
From Rewrite Rules to Axioms
in the λΠ-Calculus Modulo Theory

1 Université Paris-Saclay, Inria, ENS Paris-Saclay, CNRS, LMF, Gif-sur-Yvette,
France

{valentin.blot,gilles.dowek,thomas.traversie,theo.winterhalter}@inria.fr
2 Université Paris-Saclay, CentraleSupélec, MICS, Gif-sur-Yvette, France

Abstract. The λΠ-calculus modulo theory is an extension of simply
typed λ-calculus with dependent types and user-defined rewrite rules.
We show that it is possible to replace the rewrite rules of a theory of the
λΠ-calculus modulo theory by equational axioms, when this theory fea-
tures the notions of proposition and proof, while maintaining the same
expressiveness. To do so, we introduce in the target theory a heteroge-
neous equality, and we build a translation that replaces each use of the
conversion rule by the insertion of a transport. At the end, the theory
with rewrite rules is a conservative extension of the theory with axioms.

Keywords: Rewrite rules · Equality · Logical Framework.

1 Introduction

For Poincaré, the reasoning by which we deduce that 2+2 = 4 is not a meaningful
proof, but a simple verification. He concludes that the goal of exact sciences is to
“dispense with these direct verifications” [20]. Far from being solely a philosoph-
ical issue, this principle impacts the foundations of logical systems and in partic-
ular the choice between axioms and rewrite rules. For instance, in systems with
axioms x+succ y = succ (x+y) and x+0 = x, we can prove that 2+2 = 4. On the
other hand, in systems with rewrite rules x+succ y ↪→ succ (x+y) and x+0 ↪→ x,
we just need to prove 4 = 4 as we can compute that (2 + 2 = 4) ≡ (4 = 4).
In that respect, logical systems with computation rules are convenient tools for
making proofs. That is why rewrite rules have been added to systems such as
Agda [5] or Coq [12] and why Dowek [9,10] developed Deduction modulo the-
ory, an extension of first-order logic that mixes computation and proof. Since
logical systems with rewrite rules are more user-friendly, one may ask whether
or not the results are the same as in axiomatic logical systems.

Rewrite rules are at the core of the λΠ-calculus modulo theory, an exten-
sion of simply typed λ-calculus with dependent types and user-definable rewrite
rules [6]. The combination of β-reduction and of the rewrite rules of a signature
Σ forms the conversion ≡βΣ . If we know that t : A with conversion A ≡βΣ B,

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-57231-9_1

Valentin Blot1, Gilles Dowek1 , Thomas Traversié1,2(B),
and Théo Winterhalter1

https://orcid.org/0000-0001-6253-935X
https://orcid.org/0000-0002-9881-3696
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_1&domain=pdf

then we can derive that t : B. In this system, a theory is a set of rewrite rules, to-
gether with a set of axioms (that are typed constants). The λΠ-calculus modulo
theory is a powerful logical framework in which many theories can be expressed,
such as Predicate logic, Simple type theory or the Calculus of constructions [3].
It is the theory behind the Dedukti language [2,16] and the Lambdapi proof
assistant.

In this paper, we choose to study the replacement of rewrite rules by axioms in
the λΠ-calculus modulo theory. Since it is a logical framework, the result applies
to many theories. Moreover, as Dedukti is geared towards the interoperability
between proof systems, if we want to exchange proofs between a system with
rewrite rules and a system without rewrite rules via Dedukti, we need to replace
rewrite rules by axioms in the λΠ-calculus modulo theory. Working in this logical
framework rather than in an extension of Martin-Löf type theory [17] is therefore
relevant on both theoretical and practical levels, but complicates the task as
the λΠ-calculus modulo theory does not feature identity types or an infinite
hierarchy of sorts.

One method to replace rewrite rules by axioms is to mimic the behavior of
the conversion rule using transports: if we have t : A and A ≡βΣ B with p an
equality between A and B, then we can deduce that transp p t : B, but we do not
directly have t : B. However trivial this seems, we face several challenges when
trying to demonstrate it fully: the insertion of transports in terms and types is
difficult due to the presence of dependent types, and the building of transports
is involved as we cannot have inside the λΠ-calculus modulo theory an equality
between types.

A similar problem is the elimination of equality reflection from extensional
systems. Equality reflection states that ℓ = r implies ℓ ≡ r, just like ℓ ↪→ r im-
plies ℓ ≡ r in systems with rewrite rules. In extensional systems, typing is eased
by a more powerful conversion. Hofmann [14,15] investigated categorically the
problem. Oury [19] developed a translation of proofs from an extensional ver-
sion of the Calculus of Constructions to the Calculus of Inductive Constructions
with equality axioms. Winterhalter, Sozeau and Tabareau [23,24] built upon this
result to reduce the number of axioms needed.

The replacement of rewrite rules by axioms paves the way for the interpre-
tation of a theory into another inside the λΠ-calculus modulo theory. Indeed,
when interpreting a theory into another, we represent each constant of the source
theory by a term in the target theory, but we cannot generally do the same for
rewrite rules. We can however pre-process the source theory to replace its rewrite
rules by axioms, and then interpret it. The interpretation of theories allows to
prove relative consistency and relative normalization theorems [8].

Contribution. The main contribution of this paper is the translation of a theory
with rewrite rules to a theory with equational axioms. To do so, we restrict the
theories considered to theories with an encoding of the notions of proposition and
proof inside the λΠ-calculus modulo theory. So as to compare objects that pos-
sibly do not have the same type, we define a heterogeneous equality—following
the one defined by McBride [18]. The restriction considered allows us to build an

4 V. Blot et al.

equality between particular types—called small types. We define a type system
with typed conversion for the λΠ-calculus modulo theory, so that the proofs are
done by induction on the derivation trees more easily.

Outline of the paper. In Section 2, we present the λΠ-calculus modulo theory,
we detail a prelude encoding of the notions of proposition and proof in it, and
we identify the assumptions made on the considered theories. The heterogeneous
equality and the equality between small types are presented in Section 3. The
replacement of rewrite rules by axioms and the translation of terms, judgments
and theories are presented in Section 4.

2 Theories in the λΠ-Calculus Modulo Theory

In this section, we give a more detailed overview of the λΠ-calculus modulo the-
ory [6] and its type system. In particular, we present an encoding of the notions
of proposition and proof in the λΠ-calculus modulo theory [3]. We characterize
small types—a subclass of types for which we can define an equality.

2.1 The λΠ-Calculus Modulo Theory

The λΠ-calculus, also known as the Edinburgh Logical Framework [13], is an
extension of simply typed λ-calculus with dependent types. The λΠ-calculus
modulo theory (λΠ/≡) [6] is an extension of the λΠ-calculus, in which user-
definable rewrite rules have been added [7]. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t, u, A, B ::= c | x | s | Πx : A. B | λx : A. t | t u

Contexts Γ ::= ⟨⟩ | Γ, x : C

Signatures Σ ::= ⟨⟩ | Σ, c : D | Σ, ℓ ↪→ r

where c is a constant and x is a variable (ranging over disjoint sets), C and r
are terms, D is a closed term (i.e. a term with no free variables) and ℓ is a term
such that ℓ = c t1 . . . tk with c a constant. TYPE and KIND are two sorts: terms of
type TYPE are called types, and terms of type KIND are called kinds. Πx : A. B
is a dependent product, λx : A. t is an abstraction and t u is an application.
Πx : A. B is simply written A → B if x does not appear in B. Signatures
and contexts are finite sequences, and are written ⟨⟩ when empty. Signatures
contain both typed constants and rewrite rules (written ℓ ↪→ r). λΠ/≡ is a
logical framework, in which Σ is fixed by the user depending on the logic they
are working in.

The relation ↪→βΣ is generated by β-reduction and by the rules of Σ. More
explicitly, ↪→βΣ is the smallest relation, closed by context, such that if t rewrites
to u for some rule in Σ or by β-reduction then t ↪→βΣ u. Conversion ≡βΣ is the
reflexive, symmetric, and transitive closure of ↪→βΣ .

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 5

2.2 The Type System of the λΠ-Calculus Modulo Theory

We introduce in Figs. 1 and 2 typing rules for λΠ/≡. Fig. 1 presents the usual
typing rules while Fig. 2 focuses on the conversion rules. We write ⊢ Γ when
the context Γ is well formed and Γ ⊢ t : A when t is of type A in the context
Γ . ⟨⟩ ⊢ t : A is simply written ⊢ t : A. The notation (⊢ Γ1) ≡ (⊢ Γ2) means
that Γ1 and Γ2 are both well formed, have the same length and have the same
variables with convertible types. We write (Γ1 ⊢ t1 : A1) ≡ (Γ2 ⊢ t2 : A2) when
t1 and t2 are convertible with Γ1 ⊢ t1 : A1 and Γ2 ⊢ t2 : A2. In particular,
convertible terms t1 ≡ t2 are authorized to have different types—provided that
both types are convertible—and to be typed in different contexts—provided
that both contexts are convertible. In ConvRule, x is a vector representing the
free variables of ℓ. The standard weakening rule and substitution lemma can be
derived from this type system.

⊢ ⟨⟩
[Empty]

⊢ Γ Γ ⊢ A : s

⊢ Γ, x : A
[Decl] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[Sort]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[Const] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[Var] x : A ∈ Γ

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s

Γ ⊢ Πx : A. B : s
[Prod]

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s Γ, x : A ⊢ t : B

Γ ⊢ λx : A. t : Πx : A. B
[Abs]

Γ ⊢ t : Πx : A. B Γ ⊢ u : A

Γ ⊢ t u : B[x 7→ u]
[App]

Γ ⊢ t : A (Γ ⊢ A : s) ≡ (Γ ⊢ B : s)
Γ ⊢ t : B

[Conv]

Fig. 1. Typing rules of the λΠ-calculus modulo theory

Lemma 1 (Substitution).

– If we have ⊢ Γ, x : A, ∆ and Γ ⊢ u : A, then ⊢ Γ, ∆[x 7→ u].
– If we have Γ, x : A, ∆ ⊢ t : B and Γ ⊢ u : A, then Γ, ∆[x 7→ u] ⊢ t[x 7→ u] :

B[x 7→ u].
– If we have (⊢ Γ1, x : A1, ∆1) ≡ (⊢ Γ2, x : A2, ∆2) and Γ1 ⊢ u : A1, then

(⊢ Γ1, ∆1[x 7→ u]) ≡ (⊢ Γ2, ∆2[x 7→ u]).

6 V. Blot et al.

Γ ⊢ u : A

(Γ ⊢ u : A) ≡ (Γ ⊢ u : A)
[ConvRefl]

(Γ ⊢ u : A) ≡ (Γ ⊢ v : B)
(Γ ⊢ v : B) ≡ (Γ ⊢ u : A)

[ConvSym]

(Γ ⊢ u : A) ≡ (Γ ⊢ v : B) (Γ ⊢ v : B) ≡ (Γ ⊢ w : C)
(Γ ⊢ u : A) ≡ (Γ ⊢ w : C)

[ConvTrans]

(⊢ Γ1) ≡ (⊢ Γ2) (Γ1 ⊢ A1 : s) ≡ (Γ2 ⊢ A2 : s)
(⊢ Γ1, x : A1) ≡ (⊢ Γ2, x : A2)

[ConvDecl] x /∈ Γ1, Γ2

(⊢ Γ1) ≡ (⊢ Γ2) ⊢ A : s

(Γ1 ⊢ c : A) ≡ (Γ2 ⊢ c : A)
[ConvConst] c : A ∈ Σ

(⊢ Γ1) ≡ (⊢ Γ2)
(Γ1 ⊢ x : A1) ≡ (Γ2 ⊢ x : A2)

[ConvVar] x : A1 ∈ Γ1, x : A2 ∈ Γ2

(Γ1 ⊢ A1 : TYPE) ≡ (Γ2 ⊢ A2 : TYPE)
(Γ1, x : A1 ⊢ B1 : s) ≡ (Γ2, x : A2 ⊢ B2 : s)

(Γ1 ⊢ Πx : A1. B1 : s) ≡ (Γ2 ⊢ Πx : A2. B2 : s)
[ConvProd]

(Γ1 ⊢ A1 : TYPE) ≡ (Γ2 ⊢ A2 : TYPE)
(Γ1, x : A1 ⊢ B1 : s) ≡ (Γ2, x : A2 ⊢ B2 : s)

(Γ1, x : A1 ⊢ t1 : B1) ≡ (Γ2, x : A2 ⊢ t2 : B2)
(Γ1 ⊢ λx : A1. t1 : Πx : A1. B1) ≡ (Γ2 ⊢ λx : A2. t2 : Πx : A2. B2)

[ConvAbs]

(Γ1 ⊢ t1 : Πx : A1. B1) ≡ (Γ2 ⊢ t2 : Πx : A2. B2)
(Γ1 ⊢ u1 : A1) ≡ (Γ2 ⊢ u2 : A2)

(Γ1 ⊢ t1 u1 : B1[x 7→ u1]) ≡ (Γ2 ⊢ t2 u2 : B2[x 7→ u2])
[ConvApp]

Γ ⊢ A : TYPE Γ, x : A ⊢ t : B Γ, x : A ⊢ B : s Γ ⊢ u : A

(Γ ⊢ (λx : A. t) u : B[x 7→ u]) ≡ (Γ ⊢ t[x 7→ u] : B[x 7→ u])
[ConvBeta]

x : B ⊢ ℓ : A x : B ⊢ r : A Γ ⊢ t : B

(Γ ⊢ ℓ[x 7→ t] : A[x 7→ t]) ≡ (Γ ⊢ r[x 7→ t] : A[x 7→ t])
[ConvRule] ℓ ↪→ r ∈ Σ

Γ ⊢ u : A (Γ ⊢ A : s) ≡ (Γ ⊢ B : s)
(Γ ⊢ u : A) ≡ (Γ ⊢ u : B)

[ConvConv]

Fig. 2. Convertibility rules of the λΠ-calculus modulo theory

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 7

– If we have (Γ1, x : A1, ∆1 ⊢ t1 : B1) ≡ (Γ2, x : A2, ∆2 ⊢ t2 : B2) and
Γ1 ⊢ u : A1, then (Γ1, ∆1[x 7→ u] ⊢ t1[x 7→ u] : B1[x 7→ u]) ≡ (Γ2, ∆2[x 7→
u] ⊢ t2[x 7→ u] : B2[x 7→ u]).

Proof. We proceed by induction on the typing derivation.

We chose to present a type system with typed conversion (written ≡)—so as
to easily do proofs on the derivations—while the usual type system for λΠ/
≡ features untyped conversion (written ≡βΣ). The equivalence between type
systems with typed conversion and type systems with untyped conversion has
been a longstanding question: Geuvers and Werner [11] investigated the case
of Pure Type Systems with βη-convertibility, Adams [1] proved the equivalence
in the case of functional Pure Type Systems, and Siles [21,22] later proved the
equivalence in the general case of the Pure Type Systems. The case of λΠ/≡,
in which we have β-convertibility but also user-defined rewrite rules, remains to
be investigated.

We write |Σ| for the set of constants of Σ, and Λ(Σ) for the set of terms t
whose constants belong to |Σ|. We say that T = Σ is a theory when for each
rule ℓ ↪→ r ∈ Σ we have ℓ and r in Λ(Σ), when ↪→βΣ is confluent on Λ(Σ), and
when every rule of Σ preserves typing in Σ (that is when for all context Γ and
for all term A ∈ Λ(Σ), if Γ ⊢ ℓ : A then Γ ⊢ r : A).

Example 1 (Natural numbers and lists). We can define in λΠ/≡ a partial theory
of natural numbers and indexed lists of natural numbers. nat represents the type
of natural numbers and list represents the dependent type of indexed lists of
natural numbers. cons adds a new element to a list, concat concatenates two
lists, and isRev checks if the first given list is the reverse of the second.

nat : TYPE 0 : nat succ : nat → nat + : nat → nat → nat

x + 0 ↪→ x x + succ y ↪→ succ (x + y) list : nat → TYPE nil : list 0

cons : Πx : nat. list x → nat → list (succ x)

isRev : Πx : nat. list x → list x → TYPE

concat : Πx, y : nat. list x → list y → list (x + y)

In the context ℓ : list (succ 0), we have concat (succ 0) 0 ℓ nil of type list (succ 0+
0). If we want to compare ℓ and this new list with isRev, we cannot directly do
it because they do not have the same type. However, we can use the conversion
rule with list (succ 0 + 0) ≡βΣ list (succ 0). This conversion derives from the
rewrite rule x + 0 ↪→ x instantiated with x := succ 0.

2.3 A Prelude Encoding for the λΠ-Calculus Modulo Theory
It is possible to introduce in λΠ/≡ the notions of proposition and proof [3].
In particular, this encoding—called prelude encoding—gives the possibility to
quantify on certain propositions through codes, which is not possible inside the
standard λΠ/≡. This encoding is defined by following signature.

8 V. Blot et al.

Definition 1. The signature Σpre contains the following constants and rewrite
rules:

Set : TYPE o : Set
El : Set → TYPE Prf : El o → TYPE

⇝d : Πx : Set. (El x → Set) → Set ⇒d : Πx : El o. (Prf x → El o) → El o

π : Πx : El o. (Prf x → Set) → Set ∀ : Πx : Set. (El x → El o) → El o

El (x⇝d y) ↪→ Πz : El x. El (y z) Prf (x ⇒d y) ↪→ Πz : Prf x. Prf (y z)
El (π x y) ↪→ Πz : Prf x. El (y z) Prf (∀ x y) ↪→ Πz : El x. Prf (y z)

We declare the constant Set, which represents the universe of types, along with
the injection El that maps terms of type Set into TYPE. o is a term of type
Set such that El o defines the universe of propositions. The injection Prf maps
propositions into TYPE. ⇝d (respectively ⇒d) is written infix and is used to
represent dependent function types between terms of type Set (respectively El o).
The symbol π (respectively ∀) is used to represent dependent function types
between elements of type El o and Set (respectively Set and El o).

The main advantage of this encoding is that it allows us to quantify on
propositions. Indeed, in λΠ/≡, we cannot quantify on TYPE. Instead, we can
quantify on objects of type El o, and then inject them into TYPE using Prf .

2.4 Small Types and Small Derivations
As we work in λΠ/≡ rather than in an extension of Martin-Löf type theory,
we do not have a pre-defined equality. Moreover, we cannot define an equality
between types since such object would have type TYPE → TYPE → TYPE, which
is not allowed in λΠ/≡.

If we want to compare types Prf a and Prf b, we cannot do it directly, but
we can compare a and b (that are of type El o). We can proceed similarly to
compare types El a and El b (with a and b of type Set). In that respect, we
want types to be into a special form—called small type—that takes advantages
of the prelude encoding, so as to compare them if necessary. To put types of the
prelude encoding into this special form, we use the reverse of the rewrite rules of
Σpre to represent dependent types with the symbols ⇝d, ⇒d, π and ∀ whenever
it is possible. This is achieved by the partial function ν, defined by:

ν(Set) = Set ν(Prf a) = Prf a ν(El a) = El a

ν(Πx : A. B) = Prf (a ⇒d (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = Prf b
El (a⇝d (λx : El a. b)) if ν(A) = El a and ν(B) = El b
Prf (∀ a (λx : El a. b)) if ν(A) = El a and ν(B) = Prf b
El (π a (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = El b
Πx : ν(A). ν(B) otherwise

Therefore, when ν(A) is defined, we have A ≡βΣpre
ν(A). Note that ν is partial

because we do not handle the case where a type is a β-reducible expression, as
in practice we will not have types under λ-abstraction form.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 9

To continue to characterize a particular form of types, we define the three
following grammars:

S ::= Set | S → S P ::= Prf a | P → S | Πz : S. P

E ::= El b | E → S | Πz : S. E

with a : El o and b : Set. The notation A ∈ S means that A is generated by the
grammar S. The grammar S generates types that only contain Set. Therefore,
if ν(A) ∈ S then ν(A) = A. The grammars P and E generate types that contain
a central symbol Prf or El.

Definition 2 (Small type, Small context). A type A is small when ν(A) is
defined and ν(A) ∈ S ∪ P ∪ E . In that case, ν(A) is called the small form of A.
A context Γ is small when for every x : A ∈ Γ we have that A is a small type.

Example 2. Prf a → Prf b, with a, b : El o, is a small type since its small form
Prf (a⇒d(λz. b)) is generated by the grammar P. The type Πx : Prf b. El c, with
c : Set depending on x, is a small type since its small form El (π b (λx : Prf b. c))
is generated by the grammar E . The type Prf a → Set → Prf b is not small,
since ν(Prf a → Set → Prf b) = Prf a → Set → Prf b /∈ S ∪ P ∪ E .

We would ideally like all the types to be small, so that we can compare them if
necessary. Therefore, if Γ ⊢ t : A, we want A to be a small type, or t to be a
small type and A = TYPE. However, small types are built using the constants of
Σpre. In particular, the type of the constants o, ⇝d, ⇒d and ∀ are small, but
the types of π, Prf and El are not. Note that the type of an application of π,
Prf or El is small. We thus come up with the following notion.

Definition 3 (Small judgment). ⊢ Γ is a small judgment when Γ is a small
context. Γ ⊢ t : A is a small judgment when Γ is a small context and when

– t : A ∈ Σpre,
– or t is the type of a constant of Σpre,
– or A is a small type,
– or t is a small type.

(Γ1 ⊢ t1 : A1) ≡ (Γ2 ⊢ t2 : A2) is a small judgment when Γ1 ⊢ t1 : A1 and
Γ2 ⊢ t2 : A2 are small.

Definition 4 (Small derivation). A small derivation is a derivation in which
all the judgments are small.

2.5 Theories with Prelude Encoding

We define the theories we will consider in the rest of the paper: theories that
features the prelude encoding inside λΠ/≡.

Definition 5 (Theory with prelude encoding). We say that a theory T = Σ
in the λΠ/≡ is a theory with prelude encoding when:

10 V. Blot et al.

– there exists ΣT such that Σ = Σpre ∪ ΣT and Σpre ∩ ΣT = ∅,
– for every c : A ∈ ΣT , A is small and admits a small derivation ⊢ A : TYPE,
– for every ℓ ↪→ r ∈ ΣT , we have small derivations x : B ⊢ ℓ : A and

x : B ⊢ r : A with A a small type, where x represents the free variables of ℓ.

A theory with prelude encoding is a theory with the constants and rewrite rules
Σpre, and additional user-defined constants and rewrite rules. To ensure that ΣT
is encoded inside the prelude encoding, we can only define new constants whose
types are small. We do not allow the use of rewrite rules ℓ ↪→ r when ℓ has TYPE
in its type. In particular, we cannot define new rewrite rules on Prf or El and
change the behavior of these constants. It follows that the three grammars S, P
and E generate disjoint types.

In the following examples, we present three theories with prelude encoding
in λΠ/≡. The examples of predicate logic and set theory illustrate that the
restrictions considered are generally respected, even for expressive theories.

Example 3 (Predicate logic). Predicate logic can be encoded in a theory with
prelude encoding. We declare constants for tautology and contradiction ⊤, ⊥ :
El o, for negation ¬ : El o → El o, for conjunction and disjunction ∧, ∨ : El o →
El o → El o, and for existential quantification ∃ : Πz : Set. (El z → El o) → El o.
The semantics of tautology is defined by the rewrite rule ⊤ ↪→ ∀ o (λx : El o. x⇒
x), which is equivalent to the more common form Prf ⊤ ↪→ Πz : El o. Prf z →
Prf z. The rewrite rule Prf (A∧B) ↪→ ΠP : El o. (Prf A → Prf B → Prf P) →
Prf P can be encoded by A ∧ B ↪→ ∀ o (λP. (A → B → P) → P). The rule
Prf (¬A) ↪→ Prf A → Prf ⊥ is forbidden, but ¬A ↪→ A ⇒ ⊥ is allowed. We
proceed similarly the other rewrite rules.

Example 4 (Natural numbers and lists). We can define our small theory of nat-
ural numbers and lists in the prelude encoding, by replacing TYPE by Set (in the
universe of types) or El o (in the universe of propositions), and by adding El
and Prf at the necessary positions.

nat : Set 0 : El nat succ : El nat → El nat + : El nat → El nat → El nat

list : El nat → Set x + 0 ↪→ x x + succ y ↪→ succ (x + y)

nil : El (list 0) cons : Πx : El nat. El list x → El nat → El (list (succ x))

isRev : Πx : El nat. El (list x) → El (list x) → El o

concat : Πx, y : El nat. El (list x) → El (list y) → El (list (x + y))

Example 5 (Set theory). The implementation in Dedukti of set theory [4] is a
theory with prelude encoding. In this implementation, sets are represented by a
more primitive notion of pointed graphs: we have graph and node of type Set.
The predicate η : El graph → El node → El node → El o is such that η a x y
is the proposition asserting that there is an edge in a from y to x. The operator
root : El graph → El node returns the root of a, which is a node.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 11

In practice, the derivations of small judgments are small derivations. As we con-
sider theories with prelude encoding, the only way of introducing a judgment
that is not small is through λ-abstractions. For instance in Example 4 the judg-
ment ⊢ El (list ((λx : El nat. λy : Set. x) 0 nat)) : TYPE is small, but in its
derivation we have ⊢ λx : El nat. λy : Set. x : El nat → Set → El nat which
is not a small judgment. However, ⊢ El (list 0) : TYPE admits a small deriva-
tion. If the derivation is not small, we can in practice apply β-reduction on the
fragments of the derivation that are not small to obtain a small derivation.

3 Equalities

Since we want to replace rewrite rules ℓ ↪→ r by equational axioms ℓ = r, we
need to define an equality in the target theory. In this section, we present a het-
erogeneous equality and a method to compare small types. The heterogeneous
equality is necessary to compare objects that do not have the same type. Al-
though we cannot define an equality between types in λΠ/≡, it is possible to
develop an equality between small types, taking advantage of their structure.

3.1 Heterogeneous Equality

In our development, we need to have an equality between two translations of the
same term. However, the two translations do not necessarily have the same type,
as we may have introduced transports over the course of the translation. To that
end, we define a heterogeneous equality inspired by the one of McBride [18]. Our
heterogeneous equality is defined by the constant schemas heqA,B : A → B →
El o where A and B are of type TYPE. We write u A≈B v for Prf (heqA,B u v).
Heterogeneous equality is reflexive, symmetric, and transitive.

reflA : Πu : A. u A≈A u
symA,B : Πu : A. Πv : B. u A≈B v → v B≈A u
transA,B,C : Πu : A. Πv : B. Πw : C. u A≈B v → v B≈C w → u A≈C w

When two objects have the same type, heterogeneous equality acts as Leibniz
equality. In particular, we can replace u by v in the universes of propositions
and types. The result of a Leibniz substitution on t remains equal to t.

leibPrf
A : Πu, v : A. Πp : u A≈A v. ΠP : A → El o. Prf (P u) → Prf (P v)

eqLeibPrf
A : Πu, v : A. Πp : u A≈A v. ΠP : A → El o. Πt : Prf (P u).

leibPrf
A u v p P t Prf (P v)≈Prf (P u) t

The same axiom schemas exist for the universe of types, with superscript El
instead of Prf, El instead of Prf , and Set instead of El o.

Finally, we add axioms for the congruence of each constructor of λΠ/≡.

12 V. Blot et al.

Application constructor. For the application, we take:

appA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πx : A2. B2).
Πu1 : A1. Πu2 : A2. t1 ≈ t2 → u1 ≈ u2
→ t1 u1 B1[x 7→u1]≈B2[x 7→u2] t2 u2

For the λ-abstraction and Π-type constructors, we cannot directly build equality
axioms. Indeed, if we want to define an equality between functional terms t1 of
type Πx : A1. B1 and t2 of type Πx : A2. B2, we need to ensure that types A1
and A2 are equal. Therefore, we would like to have

funA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πy : A2. B2). A1 ≈ A2
→ (Πx : A1. Πy : A2. x ≈ y → t1 x ≈ t2 y)
→ t1 ≈ t2

but we cannot take such an axiom, since the heterogeneous equality is not defined
to compare objects that have type TYPE, and A1 ≈ A2 is therefore ill typed. This
shortcoming is addressed by developing an equality between small types.

3.2 Equality between Small Types

We cannot build an equality between types, since such an equality would have
type TYPE → TYPE → TYPE, which is impossible in λΠ/≡. An option would be to
take axiom schemas A ≈ B for every equality between types A and B. Such an
equality would be too far from standard and would require additional axioms to
build transports. An alternative is to define an equality between small types. By
construction, if ν(A) ∈ P , then ν(A) is generated from Prf a for some a : El o,
and if ν(A) ∈ E , then ν(A) is generated from El a for some a : Set. If the small
form of A contains Prf a and the small form of B contains Prf b, then we want
an equality between a and b. We define the partial function κ on small forms by

κ(Prf a1, Prf a2) = a1 ≈ a2 κ(El a1, El a2) = a1 ≈ a2

κ(S, S) = True if S ∈ S κ(T1 → S, T2 → S) = κ(T1, T2) if S ∈ S

κ(Πz : S. T1, Πz : S. T2) = Πz : S. κ(T1, T2) if S ∈ S

where True := ΠP : El o. Prf P → Prf P , so we can always give a witness
of κ(S, S) if S ∈ S. By convention, we simply write κ(A, B) for the result of
κ(ν(A), ν(B)).

Example 6. κ(Πx : Set. Prf P → Prf Q, Πx : Set. Prf R) = Πx : Set. (P ⇒d

λz : P. Q) ≈ R since ν(Πx : Set. Prf P → Prf Q) = Πx : Set. Prf (P ⇒d (λz :
P. Q)).

We can now go back to the definition of equality axioms for the constructors of
λΠ/≡.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 13

Function constructor. If A1 and A2 are small types, we can take κ(A1, A2). We
do not compare objects of type TYPE anymore, but objects that have either type
El o or type Set. The axiom schema for the function constructor is thus:

funA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πy : A2. B2). κ(A1, A2)
→ (Πx : A1. Πy : A2. x ≈ y → t1 x ≈ t2 y)
→ t1 ≈ t2

This axiom schema is a generalization of the functional extensionality principle
with distinct domains A1 and A2 in the case of heterogeneous equality. Func-
tional extensionality states that two pointwise-equal functions are equal. If the
domains A1 and A2 are generated by S, then they are syntactically equal and
we can derive a simpler axiom schema:

funA,B1,B2 : Πt1 : (Πx : A. B1). Πt2 : (Πx : A. B2). (Πx : A. t1 x ≈ t2 x)
→ t1 ≈ t2

Π-type constructor. The congruence axiom for dependent types aims at build-
ing κ(Πx : A1. B1, Πx : A2 B2). There are different cases depending on the
grammars generating ν(A1), ν(A2), ν(B1) and ν(B2). If ν(A1), ν(A2), ν(B1),
ν(B2) ∈ S, then Πx : A1. B1 and Πx : A2. B2 are syntactically equal and we
can build an object of type True. If ν(A1), ν(A2) ∈ S and ν(B1), ν(B2) ∈ P ∪ E ,
then A1 = A2 and κ(Πx : A1. B1, Πx : A2 B2) = Πx : A1. κ(B1, B2). If
ν(A1), ν(A2) ∈ P ∪ E and ν(B1), ν(B2) ∈ S, then B1 = B2 and κ(Πx :
A1. B1, Πx : A2 B2) = κ(A1, A2). If ν(A1), ν(A2), ν(B1), ν(B2) ∈ P ∪ E ,
then there are four cases, corresponding to ⇝d, ⇒d, π and ∀. For instance, if
ν(A1), ν(A2), ν(B1) and ν(B2) are all generated by E , then necessarily we have
ν(A1) = El a1, ν(A2) = El a2, ν(B1) = El b1 and ν(B2) = El b2. Therefore
κ(Πx : A1. B1, Πx : A2. B2) := (a1⇝d(λx : El a1. b1)) ≈ (a2⇝d(λy : El a2. b2)).
The axiom is:

prod⇝d
: Πa1, a2 : Set. Πb1 : (El a1 → Set). Πb2 : (El a2 → Set). a1 ≈ a2
→ (Πx : El a1. Πy : El a2. x ≈ y → b1 x ≈ b2 y)
→ (a1⇝d b1) ≈ (a2⇝d b2)

Note that this axiom is derivable from the previous axioms. We proceed similarly
for the cases ⇒d, π and ∀.

We write Σeq for the signature formed by the axiom schemas defining the
heterogeneous equality. Reflexivity, symmetry, and transitivity are standard ax-
ioms of equality. We have also added axioms stating that a heterogeneous equal-
ity comparing two objects of the same type acts like Leibniz equality. Finally,
we have an axiom for the application constructor and one axiom for the ab-
straction constructor—that is functional extensionality. Both axioms are used
by Oury [19], who also assumes the uniqueness of identity proofs principle that
entails the Leibniz principle we use.

14 V. Blot et al.

4 Replacing Rewrite Rules

When working in theories with prelude encoding, rewriting originates from the
rewrite rules of Σpre (which are generic rewrite rules), from the rewrite rules ΣT
(which are defined by the user) and from β-reduction. The goal of this work is to
replace the user-defined rewrite rules ΣT by equational axioms. In the rest of the
paper, we write ⊢R for a derivation inside the source theory—the theory with
user-defined rewrite rules—and ⊢ for a derivation inside the target theory—the
theory with axioms instead of user-defined rewrite rules.

We now have all the tools to replace rewrite rules by equational axioms. To
do so, we build suitable transports, such that if Γ ⊢ t : A and Γ ⊢ p : κ(A, B),
then Γ ⊢ transp p t : B. The goal is to insert such transports into the terms
instead of using conversion with the rules of ΣT . In the signature, each rewrite
rule ℓ ↪→ r is replaced by the equational axiom ℓ ≈ r.

4.1 Transports

If we have Γ ⊢ t : A and Γ ⊢ p : κ(A, B), we want to transport t from A to B,
that is to build a term transp p t such that Γ ⊢ transp p t : B. A paramount
result is that t and transp p t are heterogeneously equal.

Lemma 2 (Transport). Given Γ ⊢ t : A and Γ ⊢ p : κ(A, B) with A and B
small types, there exists transp p t, called transport of t along p, such that:

– Γ ⊢ transp p t : B,
– there exists eqTransp such that Γ ⊢ eqTransp p t : transp p t B≈A t.

Proof. A and B are small types and we have an equality κ(A, B). If A, B ∈ S
then ν(A) = ν(B) = A = B and we take transp p t := t and eqTransp p t :=
reflA t. Otherwise, by construction of κ, we know that ν(A), ν(B) ∈ P, or
ν(A), ν(B) ∈ E , and that ν(A) and ν(B) have the same structure. Moreover,
using A ≡βΣpre

ν(A), we have Γ ⊢ t : ν(A). We proceed by induction on the
grammar P (we proceed similarly for the grammar E).

– If ν(A) = Prf a and ν(B) = Prf b, then we have Γ ⊢ p : a ≈ b. We take
transp p t := leibPrf

El o a b p (λw : El o. w) t. We conclude using eqLeibPrf
El o.

– If ν(A) = A′ → S and ν(B) = B′ → S, with A′, B′ ∈ P and S ∈ S, then we
have κ(A′, B′) = κ(A, B). From Γ ⊢ p : κ(A′, B′) we can build some p′ such
that Γ ⊢ p′ : κ(B′, A′) (using sym). By weakening, we also have p′ : κ(B′, A′)
in the context Γ, mb : B′. By induction, we have transp p′ mb : A′ and
eqTransp p′ mb : transp p′ mb ≈ mb in the context Γ, mb : B′. We take
transp p t := λmb : B′. t (transp p′ mb). Using trans and app we obtain an
equality t (transp p′ mb) ≈ t ma in the context Γ, ma : A′, mb : B′, pm :
ma ≈ mb. Using fun and ≡βΣpre

, we have λmb : B′. t (transp p′ mb) ≈ t in
the context Γ .

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 15

– If ν(A) = Πz : S. A′ and ν(B) = Πz : S. B′ with A′, B′ ∈ P and S ∈ S, then
we have κ(A, B) = Πz : S. κ(A′, B′). By weakening and application, we have
Γ, z : S ⊢ p z : κ(A′, B′). By induction we have transp (p z) (t z) : B′ and
eqTransp (p z) (t z) : transp (p z) (t z) ≈ t z in the context Γ, z : S. We take
transp p t := λz : S. transp (p z) (t z). We obtain λz : S. transp (p z) (t z) ≈ t
using fun and ≡βΣpre

. ⊓⊔

The transport of t from A to B depends on the small form of A and B. In that
respect, there exists a different transport for each possible family of small form,
and such transport is indexed over an equality of a small type.

4.2 Translation of Terms

To translate a theory with rewrite rules into a theory with equational axioms,
we add transports at the proper locations in the terms and types. If we have
Γ ⊢R t : A in the source theory, we want to find Γ , t and A that are translations
of Γ , t and A, and such that Γ ⊢ t : A in the target theory.

We add transports in a term by induction on a typing derivation—which is
not unique—so we may have different translations for a same term. As such, we
define a relation ◁ where t ◁ t states that t is a translation of t. The relation
is defined by induction on the terms of λΠ/≡. Variables, constants, TYPE and
KIND are translations of themselves. The translations of λ-abstractions λx : A. t,
dependent types Πx : A. B and applications t u rely on the translations of t,
u, A and B. The most important part of the definition is that the translation is
stable by transports: if t is a translation of t, then transp p t is also a translation
of t, with p typically an equality. This relation captures all possible translations,
but some are not correct as they may not be well typed. For instance, λx : A. t
is not a valid translation of λx : A. t when the variable x used in t does not
expect type A but another translation A′.

Definition 6. The translation relation ◁ is defined by:

x ◁ x c ◁ c TYPE ◁ TYPE KIND ◁ KIND

A ◁ A t ◁ t

(λx : A. t) ◁ (λx : A. t)
A ◁ A B ◁ B

(Πx : A. B) ◁ (Πx : A. B)

t ◁ t u ◁ u

(t u) ◁ (t u)
t ◁ t

(transp p t) ◁ t

where p is an arbitrary term.

Due to the typing rules of λΠ/≡, transports for objects that have TYPE in their
type do not exist. Therefore, the only well-typed translations of TYPE, KIND, Set,
Prf and El are themselves, and the well-typed translations of Πx : A. B are
of the form Πx : A. B with A ◁ A and B ◁ B. It follows that a well-typed

16 V. Blot et al.

translation of a small type is still a small type. In particular, if A ∈ S then
for any A we have A := A; if ν(A) ∈ P then ν(A) ∈ P; and if ν(A) ∈ E then
ν(A) ∈ E .

We extend the relation to contexts and signatures. For each rewrite rule
ℓ ↪→ r of a signature, we have x : B ⊢R ℓ : A and x : B ⊢R r : A, for some B
and A, and some x representing the free variables of ℓ. The translation of the
rewrite rule ℓ ↪→ r is given by the equational axiom eqℓr : Πx : B. ℓ A≈A r.
Since the type of a term is not unique in λΠ/≡, we have made a choice of B
and A, which is not a problem as we will see in the proof of Theorem 1.

Definition 7. ◁ is defined on contexts and signatures by:

⟨⟩ ◁ ⟨⟩
Γ ◁ Γ A ◁ A

(Γ , x : A) ◁ (Γ, x : A)
Σ ◁ Σ A ◁ A

(Σ, c : A) ◁ (Σ, c : A)

Σ ◁ Σ ℓ ◁ ℓ r ◁ r B ◁ B A ◁ A

(Σ, eqℓr : Πx : B. ℓ A≈A r) ◁ (Σ, ℓ ↪→ r)

Lemma 3. If t ◁ t and u ◁ u then t[x 7→ u] ◁ t[x 7→ u].

Proof. By induction on the derivation of t ◁ t. For the case with the transport,
we can prove that (transp p t)[x 7→ u] = transp p[x 7→ u] t[x 7→ u]. ⊓⊔

Definition 8 (Relation ∼). We say that t1 ∼ t2 when there exists some t such
that t1 ◁ t and t2 ◁ t.

Lemma 4. ∼ is an equivalence relation.

Proof. ∼ is reflexive, symmetric and transitive. When proving transitivity we
exploit the fact that whenever t ◁ u1 and t ◁ u2, we have u1 = u2. Reflexivity
is proved by induction on the term. ⊓⊔

An important result we need to prove is that two well-typed translations t1 and
t2 of the same term t are heterogeneously equal. By construction, both terms do
not necessarily have the same type or the same context. We will always consider
Γ1 ⊢ t1 : A1 and Γ2 ⊢ t2 : A2, where Γ1 and Γ2 have the same length and the same
variables (with possibly different types). The equality between t1 and t2 must be
typed in some context, but Γ1 and Γ2 are not sufficient. That is why we define
a common context Γ1 ⋆ Γ2 (written Pack Γ1 Γ2 in the work of Winterhalter et
al. [23]) by duplicating each variable and by assuming a witness of heterogeneous
equality between these two duplicates. More precisely, we partially define ⋆ by
induction on small contexts:

⟨⟩ ⋆ ⟨⟩ := ⟨⟩

(Γ1, x : A1) ⋆ (Γ2, x : A2) := Γ1 ⋆ Γ2, x1 : A1[γ1], x2 : A2[γ2], px : x1 ≈ x2

where γ1 substitutes variables z by z1 and γ2 substitutes variables z by z2. We
write γ12 for the substitution that replaces the variables z1 and z2 by z and the
variable pz by refl z.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 17

Lemma 5. If Γ ⋆ Γ ⊢ t : A, then we can derive Γ ⊢ t[γ12] : A[γ12].

Proof. We proceed by induction on the length of Γ . If we have ⟨⟩ ⋆ ⟨⟩ ⊢ t : A
then by definition we have ⟨⟩ ⊢ t : A. Suppose that we have (Γ, x : B) ⋆ (Γ, x :
B) ⊢ t : A. We apply successively Lemma 1 to replace x2 and x1 by x and then
px by refl x. ⊓⊔

The following lemma states that two translations of a same term are heteroge-
neously equal.

Lemma 6 (Equal translations). Let t1 ∼ t2 such that Γ1 ⊢ t1 : A1 and
Γ2 ⊢ t2 : A2 with Γ1 and Γ2 small contexts.

1. If Γ1 ⊢ A1 : TYPE and Γ2 ⊢ A2 : TYPE, then there exists some p such that
Γ1 ⋆ Γ2 ⊢ p : t1[γ1] A1[γ1]≈A2[γ2] t2[γ2].

2. If t1 and t2 are small types, then there exists some p such that Γ1 ⋆ Γ2 ⊢ p :
κ(t1[γ1], t2[γ2]).

Proof. We proceed by induction on the derivation of t1 ∼ t2. We show two
interesting cases.

– Transport (transp p t1) ∼ t2
We have Γ1 ⊢ transp p t1 : A1 and Γ2 ⊢ t2 : A2. By inversion of typ-
ing, we have Γ1 ⊢ t1 : A′

1 and Γ1 ⊢ p : κ(A′
1, A1). By induction there

exists some pt such that Γ1 ⋆ Γ2 ⊢ pt : t1[γ1] ≈ t2[γ2]. We also have Γ1 ⊢
eqTransp p t1 : transp p t1 ≈ t1. We derive that Γ1 ⋆Γ2 ⊢ (eqTransp p t1)[γ1] :
(transp p t1)[γ1] ≈ t1[γ1]. We conclude using transitivity.

– Application (t1 u1) ∼ (t2 u2)
Suppose that t1 u1 and t2 u2 are small types. Then the only possible cases
are t1 = t2 = Prf or t1 = t2 = El. If t1 = t2 = Prf , then we have Γ1 ⊢
Prf u1 : TYPE and Γ2 ⊢ Prf u2 : TYPE. Since κ(Prf u1, Prf u2) = u1 ≈ u2,
the result is simply the induction hypothesis Γ1 ⋆ Γ2 ⊢ p : u1[γ1] ≈ u2[γ2].
We proceed similarly for El u1 ∼ El u2.
Suppose that we have Γ1 ⊢ t1 u1 : T1 and Γ2 ⊢ t2 u2 : T2 with Γ ⊢ T1 : TYPE
and Γ ⊢ T2 : TYPE. Then by inversion of typing we have Γ1 ⊢ u1 : B1 and
Γ2 ⊢ u2 : B2 and Γ1 ⊢ t1 : Πx : A1. B1 and Γ2 ⊢ t2 : Πx : A2. B2, with
T1 ≡βΣpre

B1[x 7→ u1] and T2 ≡βΣpre
B2[x 7→ u2]. By induction hypotheses,

we have Γ1 ⋆ Γ2 ⊢ pt : t1[γ1] ≈ t2[γ2] and Γ1 ⋆ Γ2 ⊢ pu : u1[γ1] ≈ u2[γ2]. We
conclude using app. ⊓⊔

4.3 Translation of Judgments

In Section 4.2 we have seen all the possible translations for terms. However,
the only translations that matter are the translations of judgments: context
formation judgments and typing judgments.

18 V. Blot et al.

Definition 9. For any ⊢R Γ we define a set J⊢R Γ K of valid judgments such
that ⊢ Γ ∈ J⊢R Γ K if and only if Γ ◁ Γ . For any Γ ⊢R t : A we define a set
JΓ ⊢R t : AK of valid judgments such that Γ ⊢ t : A ∈ JΓ ⊢R t : AK if and only
if ⊢ Γ ∈ J⊢R Γ K, t ◁ t and A ◁ A.

We are now able to prove that it is possible to switch between two translations
of a small type.

Lemma 7 (Switching translations). Suppose that we have A a small type,
Γ ⊢ t : A ∈ JΓ ⊢R t : AK and Γ ⊢ A′ : TYPE ∈ JΓ ⊢R A : TYPEK with Γ a small
context. Then there exists t′ such that Γ ⊢ t′ : A′ ∈ JΓ ⊢R t : AK.

Proof. If ν(A) ∈ S, then A := A and A′ := A, and we take t′ := t. If ν(A) ∈ P ,
then ν(A), ν(A′) ∈ P (this is similar for E). As A and A′ are two translations of
A, we have A ∼ A′. From Lemma 6, we have Γ ⋆ Γ ⊢ p : κ(A[γ1], A′[γ2]). Using
Lemma 5 we obtain Γ ⊢ p[γ12] : κ(A, A′). Using Lemma 2, there exists some
transp p[γ12] t ◁ t (since t ◁ t) such that Γ ⊢ transp p[γ12] t : A′. ⊓⊔

4.4 Translation of Theories

Now that we have translated terms and judgments, we want to translate the-
ories, so that the translation of every provable judgment in the source theory
is provable in the target theory. The target theory T ax = Σpre ∪ Σeq ∪ ΣT is
obtained by adding the axioms of equality to the signature, and by translating
ΣT . To do so, we translate each typed constant and rewrite rule one by one. At
the end, the rewrite rules of ΣT have been replaced by equational axioms.

The paramount result of this paper is the following theorem. The first item
concerns context formation. The second item is about the translation of typing
judgments. The third item focuses on convertible contexts. The fourth and fifth
items are about the conversion rules. It is worth noting that in the second item
we use the universal quantifier on Γ instead of using the existential quantifier. We
have opted for the universal quantifier so we can obtain the induction hypotheses
for a common context.

Theorem 1 (Elimination of the rewrite rules). Let a theory T = Σ in
λΠ/≡ such that T is a theory with prelude encoding and such that all the deriva-
tions considered are small derivations. There exists a signature ΣT ◁ ΣT such
that the theory T ax = Σpre ∪ Σeq ∪ ΣT satisfies:

1. If ⊢R Γ , then there exists ⊢ Γ ∈ J⊢R Γ K.
2. If Γ ⊢R t : A, then for every ⊢ Γ ∈ J⊢R Γ K there exist t and A such that

Γ ⊢ t : A ∈ JΓ ⊢R t : AK.
3. If (⊢R Γ1) ≡ (⊢R Γ2), then for every ⊢ Γ 1 ∈ J⊢R Γ1K and ⊢ Γ 2 ∈ J⊢R Γ2K,

we have ⊢ Γ 1 ⋆ Γ 2.
4. If (Γ1 ⊢R u1 : A1) ≡ (Γ2 ⊢R u2 : A2) with Γ1 ⊢R A1 : TYPE and Γ2 ⊢R

A2 : TYPE, then for every ⊢ Γ 1 ∈ J⊢R Γ1K and ⊢ Γ 2 ∈ J⊢R Γ2K, we have
Γ 1 ⊢ u1 : A1 ∈ JΓ1 ⊢R u1 : A1K and Γ 2 ⊢ u2 : A2 ∈ JΓ2 ⊢R u2 : A2K and
there exists some p such that Γ 1 ⋆ Γ 2 ⊢ p : u1[γ1] A1[γ1]≈A2[γ2] u2[γ2].

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 19

5. If (Γ1 ⊢R u1 : TYPE) ≡ (Γ2 ⊢R u2 : TYPE), then for every ⊢ Γ 1 ∈ J⊢R Γ1K
and ⊢ Γ 2 ∈ J⊢R Γ2K, we have Γ 1 ⊢ u1 : TYPE ∈ JΓ1 ⊢R u1 : TYPEK and
Γ 2 ⊢ u2 : TYPE ∈ JΓ2 ⊢R u2 : TYPEK and there exists some p such that
Γ 1 ⋆ Γ 2 ⊢ p : κ(u1[γ1], u2[γ2]).

Proof. The proof of the five items is done by induction on the typing derivations,
assuming the existence of ΣT . We show three relevant cases.

– Prod:

Γ ⊢R A : TYPE Γ, x : A ⊢R B : s

Γ ⊢R Πx : A. B : s

Take ⊢ Γ ∈ J⊢R Γ K. By induction hypothesis, we have Γ ⊢ A : TYPE ∈
JΓ ⊢R A : TYPEK. We have (Γ , x : A) ◁ (Γ, x : A) and we know that the
only translation of sort s is itself, therefore by induction hypothesis we have
Γ , x : A ⊢ B : s ∈ JΓ, x : A ⊢R B : sK. We conclude that Γ ⊢ Πx : A. B : s
using the Prod rule.

– Conv:

Γ ⊢R t : A (Γ ⊢R A : s) ≡ (Γ ⊢R B : s)
Γ ⊢R t : B

Take ⊢ Γ ∈ J⊢R Γ K. As we consider small derivations, either A is a small
type or A and B are the same type.
If A is a small type, then by induction hypothesis we have Γ ⋆ Γ ⊢ p :
κ(A[γ1], B[γ2]). By Lemma 5 we obtain Γ ⊢ p[γ12] : κ(A, B). By Lemma 7
and induction hypothesis we have Γ ⊢ t : A ∈ JΓ ⊢R t : AK. Thanks to
Lemma 2, there exists some t′ such that Γ ⊢ t′ : B ∈ JΓ ⊢R t : BK.
If A and B are the same type, then no conversion is needed and the result
is simply given the induction hypothesis Γ ⊢ t : A.

– ConvRefl:

Γ ⊢R u : A

(Γ ⊢R u : A) ≡ (Γ ⊢R u : A)

Take ⊢ Γ ∈ J⊢R Γ K. By induction hypothesis, we have Γ ⊢ u : A ∈ JΓ ⊢R
u : AK.
If Γ ⊢R A : TYPE, then we build Γ ⋆ Γ ⊢ p : u[γ1] ≈ u[γ2] using all the
congruence rules of ≈.
We proceed similarly for the case A = TYPE.

The existence of ΣT is proved by induction on the length of ΣT , using the
previous five items and ⟨⟩ ◁ ⟨⟩. ⊓⊔

Corollary 1 (Preservation). If ⊢R t : A and ⊢ A : s ∈ J⊢R A : sK, then there
exists t such that ⊢ t : A.

20 V. Blot et al.

Proof. By Theorem 1 we have ⊢ t′ : A′ ∈ J⊢R t : AK. Using Lemma 7 with
A := A, we have some t such that ⊢ t : A ∈ J⊢R t : AK. ⊓⊔

We directly derive the two following conservativity and consistency results. We
say that a theory T2 is conservative over a theory T1 when every formula in the
common language of T1 and T2 that is provable in T2 is also provable in T1.

Corollary 2 (Conservativity). T is a conservative extension of T ax.

Corollary 3 (Relative consistency). If T ax is consistent then T is also con-
sistent.

5 Conclusion

Discussion. In this paper, we showed that it is possible to replace user-defined
rewrite rules by equational axioms, in the case of the λΠ-calculus modulo the-
ory. This result works for theories with prelude encoding—which is satisfied
by expressive theories such as predicate logic and set theory—and for small
derivations—which is in practice the case. So as to replace rewrite rules by equa-
tional axioms, we have defined a heterogeneous equality with standard axioms—
reflexivity, symmetry, transitivity, Leibniz principle—and congruences for each
constructor. At the end, the theory with rewrite rules is a conservative extension
of the theory with axioms.

Related work. The similar problem of the translation from an extensional sys-
tem to an intensional system has been investigated by Oury [19]. He proposed
a translation from the Extensional Calculus of Constructions to the Calculus
of Inductive Constructions with additional axioms that define a heterogeneous
equality. Winterhalter, Sozeau and Tabareau provided a translation from exten-
sional type theory to intensional type theory [23,24]. They took advantage of
the presence of dependent pairs to encode a heterogeneous equality, unlike Oury
who defined it with axioms.

In this paper, we have shown the existence of a translation from a theory with
rewrite rules to a theory with equational axioms. Technical challenges appear
as we are not in an extensional type system. In particular, Oury and Winter-
halter et al. had a homogeneous equality in their source theory and introduce
a heterogeneous equality in the target theory. In this work, the source theory
does not contain a homogeneous equality, and the target theory only contains a
heterogeneous equality.

The major difference with previous works is that we are in a logical frame-
work without an infinite hierarchy of sorts si : si+1 for i ∈ N. In λΠ/≡, we only
have TYPE : KIND, which is the reason why we cannot define an equality between
types. As such an equality is of paramount importance in the transports, we have
considered a subclass of types—called small types—for which we can define an
equality. However, it is worth noting that the sorts of λΠ/≡ allowed a simplifi-
cation: by construction, there is no transports on types, so the translation of a
dependent function type is directly a dependent function type.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 21

References

1. Adams, R.: Pure type systems with judgemental equality. Journal of Functional
Programming 16(2), 219–246 (2006). https://doi.org/10.1017/S0956796805005770

2. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based
on the λΠ-Calculus Modulo Theory (2016), manuscript

3. Blanqui, F., Dowek, G., Grienenberger, E., Hondet, G., Thiré, F.: A modu-
lar construction of type theories. Logical Methods in Computer Science Vol-
ume 19, Issue 1 (Feb 2023). https://doi.org/10.46298/lmcs-19(1:12)2023, https:
//lmcs.episciences.org/10959

4. Blot, V., Dowek, G., Traversié, T.: An Implementation of Set Theory with Pointed
Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frame-
works and Meta-Languages : Theory and Practice. Haïfa, Israel (Aug 2022),
https://inria.hal.science/hal-03740004

5. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory (2016)
6. Cousineau, D., Dowek, G.: Embedding Pure Type Systems in the Lambda-Pi-

Calculus Modulo. In: Della Rocca, S.R. (ed.) Typed Lambda Calculi and Applica-
tions. pp. 102–117. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

7. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (1991)

8. Dowek, G., Miquel, A.: Relative normalization (2007), manuscript
9. Dowek, G.: La part du calcul. Habilitation à diriger des recherches, Université de

Paris 7 (Jun 1999), https://inria.hal.science/tel-04114581
10. Dowek, G., Werner, B.: Proof Normalization Modulo. Research Report RR-3542,

INRIA (1998), https://inria.hal.science/inria-00073143, projet COQ
11. Geuvers, H., Werner, B.: On the Church-Rosser property for expressive type sys-

tems and its consequences for their metatheoretic study. In: Proceedings Ninth
Annual IEEE Symposium on Logic in Computer Science. pp. 320–329 (1994).
https://doi.org/10.1109/LICS.1994.316057

12. Gilbert, G., Leray, Y., Tabareau, N., Winterhalter, T.: The Rewster: The Coq Proof
Assistant with Rewrite Rules (2023), https://types2023.webs.upv.es/TYPES2023.
pdf

13. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of
the ACM 40(1), 143–184 (January 1993). https://doi.org/10.1145/138027.138060,
https://doi.org/10.1145/138027.138060

14. Hofmann, M.: Conservativity of equality reflection over intensional type theory.
In: Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs. pp. 153–164.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

15. Hofmann, M.: Extensional Constructs in Intensional Type Theory. Springer Lon-
don (1997). https://doi.org/10.1007/978-1-4471-0963-1

16. Hondet, G., Blanqui, F.: The New Rewriting Engine of Dedukti. In: FSCD 2020
- 5th International Conference on Formal Structures for Computation and De-
duction. p. 16. No. 167, Paris, France (Jun 2020). https://doi.org/10.4230/LIPIcs.
FSCD.2020.35, https://inria.hal.science/hal-02981561

17. Martin-Löf, P.: Constructive mathematics and computer programming. Studies
in logic and the foundations of mathematics 104, 167–184 (1984), https://api.
semanticscholar.org/CorpusID:61930968

18. McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, University of Edinburgh (1999)

22 V. Blot et al.

https://doi.org/10.1017/S0956796805005770
https://doi.org/10.1017/S0956796805005770
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://lmcs.episciences.org/10959
https://lmcs.episciences.org/10959
https://inria.hal.science/hal-03740004
https://inria.hal.science/tel-04114581
https://inria.hal.science/inria-00073143
https://doi.org/10.1109/LICS.1994.316057
https://doi.org/10.1109/LICS.1994.316057
https://types2023.webs.upv.es/TYPES2023.pdf
https://types2023.webs.upv.es/TYPES2023.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/978-1-4471-0963-1
https://doi.org/10.1007/978-1-4471-0963-1
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://inria.hal.science/hal-02981561
https://api.semanticscholar.org/CorpusID:61930968
https://api.semanticscholar.org/CorpusID:61930968

19. Oury, N.: Extensionality in the Calculus of Constructions. In: Hurd, J., Melham,
T. (eds.) Theorem Proving in Higher Order Logics. pp. 278–293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

20. Poincaré, H.: La Science et l’Hypothèse. Flammarion (1902)
21. Siles, V.: Investigation on the typing of equality in type systems. Ph.D. thesis, Ecole

Polytechnique (Nov 2010), https://pastel.archives-ouvertes.fr/pastel-00556578
22. Siles, V., Herbelin, H.: Pure Type System conversion is always typable. Journal of

Functional Programming 22(2), 153 – 180 (May 2012). https://doi.org/10.1017/
S0956796812000044, https://inria.hal.science/inria-00497177

23. Winterhalter, T., Sozeau, M., Tabareau, N.: Eliminating Reflection from Type
Theory. In: CPP 2019 - 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs. pp. 91–103. ACM, Lisbonne, Portugal (Jan 2019). https:
//doi.org/10.1145/3293880.3294095, https://hal.science/hal-01849166

24. Winterhalter, T.: Formalisation and meta-theory of type theory. Ph.D. thesis, Uni-
versité de Nantes (2020)

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://pastel.archives-ouvertes.fr/pastel-00556578
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://inria.hal.science/inria-00497177
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://hal.science/hal-01849166
http://creativecommons.org/licenses/by/4.0/

	From Rewrite Rules to Axioms in the LambdaPi-Calculus Modulo Theory

