case
are scaled by the population’s historical success rate on that problem [28]. In
addition to using a distance metric, NSGA-II sorts individuals into pareto fronts
and conducts tournament selection using nondomination rank and local crowding
factor as fitness values [5].

This work lies at the intersection of the lexicase variants mentioned above but
takes a different direction compared to the speedup methods developed so far. For
each individual selection event, we sample a random weighting of training cases.
Then, for each individual, we compute a weighted average of the training case
errors and select the individual with the lowest error with respect to the weighted
average. In contrast to IFS or HAH, we use weights that are randomly chosen,
span many more orders of magnitude, and are resampled at each selection event
instead of at each generation. In contrast to NSGA-II, this method only selects
non-dominated individuals because all of the training case weights are positive
after the softmax operation. However, like epsilon and batch lexicase selection,
and in contrast to lexicase selection, this method may select individuals outside
of the “Pareto boundary" as defined in La Cava et al. [30]. We formulate this
selection method as a vectorized matrix multiplication, selecting all individuals
in a single, batched selection event. This allows us to take advantage of modern
SIMD architecture and algorithmic advances in matrix multiplication to achieve
significantly faster runtime compared to lexicase selection.

3 Diversely Aggregated Lexicase Selection

3.1 Description

Diversely Aggregated Lexicase Selection (DALex) operates by selecting the in-
dividual with the lowest average error with respect to a randomly sampled set
of weights. It is parameterized by the shape and scale of the distribution from
which these weights are sampled. In most of our experiments, we fix the shape
to that of the normal distribution and vary the scale by changing the standard
deviation of the distribution. For an ablation experiment exploring the effect of
different distributions on the performance of DALex, see appendix C. We start
with a population of n individuals, where each individual is evaluated on m
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training cases. We sample an importance score for each training case from the
distribution N (0, std) where the standard deviation std is a tunable hyperpa-
rameter which we call the particularity pressure. Generally speaking, a training
case’s importance score quantifies how many times more important it is com-
pared to the rest of the training cases. To obtain the training case weights, we
softmax the importance scores. This allows us to turn differences between the
values of importance scores into differences between the magnitudes of the train-
ing case weights. For each individual, we compute its average weighted error as
the dot product of the training case weight vector and the individual’s error
vector. Finally, we select the individual with the lowest average weighted error.

In practice, we conduct all individual selection events in one batched selection
event, combining multiple weight vectors into a weight matrix and using matrix
multiplication in place of the dot product. We report selection runtimes in terms
of this batched selection event, i.e. the time taken to go from a population of
n individuals to the indices of the n selected parents for the next generation.
We also perform an initial “pre-selection” step that differs slightly from other
lexicase selection implementations due to the batched nature of our method:
we group individuals into equivalence classes based on their error vectors, select
equivalence classes using DALex, and then choose a random individual from each
selected class [16].

For a population of n individuals evaluated on m training cases, there will
be k ≤ n distinct equivalence classes, so the algorithm multiplies a k ×m error
matrix with a transposed n×m weight matrix, giving an asymptotic runtime of
O(m2n), which is the same as that of lexicase selection. However, due to advances
in the theory of matrix multiplication, the runtime of DALex can be reduced to
O(nω(logn m)) using methods such as the Coppersmith-Winograd algorithm [4].

3.2 Intuition

For a better understanding of DALex, we provide two intuitions linking it to
lexicase selection.

First, we argue that DALex prompts us to reconsider a central tenet of lex-
icase selection. The success of lexicase selection is commonly attributed to its
disaggregation of the fitness function. As the reasoning goes, aggregated selection
methods like tournament or fitness-proportional selection are unable to maintain
effective problem solving diversity the same way lexicase selection does. To ratio-
nalize our results on DALex, we instead propose the slightly different view that
the discrepancy in problem-solving performance is due to the single aggregation
event preceding these selection methods, which causes a loss of information. Be-
cause lexicase selection utilizes the entire high-dimensional error vector instead
of simply the average or sum, it is able to more accurately identify promising
individuals. Since DALex uses many diverse aggregation events, it is also able
to fully utilize the information contained in the individuals’ error vectors, and
is therefore able to replicate the success of lexicase selection. Even though each
individual selection event operates on a single-dimensional total error, diversity
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arises from different random weights promoting different individuals in different
selection events.

Second, we draw a correspondence between the random orderings in lexicase
selection and the random weightings in DALex. Given a random ordering of
training cases in lexicase selection, the cases occurring earlier in the ordering
exert more control over which individual is chosen at that selection event, i.e.
have higher selection pressure. The first training case is paramount, and only
if multiple individuals are equally good at the first case do we consider the
second case, and so on. In DALex, the importance scores or training case weights
assign explicit values to this notion of selection pressure. Given training case
weights of [1.0, 0.01, 0.1] for example, the first case would be ten times as
important as the third case, which in turn is ten times as important as the second
case. In the limit of infinite particularity pressure, the differences in importance
scores tend towards infinity, so the difference in magnitudes of training case
weights tends to infinity, and we recover lexicase selection. As the number of
training cases increases or the range of magnitudes spanned by the errors on each
case increases, the particularity pressure needed to replicate lexicase selection
increases. Empirically, we are able to replicate lexicase selection using modest
particularity pressures such as 20.

This interpretation also explains why we call the standard deviation hyper-
parameter the particularity pressure. When importance weights are sampled
with a high standard deviation, the most important training case will be much
more important than the second most, and so on, just like in lexicase selection.
As the standard deviation decreases, the importance of a single training case
decreases. In other words, higher particularity pressures correspond to increas-
ingly lexicase-like selection dynamics[42]. We find that we can achieve similar
successes to relaxed forms of lexicase selection such as batch-lexicase or epsilon-
lexicase selection simply by choosing an appropriate particularity pressure. In
this sense, DALex unifies the diverse selection methods lexicase, epsilon-lexicase,
and batch-lexicase selection into a single selection method. It is important to
note that DALex’s only theoretical guarantee is that of asymptotically lexicase-
like selection with infinite particularity pressure. As decreasing the particularity
pressure is a different way of relaxation compared to those proposed for epsilon-
lexicase and batch-lexicase selection, we do not expect to be able to replicate the
selection dynamics of these lexicase variants to an arbitrary degree of accuracy.
However, empirical results show that varying the particularity pressure gives
enough flexibility to replicate the successes of these relaxed lexicase variants on
the problem domains for which they were designed.

3.3 Modifications

For domains amenable to a relaxed lexicase variant such as epsilon-lexicase or
batch-lexicase selection, we first standardize the population errors on each train-
ing case to have zero mean and unit variance. While not necessary, we find that
this normalization step helps DALex perform well across many problems with a
single hyperparameter setting.
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Of the problem domains we study, Learning Classifier Systems (LCS) [46]
has a significantly different structure and therefore requires further modification.
Since an LCS individual represents a rule that matches a subset of the training
cases, each individual will only have errors defined on a subset of the training
cases. For these problems, we let the individual have error 0 on cases for which it
is undefined. We also use the individual’s support vector, which has a 1 for each
training case on which the individual is defined, and a 0 otherwise. To compute
the individual’s average error, we take the dot product of the error vector with
the weight vector and then normalize by dividing this value by the dot product
of the support vector with the weight vector.

Algorithm 1: Diversely Aggregated Lexicase Selection, batched selec-
tion event

Data:
• E = {ei,j} the error value of individual i on training case j, or 0 if individual i is

not defined on training case j
• N = {si,j} the support of individual i on training case j, which equals 1 if

individual i is defined on case j, otherwise 0
• n the number of selection events, m the number of training cases
• particularity_pressure, the standard deviation of the sampled weights
• Relaxed, whether to simulate a relaxed version of lexicase selection.

Result:

• idx, the n indices of the selected individuals to be the parents of the next
generation.

if Relaxed then
E ← E−mean(E,axis=0)

std(E,axis=0)
The standardized error matrix

end
I ← N (0, particularity_pressure) The importance scores, an i.i.d gaussian
matrix of size [n,m]

W ← softmax(I, axis = 1) The training case weights
F ← EWT

SWT The normalized, weighted, average error for each individual
idx ← argmin(F, axis = 0) lowest error individuals w.r.t the weights W
return idx

In problems where individuals are defined on all training cases, the support is
1 everywhere, so the normalization constant SWT is simply the sum of the train-
ing case weights, which is 1 due to the softmax operation. Under this condition,
our algorithm degenerates to the simpler case considered above. The complete
algorithm pseudocode, with the augmentations described above to accommodate
for LCS and SR problems, is described in Algorithm 1. In our pseudocode, we
define arithmetic operations as the vectorized element-wise operations used in
libraries like numpy, and batch together the n importance score vectors for the
n individual selection events into an n×m matrix.
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4 Experiments and Results

4.1 CBGP

We first compare DALex to lexicase selection on program synthesis problems,
the class of problem for which lexicase selection was first developed. While we use
a particularity pressure of 20 for these experiments to illustrate the robustness
of DALex, we recommend setting the particularity pressure as large as possible
within the range of floating point precision, or around 200, for problems suitable
for lexicase selection. As DALex can exactly simulate lexicase selection in the
limit of infinite particularity pressure, we also assess the ability of DALex to
replicate the lexicase selection probability distribution with a moderate particu-
larity pressure. To situate our results with respect to other lexicase approxima-
tions we also compare to plexicase selection1[8]. For plexicase selection, we use
the hyperparameter setting α = 1. We use the Code-Building Genetic Program-
ming (CBGP) system developed by Helmuth et al. [37] and test on a suite of
problems from the PSB1 Benchmark [21] on which lexicase selection has shown
good performance. For an overview on CBGP, see appendix A. We follow the de-
fault settings in CBGP, evolving 1000 individuals for 300 generations and using
UMAD [18] with a rate of 0.09 as the sole variation operator. We present results
in both the full data and downsampled paradigms. In the full data paradigm, all
individuals are evaluated on all training cases. In the downsampled paradigm,
a subset of the training cases is sampled at each generation and used to eval-
uate individuals in that generation. Downsampling has been shown to benefit
the performance of Genetic Programming as we can increase the number of gen-
erations and/or individuals in the population for a given total computational
budget [23,22,25]. Additional downsampling methods utilizing information from
the population to choose the downsampled cases have been proposed [2], but we
only study the randomly downsampled paradigm. In our experiments, we use a
downsampling rate of 25%. The specific problems we study are Compare String
Lengths (CSL), Median, Number IO, Replace Space with Newline (RSWN),
Smallest, Vector Average, and Negative to Zero (NTZ).

Following the recommendation of the PSB1 benchmark, we report problem-
solving performance as number of successful runs out of 100. We define a suc-
cessful run as one which produces an individual with zero error on both the
training cases and the unseen testing cases. 2

Table 1 compares the success rates of DALex, plexicase, and lexicase selec-
tion on six benchmark problems under the full and downsampled paradigms. No
results were significantly different between the selection methods, and DALex
achieves very similar success rates to lexicase selection. For our ablation exper-
iments on the distribution of the sampled importance scores, see appendix C.
Additionally, we find that DALex runs faster than lexicase selection but slower
than plexicase selection. Detailed results can be found in appendix B.
1 Fixed a bug in the downsampling implementation in the released version of [8]
2 Due to specific quirks of the code-building system, it is very difficult for CBGP to

generalize successfully on Compare String Lengths.
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Table 1: Success rates of GP runs on six benchmark problems in the full data
and downsampled paradigms. The success rates across the board are very simi-
lar, and no results were significantly different between the selection methods. We
perform chi-squared tests following [8] and underline results that were signifi-
cantly worse than lexicase selection with (p < 0.05). No results were significantly
better than lexicase selection.

Problem Success Rate Downsampled Success Rate
Lexicase DALex Plexicase (α = 1) Lexicase DALex Plexicase (α = 1)

CSL2 0 0 0 0 0 0
Median 91 91 83 100 100 60
Number IO 99 99 100 100 100 100
RSWN 12 15 6 66 68 50
Smallest 100 100 100 100 100 100
Vector Average 100 100 99 100 100 100
NTZ 78 83 80 99 100 100

To compare the selection dynamics of the three methods, we solve the same
PSB1 problems using lexicase selection, and at every generation we sample
50,000 individuals using each selection method. From this we build up the em-
pirical probability distributions {pit} the probability of selecting individual i at
generation t via lexicase selection, {p′it} the probability of selecting individual
i at generation t via DALex, and {p′′it} the probability of selecting individual i
at generation t via plexicase selection. To quantify the differences in probabil-
ity distributions between lexicase selection and its approximations, we use the
Jensen-Shannon divergence metric

Dt =
1

2

[∑
i

pit log

(
2pit

pit + qit

)
+

∑
i

qit log

(
2qit

pit + qit

)]
Where qit is p′it or p′′it for DALex and plexicase selection, respectively. The

lower the JS-divergence of the DALex/plexicase selection probability distribution
from the lexicase selection probability distribution, the better the approxima-
tion to lexicase selection. Furthermore, for each run in which lexicase selection
produces a generalizing individual, we track that individual’s lineage to find its
ancestor at in each generation t, of which there is only one per generation since
we only use mutation operators. For each of these individuals we compute the
probability ratio rt =

qatt

patt
quantifying how much more likely DALex and plex-

icase selection are to select the successful lineage than lexicase selection. We
report the average of these two metrics over all generations and all runs.

Figure 1 shows the results for these two metrics on the problems studied. In
almost all problems, the probability of selecting the successful lineage is almost
the same between DALex and lexicase selection. In contrast, the probability ratio
of plexicase and lexicase selection often deviates much more from 1, indicating
a less faithful approximation. Furthermore, the Jensen-Shannon divergences be-
tween the DALex and lexicase selection probability distributions are often very
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Fig. 1: Fidelity of the DALex and plexicase approximations to lexicase selection
on CBGP problems. Error bars show the bootstrapped 95% confidence intervals.
The ratio of selecting the successful lineage via DALex versus the probability
using lexicase is very close to 1 in 6 out of 7 problems. The Jensen-Shannon
divergence of the DALex selection probability distribution from the lexicase dis-
tribution is close to 0 in 5 out of 7 problems.

close to zero and much smaller than the corresponding divergences of plexicase
selection from lexicase selection, indicating that DALex gives a close approxima-
tion of lexicase selection dynamics. As mentioned before, we expect increasing
the value of the standard deviation to improve the fidelity of the DALex ap-
proximation, bringing the DALex JS divergences even lower and the DALex
probability ratios even closer to 1.

4.2 Image Classification

To test the ability of DALex to mimic lexicase selection even with many training
cases, we compare DALex against lexicase selection as the selection method in
gradient lexicase selection. We use the popular VGG16 [39] and ResNet18 [14]
neural networks on the CIFAR10 [29] dataset. This dataset is comprised of 32x32
bit RGB images distributed evenly across 10 classes. There are 50,000 training
instances and 10,000 test instances. As shown in Ding et al. [7], lexicase selection
often uses up to the entire training set to perform selection, especially towards
the end of the genetic algorithm.

Gradient lexicase selection[9] is a hybrid of lexicase selection with deep learn-
ing, in which a population of deep neural networks (DNN) is evolved to fit an
image classification dataset. In gradient lexicase selection, stochastic gradient
descent on a subset of the training cases is used as the mutation operator. Lex-
icase selection proceeds by evaluating the population of DNNs on one training
case at a time and keeping only the DNNs that correctly predict the training
case’s label. In contrast, DALex evaluates each individual on the entire training
set, assigns to each training case an error value of 0 if the case was correctly
predicted or 1 otherwise, and computes a weighted sum of the error values. As
this domain is intended to test the limits of our lexicase approximation with its
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large number of training cases, we use the previously recommended particularity
pressure of 200.

Since DALex is appropriate for both discrete-valued and continuous-valued
errors, we also investigate the possibility of using cross-entropy loss instead of
accuracy as the basis of selection.

We use a population size of p = 4 and run evolution for a total of 200(p+1)
epochs. For a more detailed description of other hyperparameters such as the
SGD learning rate schedule, see Ding et al. [9].

Each algorithm is run 10 times, and both the final test accuracy and algo-
rithm runtime are recorded. All runs were done on a single Nvidia A100 gpu.
We report the mean and standard deviation of these two metrics in Table 2 the
form mean± std.

Table 2: Performance of three selection methods and two architectures on the
CIFAR10 dataset. Vanilla SGD is also included as a baseline. DALex acheives
similar test accuracy and lower runtime compared to lexicase selection.

Selector VGG16 ResNet18
Test Accuracy Runtime (h) Test Accuracy Runtime (h)

Vanilla SGD 92.8± 0.2 0.962± 0.003 93.8± 0.1 1.003± 0.006
Lexicase 93.7± 0.1 11.1± 0.3 95.1± 0.2 29± 1
DALex accuracy (std=200) 93.7± 0.2 8.7± 0.1 95.3± 0.1 9.1± 0.1
DALex losses (std=200) 93.7± 0.2 8.66± 0.02 95.2± 0.2 9.2± 0.1

We find that DALex performs just as well as lexicase selection whether se-
lecting on cross-entropy losses or accuracy, and additionally runs much faster.
This is likely due to the fact that lexicase selection evaluates individuals on each
training case with a batch size of 1. The small batch size causes too much com-
munication overhead between the cpu and gpu, resulting in a slower runtime.
Furthermore, as training progresses and the models approach 100% accuracy
on the training set, lexicase selection begins to exhibit its worst-case runtime.
As the ResNet18 model reaches a higher training set accuracy than the VGG16
model, lexicase selection takes more than twice as long to run. With DALex,
however, both models have consistent and much lower runtimes.

4.3 SRBench

To examine the ability of DALex to replicate epsilon lexicase-like behavior, we
use the SRBench [31] benchmark suite for symbolic regression. Specifically, we
compare DALex, plexicase, and epsilon lexicase selection as the selection method
for the gplearn [45] framework and train on 20 subsampled datasets from the
Penn Machine Learning Benchmark (PMLB) [38] suite with sizes ranging from 50
to 40,000 instances. As recommended by SRBench, we repeat each experiment
10 times with different random seeds, and take the median of each statistic
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over these 10 experiments. For these experiments, we use the pre-tuned settings
of 1000 individuals per generation, 500 generations, and functions drawn from
the set {+, −, ∗, /, log, sqrt, sin, cos}. We also use the default parsimony
coefficient of 0.001, which adds a model size-based penalty to the error of each
test case. We choose the DALex particularity pressure to be 3, as determined
from a preliminary hyperparameter search.

The statistics we examine in this paper, following the SRBench defaults,
are test R2, training time, and model complexity. Unlike in program synthesis,
we find that the runtime of epsilon lexicase dominates the algorithm runtime,
so we expect the choice of selection method to significantly impact the overall
runtime. We report the median of these statistics over all 20 problems, using
bootstrapping to obtain a 95% confidence interval.
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Fig. 2: Performance of three selection methods on 20 downsampled problems
from the PMLB repository. DALex has a similar test R2 to epsilon lexicase
while having a lower runtime and generating more concise models.

Figure 2 shows the results for the 20 selected problems. We find that DALex
gives a very similar test R2 statistic to epsilon lexicase selection while gener-
ating significantly more concise models and taking much less time to train. Of
the problems we studied, epsilon lexicase selection has a much higher runtime
on the 344_mv problem than on all other problems. We hypothesize that this
is due to epsilon lexicase selection approaching its worst-case runtime, where it
has to consider all test cases over all individuals. Helmuth et al. [20] find that
lexicase selection often selects a single individual after considering only a small
fraction of the total training cases, resulting in empirical runtimes that are much
faster than the worst-case runtimes. On problems like 344_mv, however, where
the selection dynamics approach the worst-case situation, lexicase selection will
have much higher runtimes than we’d expect from empirical results. In contrast,
DALex has a consistent and low runtime that scales predictably with the length
of individuals’ error vectors. The high runtimes and degraded approximiation
performance for plexicase on large datasets are new findings that call for addi-
tional investigation.
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4.4 Learning Classifier Systems

Finally, to show that DALex can reproduce the success of batch-lexicase, we
use the learning classifier system (LCS) from Aenugu et al. [1] We choose the
led24 dataset [3] for the stark contrast between the performances of lexicase se-
lection and batch-lexicase selection. The led24 problem [3], taken from the UCI
ML Repository, tests the ability of selection methods to cope with noise. This
dataset, consisting of 3200 instances, contains 7 boolean attributes correspond-
ing to whether each of 7 LED lights in a display is lit up. It has 10 categories,
the digits 0 through 9, corresponding to which digit is shown on the LED dis-
play. In this dataset, each boolean attribute has a 0.1 probability having its
value inverted. The evolved rule distribution for this problem is sparse, with
most rules representing fewer than 5 data instances [7]. This property makes the
led24 problem unsuitable for lexicase selection and motivates the development
of batch-lexicase selection. For this domain, we use a particularity pressure of
20 as determined by a preliminary hyperparameter search.

As in Aenugu et al. [1], we conduct experiments in both the full data and par-
tial data paradigms. In the full data paradigm, we use the entire led24 dataset,
leaving out 30% for testing. In the partial data paradigm, we randomly dow-
nample the dataset, removing 40% of the instances. We repeat this downsample
for each run, meaning the instances available for each run will be different. We
then split the remaining 60% of the instances into a 40% training set and a 20%
testing set.

Figure 3 displays the results of our experiments. In both domains, we find
that DALex has both the highest test accuracy of the four selection methods
and generates the least number of distinct rules, which suggests that it may have
better generalization ability. Finally, DALex has a significantly lower runtime in
both domains than lexicase and batch-lexicase selection.

5 Conclusion and Future Work

In this work, we presented the novel parent selection method DALex, which
efficiently approximates the lexicase selection mechanism by using random ag-
gregations of error vectors. The proposed method, parametrized by the particu-
larity pressure, is flexible enough to replicate the successes of lexicase selection
and its relaxed variants on multiple problem domains, and is robust to very
large datasets. Furthermore, it has a consistent and low runtime, which frees
up resources that can be used for the other aspects of evolution such as num-
ber of generations. We make the code used in these experiments available at
https://github.com/andrewni420/DALex.

While we have used reasonable presets for the standard deviation hyperpa-
rameter in DALex, we do not anticipate that a single hyperparameter setting
will work for all cases or even for all generations during the course of a GP run.
Therefore, future work could determine the optimal standard deviation using hy-
perparameter search or even a more radical paradigm such as autoconstruction
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Fig. 3: Performance of four selection methods on the led24 problem in the full
data and partial data scenarios. Bootstrapped 95% confidence intervals are dis-
played as error bars for the accuracy and runtime plots and as a shaded region
for the rulecount plot. DALex has approximately equal test accuracy to batch
lexicase while having much lower runtime and generating the fewest rules.

[41,43], Additionally, since DALex computes a randomly weighted fitness func-
tion, it can be combined with selection methods other than pure elitist selection,
such as tournament or fitness-proportional selection [11] to increase diversity. In
fact, the weighted aggregation formulation of DALex is not confined to parent
selection algorithms. The concept of randomly weighted aggregation could also
be used to transform the losses for each training case in deep learning. By intro-
ducing more stochasticity into training, this could enable models to be trained
with large batch sizes without suffering performance degradation [27]. Alterna-
tively, DALex could be used to randomly weight each node in the policy head of
a reinforcement learner when sampling trajectories, improving the exploration
of off-policy learning algorithms such as Double Q-learning [13] or SAC [12].
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A Code-Building GP for Program Synthesis

Code Building Genetic Programming (CBGP)[37] is a typed genetic program-
ming system that aims to use constructs like those found in human programming
to solve program synthesis problems. Incorporating concepts like data types, data
structures, and control flow into a GP system not only promises to create more
complex hierarchical systems but also produces more interpretable programs
which are analogous in structure to human created programs.

CBGP encodes programs as directed acyclic graphs (DAGs) where each leaf
node is an input or a constant, and each inner node a function. Together, these
nodes are called “expressions" and form a computational graph. In these graphs,
the return type of child nodes are required to be sub-types of the corresponding
argument in the parent node for type safety. The CBGP implementation used in
this paper supports the expression types Constants, Inputs, Functions, Methods,
Constructors, and Higher Order Functions.

While CBGP programs are represented by a graph structure, it still uses the
linear plushy genome representation found in other GP systems like PushGP.
This representation consists of a sequence of expression tokens representing pro-
gram syntax and structure tokens representing the hierarchical structure of the
program. These plushy genomes are compiled into Push programs which are
then translated into CBGP DAGs for execution. As in PushGP, CBGP uses the
Uniform Mutation by Addition and Deletion (UMAD) mutation operator[18] as
the sole variation operator.

B Program Synthesis Runtime Comparisons

During our program synthesis experiments, we record the time taken to select
the parents of the next generation. We then take the average of this metric
over all generations and all runs and report them in Figure 4. The results show
that DALex is up to 5x faster than lexicase selection. Despite having a simi-
lar or slower runtime compared to plexicase selection, DALex is a more faithful
approximation to lexicase selection and has shown better performance as pre-
sented in Table 1, where plexicase selection sometimes produces worse results
than lexicase selection.

C Ablation of DALex probability distributions

As an ablation experiment, we examine the effect of the distribution from which
importance scores are chosen on the problem-solving ability of DALex. We com-
pare our default selection from a normal distribution to selection from a uniform
distribution and shuffling a range of evenly spaced numbers. The range case is
interesting in that it is guaranteed to produce lexicase selection when the spac-
ing between weights is larger than the magnitude difference between the largest
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Fig. 4: Runtime comparison of three selecion methods on program synthesis
problems. 95% confidence intervals obtained by bootstrapping.

Table 3: Success rates of GP runs using different distributions for DALex.
All distributions were scaled to a standard deviation of 20 unless otherwise
noted. We perform chi-squared tests following [8] and underline results that
were significantly worse than the normal distribution with (p < 0.05). No results
were significantly better than the normal distribution.

Problem Success Rate
Normal Uniform Range

CSL 0 0 0
Median 91 88 87
Number IO 99 99 100
RSWN 15 15 18
Smallest 100 100 100
Vector Average 100 100 100
NTZ 83 65 66
NTZ (std=100) 79 85 72
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possible error and the smallest possible nonzero error. In each case the impor-
tance scores are scaled so that they have a standard deviation of 20 prior to
softmaxing.

The results are shown in Table 3. The different distribution choices per-
form almost identically on the problems considered except for the Negative To
Zero problem. We hypothesize that this problem is more taxing for our lexicase
approximations, and highlights the differences between the distributions used
for DALex. Of the three distributions, the normal distribution has the largest
kurtosis. Therefore, the largest importance scores sampled from the normal dis-
tribution will be farther apart than for the other two distributions. Since lexicase
selection often selects an individual after considering only a fraction of the train-
ing cases [20], it is these largest importance scores which determine the success
of DALex. The uniform distribution and random shuffle, on the other hand,
lower kurtosis, and perform worse compared to the normal distribution. How-
ever, increasing the standard deviation recovers the success rate of the normal
distribution.
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