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Abstract. Vector addition systems (VAS for short), or equivalently vec-
tor addition systems with states, or Petri nets are a long established
model of concurrency with extensive applications in modeling and anal-
ysis of hardware, software and database systems, as well as chemical,
biological and business processes. The central algorithmic problem is
reachability: whether from a given initial configuration there exists a se-
quence of valid execution steps that reaches a given final configuration.
The complexity of the problem has remained unsettled since the 1960s,
and was recently proved to be Ackermannian-complete.
In 2009, we proved that the reachability problem can be decided with
a simple algorithm by observing that negative instances of the reacha-
bility problem can be witnessed by partitioning the set configurations
into semilinear sets called complete separators. Since we can decide in el-
ementary time if a pair of semilinear sets denotes a complete separator,
the size of such a witness is Ackermannian in the worst case.
In this paper, we show how recent results about the reachability problem
can be combined to derive a matching upper-bound, i.e. for every nega-
tive instance of the reachability problem, we can effectively compute in
Ackermannian time a complete separator witnessing that property.

1 Introduction

Vector addition systems [8] (VAS for short), or equivalently vector addition sys-
tems with states [7], or Petri nets are one of the most popular formal methods
for the representation and the analysis of parallel processes [3]. The central algo-
rithmic problem is reachability: whether from a given initial configuration there
exists a sequence of valid execution steps that reaches a given final configuration.
Many important computational problems in logic and complexity reduce or are
even equivalent to this problem [22,6].

After an incomplete proof by Sacerdote and Tenney [20], decidability of
the problem was established by Mayr [17,19], whose proof was then simpli-
fied by Kosaraju [9]. Building on the further refinements made by Lambert
in the 1990s [10], in 2015, a first complexity upper-bound of the reachability
problem was provided [12] more than thirty years after the presentation of the
algorithm introduced by Mayr [9,10]. The upper-bound given in that paper is
“cubic Ackermannian”, i.e. in Fω3 (see [21]). This complexity bound was obtained
by analyzing the Mayr algorithm. With a refined algorithm and a new ranking
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function for proving termination, an Ackermannian complexity upper-bound was
obtained in [15]. This means that the reachability problem can be solved in time
bounded by Fω(p(n)) where p is a primitive recursive function and where Fω is
an Ackermann function. Very recently, this complexity bound was proved to be
optimal [14,2].

While the complexity of the reachability problem is settled, its parameterized
version, in fixed dimension d, is still open with a large complexity gap between the
lower-bound and the upper-bound. Some recent results provided ways to decrease
that gap (see for instance [1,11]) but the problem remains open. Since there
exists d-dimensional VAS with finite but very large reachability sets [18], any
reachability algorithm directly based on the Mayr algorithm will necessarily fail
in providing a better complexity upper-bound. In fact that algorithm enumerates
in some way each possible reachable configurations when the reachability set is
finite.

There is another algorithm for deciding the reachability problem indepen-
dent of the Mayr algorithm. In fact, in [13], we introduced a simple enumerating
algorithm for deciding the reachability problem by observing that negative in-
stances of the reachability problem can be witnessed by partitioning the set of
configurations into semilinear sets called complete separators. Since we can de-
cide in elementary time if a pair of semilinear sets denotes a complete separator,
and the reachability problem is Ackermannian-hard, the size of such a witness
is necessarily Ackermannian in the worst case.

In this paper, we take the opportunity to show how to combine papers [15]
and [13] to prove that from any negative instance of the reachability problem, we
can effectively compute in Ackermannian time a complete separator witnessing
that property. This result prove the optimality of algorithms based on complete
separators for deciding the general reachability problem. Since this paper is an
invited paper at FOSSACS’24, so without any reviewing process, no new proof
are given in this paper. If a proof is given, it just to be self-content. But in any
case, those proofs are copy-past from [15] and [13].

Even if our result does not provide a better understanding of the complexity
of the parameterized reachability problem, it shows that algorithms based on
complete separators are optimal in general dimension.

2 Basic Notions

In this section, we introduce basic notions and notation.

Notation for Vectors of Integers. By Z we denote the set of integers, and
by N the set {0, 1, 2, . . . } of non-negative integers. Given d ∈ N, the elements
of Zd are called (d-dim) vectors ; they are denoted in bold face, and for x ∈ Zd

we put x = (x(1), . . . ,x(d)) so that we can refer to the vector components. In
this context, d is called the dimension of x. We use the component-wise sum
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x + y of vectors, and their component-wise order x ≤ y. For c ∈ N, we put
c · x = (c · x(1), . . . , c · x(d)).

Linear and Semilinear Sets. A set L ⊆ Nd is linear if there are d-dim vectors
b, the basis, and p1, . . . ,pk, the periods (for k ∈ N), such that L = {x ∈ Nd |
x = b+u(1) ·p1+ · · ·+u(k) ·pk for some u ∈ Nk}. In this case, by a presentation
of L we mean the tuple (b,p1, . . . ,pk).

A set S ⊆ Nd is semilinear if it is a finite union of linear sets, i.e. S =
L1 ∪ · · · ∪ Lk where Lj are linear sets for all j. In this case, by a presentation
of S we mean the sequence of presentations of L1, . . . ,Lk. When we say that a
semilinear set S is given, we mean that we are given a presentation of S; when
we say that S is effectively constructible in some context, we mean that there is
an algorithm computing its presentation (in the respective context).

We recall that a set S ⊆ Nd is semilinear if, and only if, it is expressible in
Presburger arithmetic [4]; the respective transformations between presentations
and formulas are effective and elementary. Hence if S ⊆ Nd is semilinear, then
also its complement, denoted as S, is semilinear, and S is effectively constructible
when (a presentation of) S is given.

Fast Growing Functions. The Grzegorczyk hierarchy [5,16] is defined thanks
to a family (Fd)d∈N of functions Fd : N → N such that every primitive recursive
function is asymptotically bounded by some function Fd. This family is defined
by F0(n)

def
= n + 1 and inductively by Fd+1(n)

def
= Fn+1

d (n) for every n, d ∈ N.
Observe that F1(n) = 2n + 1, F2(n) = 2n+1(n + 1) − 1, and F3(n) grows as a
tower of n exponentials. It follows that F3 is a non elementary function since
it eventually exceeds any fixed iteration of the exponential function. An Acker-
mannian function, denoted as Fω is defined thanks to the diagonal extraction
Fω(n)

def
= Fn+1(n) for every n ∈ N. This function is non primitive recursive.

Vector Addition Systems. A (d-dim) vector addition system (VAS for short)
is a finite set A of vectors in Zd called actions. Vectors x ∈ Nd are called
configurations, and with an action a we associate the binary relation a−→ on the
configurations in Nd by putting x

a−→ y for all x,y ∈ Nd such that y − x = a.
The relations a−→ are naturally extended to the relations σ−→ for finite sequences
σ = a1 . . . ak of actions by x

σ−→ y if x a1−→ · · · ak−→ y for all x,y ∈ Nd.
On the set Nd of configurations we define the reachability relation A∗

−−→: we
put x

A∗

−−→ y if there is σ ∈ A∗ such that x
σ−→ y. For x ∈ Nd and X ⊆ Nd

we put post∗
A(x)

def
= {y ∈ Nd | x A∗

−−→ y}, and post∗
A(X)

def
=

⋃
x∈X post∗

A(x).

Symmetrically, for y ∈ Nd and Y ⊆ Nd we put pre∗
A(y)

def
= {x ∈ Nd | x A∗

−−→ y}
and pre∗

A(Y)
def
=

⋃
y∈Y pre∗

A(y). By X
A∗

−−→ Y we denote that x A∗

−−→ y for some
x ∈ X and y ∈ Y.

The semilinear reachability problem takes as input a triple (X,A,Y) where
X,Y are (presentations of) semi-linear sets of configurations of a VAS A, and
checks if X A∗

−−→ Y hold. In the standard definition of the reachability problem the
sets X,Y are singletons; the problem is decidable [19], and it has been recently
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shown to be Ackermann-complete [15,14,2]. It is well-known (and easy to show)
that the above more general version (the semilinear reachability problem) is
tightly related to the standard version, and has thus the same complexity.

3 Separators

A separator is a negative instance of the semilinear reachability problem, i.e. a
triple (X,A,Y) where X,Y are semilinear sets of configurations of a VAS A

such that ¬(X A∗

−−→ Y). The domain D of a separator (X,A,Y) is the semilinear
set X ∪Y. Notice that X, D, and Y forms a partition of Nd. When the domain
is empty, the separator is said to be complete. Notice that a triple (X,A,Y) is
a complete separator if, and only if, (X,Y) is a partition of Nd into semilinear
sets such that y − x ̸= a for every x ∈ X, y ∈ Y, and a ∈ A. In particular this
property is decidable in elementary time by encoding it as the satisfiabibility of
a Presburger formula. A separator (X′,Y′) is called a completion of a separator
(X,Y) if (X′,Y′) is complete, X ⊆ X′ and Y ⊆ Y′.

In [15] we proved that every separator can be effectively completed. In this
paper, we show how this result can be extended with optimal complexity bounds.
More formally, we prove that any separator can be completed in Ackermannian
time. The Ackermannian lower-bound is immediate since the reachability prob-
lem for VAS is Ackermannian-complete and as already mentioned, we can check
in elementary time if a pair of semilinear sets is a completion of a separator. The
most difficult part of the result is the Ackermannian upper-bound.

4 Semi-Pseudo-Linear Sets

Given two semilinear sets X,Y of configurations of a VAS A, the sets post∗
A(X)∩

Y and pre∗
A(Y) ∩X are not semilinear in general. However, we proved in [13]

that those sets are semi-pseudo-linear, a class of sets that can be tightly over-
approximated by semilinear sets called linearizations. Linearizations are obtained
by solving several instances of the semilinear reachability problem. Since in [14,2],
we provided an Ackermannian upper-bounds on that decision problem, we can
reasonably think that the completion of separators can be done in Ackermannian
time. To prove that result, in this section we provide complexity bounds on the
size of linearizations. Those linearizations will be used in the next section for
completing separators in Ackermannian time.

Let us recall some definitions. A monoid M is a set of configurations such
that 0 ∈ M, and such that M+M ⊆ M. The monoid spanned by a set P ⊆ Nd

is the set of finite sums of vectors in P. It is denoted as ΣP. A vector a ∈ Nd

is called an interior vector of a monoid M, if for every m ∈ M, there exists a
natural number n ≥ 1 such that na ∈ m+M.

A pseudo-linear set is a set X ⊆ Nd such that there exists a linear set
L = b + M where M is the monoid spanned by the periods of L, such that
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X ⊆ L and such that for every finite set R of interior vectors of M, there
exists x ∈ X such that x + ΣR ⊆ X. In that case, the linear set L is called a
linearization of X. A semi-pseudo-linear set X is a finite union of pseudo-linear
sets X = X1 ∪ . . . ∪Xk. In that case a semilinear set of the form L1 ∪ . . . ∪ Lk

where Lj is a linearization of Xj is a called a linearization of X.

By combining the proof of [13, Theorem 6.4] with [15], we deduce the fol-
lowing theorem where fd is a function of the form Fd+3(Cn) for some constant
C independent of d. In this theorem, the size in binary or in unary does not
change the result and there is a lot of freedom in the definition of the size of
presentations of semilinear sets and VAS.

Theorem 1. Given two semilinear sets X and Y of configurations of a d-dim
VAS A, the sets post∗

A(X)∩Y and pre∗
A(Y)∩X are semi-pseudo-linear. More-

over, we can effectively compute in time fd(n) where n is the size of the input,
presentations of linearizations of those sets.

The tightness of linearization approximations can be emphasis by introducing
the notion of rank1 given in [13]. Formally, the rank of a set X ⊆ Nd, denoted as
rankX is the minimal r ∈ {−∞, 0, . . . , d} such that there exists a semi-linear set
S that contains X of the form b1 +M1 ∪ . . . ∪ bk +Mk where M1, . . . ,Mk are
monoids spanned by at most r vectors. In [13], we prove that rank(X) = −∞ iff
X is empty, rank(X) ≤ rank(Y) if X ⊆ Y, and the following theorem.

Theorem 2 (Proposition 7.10 of [13]). Let S1,S2 be linearizations of two
non-empty semi-pseudo-linear sets X1,X2 with an empty intersection. We have:

rank(S1 ∩ S2) < rank(X1 ∪X2)

5 Ackermannian Completion

We show in this section who a separator (X,A,Y) can be completed in Acker-
mannian time. We follow the algorithm introduced in [13] by first proving that if
(X,A,Y) is not complete, i.e. if the domain D is non empty, we can effectively
compute a separator (X′,A,Y′) with a domain D′ such that X ⊆ X′, Y ⊆ Y′,
and such that rank(D′) < rank(D). It follows that by applying at most d times
this algorithm where d is the dimension of A, we get a complete separator.

Let n be the size of the separator (X,A,Y).
The set Y′ is obtained as follows. Since D is semilinear and effectively com-

putable in elementary time, it follows from Theorem 1 that we can compute in
time fd(E(n)) where E is some fixed elementary function a linearization U of
the semi-pseudo-linear set post∗

A(X) ∩D. We introduce Y′ def
= Y ∪ (D \U).

Let us prove that (X,A,Y′) is a separator. By contradiction, assume that
X

A∗

−−→ Y′. Since ¬(X A∗

−−→ Y), and Y′ = Y ∪ (D \U), we deduce that X
A∗

−−→
1 In [13] this notion is called dimension but in our context, the dimension word is

already used for the number of components of a vector.
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(D \ U). However, since post∗
A(X) ∩ D ⊆ U we get a contradiction. Hence

(X,A,Y′) is a separator and its domain is equal to D ∩U.
The set X′ is obtained symmetrically. Since D ∩ U is semilinear and effec-

tively computable in elementary time, it follows from Theorem 1 that we can
compute in time fd(E

′(fd(E(n)))) where E′ is some fixed elementary function a
linearization V of the semi-pseudo-linear set pre∗

A(Y′) ∩D ∩U. We introduce
X′ def

= X ∪ ((D ∩U) \V).
Symmetrically, we deduce that (X′,A,Y′) is a separator and its domain D′

is equal to D ∩U ∩V.

Since (X,A,Y′) is a separator, it follows that post∗
A(X) and pre∗

A(Y′) have
an empty intersection. In particular the semi-pseudo-linear sets post∗

A(X) ∩D
and pre∗

A(Y′)∩D∩U have an empty intersection. If one of those semi-pseudo-
linear sets is empty then D′ is empty and in particular rank(D′) < rank(D).
Otherwise, from Theorem 2 we deduce that the rank of U∩V is strictly bounded
by the rank of the union of post∗

A(X)∩D and pre∗
A(Y′)∩D∩U. Since this set is

included in D, and D′ is included in U∩V, we deduce that rank(D′) < rank(D).

By replacing E and E′ by E + E′, we can assume without loss of generality
that E = E′. By iterating the previous construction at most d times, we deduce
that from any separator (X,A,Y) of size n, we can compute in time (fd◦E)2d(n)
a completion of it. We deduce the main theorem of that paper.

Theorem 3. Separators can be completed in Ackermannian time.

6 Conclusion

In this paper, we have shown that separators can be completed in Ackermannian
time. Our computation is based on a generic algorithm given in Section 5. This
algorithm can be implemented as soon as we have an oracle computing semilin-
ear sets over-approximating the sets post∗

A(X)∩D and pre∗
A(Y)∩D. If those

approximations are not linearizations, the termination of the algorithm is no
longer true in general. However, since its correctness is maintained, it should be
interesting to benchmark such an algorithm when using heuristics for implement-
ing oracles computing reachability set over-approximations (based on abstract
interpretation, acceleration techniques, parameterized invariant, and so on).
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