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Abstract. There are many evaluation strategies for term rewrite systems,
but proving termination automatically is usually easiest for innermost
rewriting. Several syntactic criteria exist when innermost termination
implies full termination. We adapt these criteria to the probabilistic
setting, e.g., we show when it suffices to analyze almost-sure termination
(AST) w.r.t. innermost rewriting to prove full AST of probabilistic term
rewrite systems. These criteria also apply to other notions of termination
like positive AST. We implemented and evaluated our new contributions
in the tool AProVE.

1 Introduction

Termination analysis is one of the main tasks in program verification, and
techniques and tools to analyze termination of term rewrite systems (TRSs)
automatically have been studied for decades. While a direct application of classical
reduction orderings is often too weak, these orderings can be used successfully
within the dependency pair (DP) framework [3, 20]. This framework allows for
modular termination proofs by decomposing the original termination problem
into sub-problems whose termination can then be analyzed independently using
different techniques. Thus, DPs are used in essentially all current termination
tools for TRSs (e.g., AProVE [21], MuTerm [25], NaTT [46], TTT2 [33]). To
allow certification of termination proofs with DPs, they have been formalized in
several proof assistants and there exist several corresponding certification tools
for termination proofs with DPs (e.g., CeTA [43]).

On the other hand, probabilistic programs are used to describe randomized
algorithms and probability distributions, with applications in many areas, see,
e.g., [23]. To use TRSs also for such programs, probabilistic term rewrite systems
(PTRSs) were introduced in [4, 9, 10]. In the probabilistic setting, there are
several notions of “termination”. In this paper, we mostly focus on analyzing
almost-sure termination (AST), i.e., we want to prove automatically that the
probability for termination is 1.
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While there exist many automatic approaches to prove (P)AST of imperative
programs on numbers (e.g., [2, 5, 11, 16, 22, 26–28, 36–38, 40]), there are only
few automatic approaches for programs with complex non-tail recursive structure
[8, 12, 13]. The approaches that are also suitable for algorithms on recursive
data structures [7, 35, 45] are mostly specialized for specific data structures and
cannot easily be adjusted to other (possibly user-defined) ones, or are not yet
fully automated.

For innermost AST (i.e., AST restricted to rewrite sequences where one
only evaluates at innermost positions), we recently presented an adaption of
the DP framework which allows us to benefit from a similar modularity as in
the non-probabilistic setting [29, 32]. Unfortunately, there is no such modular
powerful approach available for full AST (i.e., AST when considering arbitrary
rewrite sequences). Up to now, full AST of PTRSs can only be proved via a
direct application of orderings [4, 29], but there is no corresponding adaption of
dependency pairs. (As explained in [29], a DP framework to analyze full instead
of innermost AST would be “considerably more involved”.) Indeed, also in the
non-probabilistic setting, innermost termination is usually substantially easier to
prove than full termination, see, e.g., [3, 20]. To lift innermost termination proofs
to full rewriting, in the non-probabilistic setting, there exist several sufficient
criteria which ensure that innermost termination implies full termination [24].

Up to now no such results were known in the probabilistic setting. Our paper
presents the first sufficient criteria for PTRSs which ensure that AST coincide for
full and innermost rewriting, and we also show similar results for other rewrite
strategies like leftmost-innermost rewriting. We focus on criteria that can be
checked automatically, so we can combine our results with the DP framework
for proving innermost AST of PTRSs [29, 32]. In this way, we obtain a modular
powerful technique that can also prove AST for full rewriting automatically.

We will also consider the stronger notion of positive almost-sure termination
(PAST) [10, 42], which requires that the expected runtime is finite, and show
that our criteria for the relationship between full and innermost probabilistic
rewriting hold for PAST as well. In contrast to AST, PAST is not modular, i.e.,
the sequence of two programs that are PAST may yield a program that is not
PAST (see, e.g., [27]). Therefore, up to now there is no variant of DPs that allows
to prove PAST of PTRSs, but there only exist techniques to apply polynomial or
matrix orderings directly [4].

We start with preliminaries on term rewriting in Sect. 2. Then we recapitulate
PTRSs based on [4, 10, 14, 15, 29] in Sect. 3. In Sect. 4 we show that the properties
of [24] that ensure equivalence of innermost and full termination do not suffice in
the probabilistic setting and extend them accordingly. In particular, we show that
innermost and full AST coincide for PTRSs that are non-overlapping and linear.
This result also holds for PAST, as well as for strategies like leftmost-innermost
evaluation. In Sect. 5 we show how to weaken the linearity requirement in order
to prove full AST for larger classes of PTRSs. The implementation of our criteria
in the tool AProVE is evaluated in Sect. 6. We refer to [30] for all proofs.
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2 Preliminaries

We assume familiarity with term rewriting [6] and regard (possibly infinite) TRSs
over a (possibly infinite) signature Σ and a set of variables V . Consider the TRS
Rd that doubles a natural number (represented by the terms s and O) with
the rewrite rules d(s(x))→ s(s(d(x))) and d(O)→ O as an example. A TRS R
induces a rewrite relation →R ⊆ T (Σ,V) × T (Σ,V) on terms where s →R t
holds if there is a position π, a rule ℓ→ r ∈ R, and a substitution σ such that
s|π = ℓσ and t = s[rσ]π. A rewrite step s →R t is an innermost rewrite step
(denoted s

i→R t) if all proper subterms of the used redex ℓσ are in normal form
w.r.t. R (i.e., they do not contain redexes themselves and thus, they cannot be
reduced with →R). For example, we have d(s(d(s(O)))) i→Rd

d(s(s(s(d(O))))).
Let < be the prefix ordering on positions and let ≤ be its reflexive closure.

Then for two parallel positions τ and π we define τ ≺ π if we have i < j for the
unique i, j such that χ.i ≤ τ and χ.j ≤ π, where χ is the longest common prefix
of τ and π. An innermost rewrite step s

i→R t at position π is leftmost (denoted
s

li→R t) if there exists no redex at a position τ with τ ≺ π.
We call a TRS R strongly (innermost/leftmost innermost) normalizing (SN /

iSN / liSN) if →R (
i→R /

li→R) is well founded. SN is also called “terminating”
and iSN/liSN are called “innermost/leftmost innermost terminating”. If every
term t ∈ T (Σ,V) has a normal form (i.e., we have t→∗

R t′ where t′ is in normal
form) then we call R weakly normalizing (WN). Two terms s, t are joinable via
R (denoted s ↓R t) if there exists a term w such that s→∗

R w ←∗
R t. Two rules

ℓ1 → r1, ℓ2 → r2 ∈ R with renamed variables such that V(ℓ1) ∩ V(ℓ2) = ∅ are
overlapping if there exists a non-variable position π of ℓ1 such that ℓ1|π and ℓ2
are unifiable with a mgu σ. If (ℓ1 → r1) = (ℓ2 → r2), then we require that π ̸= ε.
R is non-overlapping (NO) if it has no overlapping rules. As an example, the
TRS Rd is non-overlapping. A TRS is left-linear (LL) (right-linear, RL) if every
variable occurs at most once in the left-hand side (right-hand side) of a rule. A
TRS is linear if it is both left- and right-linear. A TRS is non-erasing (NE) if in
every rule, all variables of the left-hand side also occur in the right-hand side.

Next, we recapitulate the relations between iSN, SN, liSN, and WN in the
non-probabilistic setting. We start with the relation between iSN and SN.

Counterexample 1 (Toyama’s Counterexample [44]). The TRS R1 with the rules
f(a, b, x)→ f(x, x, x), g → a, and g → b is not SN since we have f(a, b, g)→R1

f(g, g, g) →R1
f(a, g, g) →R1

f(a, b, g) →R1
. . . But the only innermost rewrite

sequences starting with f(a, b, g) are f(a, b, g)
i→R1

f(a, b, a)
i→R1

f(a, a, a) and
f(a, b, g)

i→R1
f(a, b, b)

i→R1
f(b, b, b), i.e., both reach normal forms in the end.

Thus, R1 is iSN as we have to rewrite the inner g before we can use the f-rule.

The first property known to ensure equivalence of SN and iSN is orthogonality.
A TRS is orthogonal if it is non-overlapping and left-linear.

Theorem 2 (From iSN to SN (1), [41]). If a TRS R is orthogonal, then R
is SN iff R is iSN.

Then, in [24] it was shown that one can remove the left-linearity requirement.
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Theorem 3 (From iSN to SN (2), [24]). If a TRS R is non-overlapping,
then R is SN iff R is iSN.

Finally, [24] also refined Thm. 3 further. A TRS R is an overlay system (OS)
if its rules may only overlap at the root position, i.e., π = ε. For Ex. 1 one can see
that the overlaps occur at non-root positions, i.e., R1 is not an overlay system.
Furthermore, a TRS is locally confluent (or weakly Church-Rosser, abbreviated
WCR) if for all terms s, t1, t2 such that t1 R← s→R t2 the terms t1 and t2 are
joinable. So R1 is not WCR, as we have f(a, b, a) R1

← f(a, b, g)→R1
f(a, b, b),

but f(a, b, a) ̸ ↓ R1
f(a, b, b). If a TRS has both of these properties, then iSN and

SN are again equivalent.

Theorem 4 (From iSN to SN (3), [24]). If a TRS R is a locally confluent
overlay system, then R is SN iff R is iSN.

Thm. 4 is stronger than Thm. 3 as every non-overlapping TRS is a locally
confluent overlay system. We recapitulate the relation between WN and SN next.

Counterexample 5. Consider the TRS R2 with the rules f(x)→ b and a→ f(a).
This TRS is not SN since we can always rewrite the inner a to get a →R2

f(a)→R2
f(f(a))→R2

. . ., but it is WN since we can also rewrite the outer f(. . .)
before we use the a-rule twice, resulting in the term b, which is a normal form.
For the TRS R3 with the rules f(a)→ b and a→ f(a), the situation is similar.

The TRS R2 from Ex. 5 is erasing and R3 is overlapping. For TRSs with
neither of those two properties, SN and WN are equivalent.

Theorem 6 (From WN to SN [24]). If a TRS R is non-overlapping and
non-erasing, then R is SN iff R is WN.

Finally, we look at the difference between rewrite strategies that use an
ordering for parallel redexes like leftmost innermost rewriting compared to just
innermost rewriting. It turns out that such an ordering does not interfere with
termination at all.

Theorem 7 (From liSN to iSN [34]). For all TRSs R we have that R is
iSN iff R is liSN.

The relations between the different properties for non-probabilistic TRSs
(given in Thm. 4, 6, and 7) are summarized below.

SNiSN WNliSN

OS + WCR NO+NE

From Innermost to Full AST of PTRSs 209



3 Probabilistic Term Rewriting

In this section, we recapitulate probabilistic TRSs [4, 10, 29]. In contrast to TRSs,
a PTRS has finite multi-distributions1 on the right-hand sides of its rewrite rules.2

A finite multi-distribution µ on a set A ̸= ∅ is a finite multiset of pairs (p : a),
where 0 < p ≤ 1 is a probability and a ∈ A, such that

∑
(p:a)∈µ p = 1. FDist(A)

is the set of all finite multi-distributions on A. For µ ∈ FDist(A), its support is
the multiset Supp(µ) = {a | (p : a) ∈ µ for some p}. A probabilistic rewrite rule
is a pair ℓ → µ ∈ T (Σ,V) × FDist(T (Σ,V)) such that ℓ ̸∈ V and V(r) ⊆ V(ℓ)
for every r ∈ Supp(µ). A probabilistic TRS (PTRS) is a (possibly infinite) set S
of probabilistic rewrite rules. Similar to TRSs, the PTRS S induces a rewrite
relation →S ⊆ T (Σ,V) × FDist(T (Σ,V)) where s →S {p1 : t1, . . . , pk : tk} if
there is a position π, a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, and a substitution
σ such that s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k. We call s →S µ an
innermost rewrite step (denoted s

i→S µ) if all proper subterms of the used redex
ℓσ are in normal form w.r.t. S. We have s

li→S µ if the rewrite step s
i→S µ at

position π is leftmost (i.e., there is no redex at a position τ with τ ≺ π). For
example, the PTRS Srw with the only rule g→ {1/2 : c(g, g), 1/2 : ⊥} corresponds
to a symmetric random walk on the number of g-symbols in a term.

As in [4, 14, 15, 29], we lift →S to a rewrite relation between multi-distributions
in order to track all probabilistic rewrite sequences (up to non-determinism) at
once. For any 0 < p ≤ 1 and any µ ∈ FDist(A), let p ·µ = {(p ·q : a) | (q : a) ∈ µ}.

Definition 8 (Lifting). The lifting ⇒ ⊆ FDist(T (Σ,V)) × FDist(T (Σ,V))
of a relation → ⊆ T (Σ,V)× FDist(T (Σ,V)) is the smallest relation with:

• If t ∈ T (Σ,V) is in normal form w.r.t. →, then {1 : t}⇒ {1 : t}.
• If t→ µ, then {1 : t}⇒ µ.
• If for all 1 ≤ j ≤ k there are µj , νj ∈ FDist(T (Σ,V)) with µj ⇒ νj and
0 < pj ≤ 1 with

∑
1≤j≤k pj = 1, then

⋃
1≤j≤k pj · µj ⇒

⋃
1≤j≤k pj · νj.

For a PTRS S, we write ⇒S ,
i⇒S , and

li⇒S for the liftings of →S ,
i→S , and

li→S ,
respectively.

Example 9. For example, we obtain the following ⇒Srw -rewrite sequence (which
is also a

i⇒Srw -sequence, but not a
li⇒Srw -sequence).

{1 : g}
⇒Srw {1/2 : c(g, g), 1/2 : ⊥}
⇒Srw {1/4 : c(c(g, g), g), 1/4 : c(⊥, g), 1/2 : ⊥}
⇒Srw {1/8 : c(c(g, g), c(g, g)), 1/8 : c(c(g, g),⊥), 1/8 : c(⊥, c(g, g)), 1/8 : c(⊥,⊥), 1/2 : ⊥}

1 The restriction to finite multi-distributions allows us to simplify the handling of
PTRSs in the proofs.

2 A different form of probabilistic rewrite rules was proposed in PMaude [1], where
numerical extra variables in right-hand sides of rules are instantiated according to a
probability distribution.

210 J.-C. Kassing, F. Frohn, J. Giesl



To express the concept of almost-sure termination, one has to determine the
probability for normal forms in a multi-distribution.

Definition 10 (|µ|S). For a PTRS S, NFS ⊆ T (Σ,V) denotes the set of all
normal forms w.r.t. S. For any µ ∈ FDist(T (Σ,V)), let |µ|S =

∑
(p:t)∈µ,t∈NFS p.

Example 11. Consider {1/8 : c(c(g, g), c(g, g)), 1/8 : c(c(g, g),⊥), 1/8 : c(⊥, c(g, g)),
1/8 : c(⊥,⊥), 1/2 : ⊥} = µ from Ex. 9. Then |µ|Srw = 1/8 + 1/2 = 5/8, since c(⊥,⊥)
and ⊥ are both normal forms w.r.t. Srw.

Definition 12 (AST). Let S be a PTRS and µ⃗ = (µn)n∈N be an infinite
⇒S-rewrite sequence, i.e., µn ⇒S µn+1 for all n ∈ N. We say that µ⃗ converges
with probability lim

n→∞
|µn|S . S is almost-surely terminating (AST) ( innermost

AST (iAST) / leftmost innermost AST (liAST)) if lim
n→∞

|µn|S = 1 holds for

every infinite ⇒S- (
i⇒S- /

li⇒S-) rewrite sequence (µn)n∈N. To highlight the
consideration of AST for full (instead of innermost) rewriting, we also speak
of full AST (fAST) instead of “AST”. We say that S is weakly AST (wAST)
if for every term t there exists an infinite ⇒S-rewrite sequence (µn)n∈N with
lim
n→∞

|µn|S = 1 and µ0 = {1 : t}.

Example 13. For every infinite extension (µn)n∈N of the ⇒Srw -rewrite sequence
in Ex. 9, we have lim

n→∞
|µn|S = 1. Indeed, Srw is fAST and thus also iAST, liAST,

and wAST.

Next, we define positive almost-sure termination that considers the expected
derivation length edl(µ⃗) of a rewrite sequence µ⃗, i.e., the expected number of
steps until one reaches a normal form. For PAST, we require that the expected
derivation lengths of all possible rewrite sequences are finite. In the following
definition, (1 − |µn|S) is the probability of terms that are not in normal form
w.r.t. S after the n-th step.

Definition 14 (edl, PAST). Let S be a PTRS and µ⃗ = (µn)n∈N be an infinite
⇒S-rewrite sequence. By edl(µ⃗) =

∑∞
n=0(1−|µn|S) we denote the expected deriva-

tion length of µ⃗. S is positively almost-surely terminating (PAST) ( innermost
PAST (iPAST) / leftmost innermost AST (liPAST)) if edl(µ⃗) is finite for every
infinite ⇒S- (

i⇒S- /
li⇒S-) rewrite sequence µ⃗ = (µn)n∈N.

3 Again, we also speak
of full PAST (fPAST) when considering PAST for the full rewrite relation ⇒S .
We say that S is weakly PAST (wPAST) if for every term t there exists an infinite
⇒S-rewrite sequence µ⃗ = (µn)n∈N such that edl(µ⃗) is finite and µ0 = {1 : t}.

It is well known that PAST implies AST, but not vice versa.

Example 15. For every infinite extension µ⃗ = (µn)n∈N of the ⇒Srw -rewrite se-
quence in Ex. 9, the expected derivation length edl(µ⃗) is infinite, hence Srw is
not PAST w.r.t. any of the strategies regarded in this paper.

3 This definition is from [4], where it is also explained why this definition of PAST is
equivalent to the one of, e.g., [10].
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In [4, 18], PAST was strengthened further to bounded or strong almost-sure
termination (SAST). Indeed, our results on PAST can also be adapted to SAST
(see [30]).

Many properties of TRSs from Sect. 2 can be lifted to PTRSs in a straight-
forward way: A PTRS S is right-linear (non-erasing) iff the TRS {ℓ→ r | ℓ→
µ ∈ S, r ∈ Supp(µ)} has the respective property. Moreover, all properties that
just consider the left-hand sides, e.g., left-linearity, being non-overlapping, or-
thogonality, and being an overlay system, can be lifted to PTRSs directly as well,
since their rules again only have a single left-hand side.

4 Relating Variants of AST

Our goal is to relate AST of full rewriting to restrictions of fAST, i.e., to iAST
(Sect. 4.1), wAST (Sect. 4.2), and liAST (Sect. 4.3). More precisely, we want to
find properties of PTRSs which are suitable for automated checking and which
guarantee that two variants of AST are equivalent. Then for example, we can
use existing tools that analyze iAST in order to prove fAST. Clearly, we have
to impose at least the same requirements as in the non-probabilistic setting, as
every TRS R can be transformed into a PTRS S by replacing every rule ℓ→ r
with ℓ→ {1 : r}. Then R is SN / iSN / liSN iff S is fAST / iAST / liAST. While
we mostly focus on AST, all results and counterexamples in this section also hold
for PAST.

4.1 From iAST to fAST

Again, we start by analyzing the relation between iAST and fAST. The following
example shows that Thm. 2 does not carry over to the probabilistic setting, i.e.,
orthogonality is not sufficient to ensure that iAST implies fAST.

Counterexample 16 (Orthogonality Does Not Suffice). Consider the orthogonal
PTRS S1 with the two rules:

g→ {3/4 : d(g), 1/4 : ⊥} d(x)→ {1 : c(x, x)}

This PTRS is not fAST (and thus, also not fPAST), as we have {1 : g} ⇒2
S1

{3/4 : c(g, g), 1/4 : ⊥}, which corresponds to a random walk biased towards
non-termination (since 3

4 > 1
2 ).

However, the d-rule can only duplicate normal forms in innermost evaluations.
To see that S1 is iPAST (and thus, also iAST), consider the following rewrite
sequence µ⃗:

{1 : g} i
⇒S1 {3/4 : d(g), 1/4 : ⊥} i

⇒S1 {(3/4)2 : d(d(g)), 1/4 · 3/4 : d(⊥), 1/4 : ⊥} i
⇒S1 . . .

We can also view this rewrite sequence as a tree:
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µ0 : 1 g

µ1 : 3/4 d(g) 1/4 ⊥

µ2 : (3/4)2 d(d(g)) 1/4 · 3/4 d(⊥)

µ3 : (3/4)3 d(d(d(g))) 1/4 · (3/4)2 d(d(⊥)) . . .

. . . . . .

The branch to the right that starts with ⊥ stops after 0 innermost steps, the
branch that starts with d(⊥) stops after 1 innermost steps, the branch that starts
with d(d(⊥)) stops after 2 innermost steps, and so on. So if we start with the
term dn(⊥), then we reach a normal form after n steps, and we reach dn(⊥) after
n+ 1 steps from the initial term g, where dn(⊥) = d(. . . (d︸ ︷︷ ︸

n-times

(⊥)) . . .). Hence, for

every k ∈ N we have |µ2·k+1|S1
= |µ2·k+2|S1

=
∑k

n=0
1/4 · (3/4)n and thus

edl(µ⃗) =
∑∞

n=0(1− |µn|S1) = 1 + 2 ·
∑

k∈N(1− |µ2·k+1|S1)

= 1 + 2 ·
∑

k∈N(1−
∑k

n=0
1/4 · (3/4)n) = 1 + 2 ·

∑
k∈N(

3/4)k+1

= (2 ·
∑

k∈N(
3/4)k)− 1 = 7

Analogously, in all other innermost rewrite sequences, the d-rule can also only
duplicate normal forms. Thus, all possible innermost rewrite sequences have finite
expected derivation length. Therefore, S1 is iPAST and thus, also iAST. The
latter can also be proved automatically by our implementation of the probabilistic
DP framework for iAST [29] in AProVE.

To construct a counterexample for AST of S1, we exploited the fact that S1
is not right-linear. Indeed, requiring right-linearity yields our desired result. For
reasons of space, here we only give a proof sketch. As mentioned, all full proofs
can be found in [30].

Theorem 17 (From iAST/iPAST to fAST/fPAST (1)). If a PTRS S is
orthogonal and right-linear (i.e., non-overlapping and linear), then:

S is fAST⇐⇒ S is iAST

S is fPAST⇐⇒ S is iPAST

Proof Sketch. We only have to prove the non-trivial direction “⇐=”. The proofs
for all theorems in this section (for both AST and PAST) follow a similar structure.
We always iteratively replace rewrite steps by steps that use the desired strategy
and ensure that this does not increase the probability of termination (resp. the
expected derivation length). For this replacement, we lift the corresponding
construction from the non-probabilistic to the probabilistic setting. However, this
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cannot be done directly but instead, we have to regard the “limit” of a sequence
of transformation steps.

We first consider fAST and iAST. Let S be a PTRS that is non-overlapping,
linear, and not fAST. Thus, there exists an infinite rewrite sequence µ⃗ = (µn)n∈N
such that limn→∞ |µn|S = c for some c ∈ R with 0 ≤ c < 1. Our goal is to
transform this sequence into an innermost sequence that converges at most with
probability c. If the sequence is not yet an innermost one, then in (µn)n∈N at
least one rewrite step is performed with a redex that is not an innermost redex.
Since S is non-overlapping, we can replace a first such non-innermost rewrite
step with an innermost rewrite step using a similar construction as in the non-

probabilistic setting. In this way, we result in a rewrite sequence µ⃗(1) = (µ
(1)
n )n∈N

with limn→∞ |µ(1)
n |S = limn→∞ |µn|S = c. Here, linearity is needed to ensure that

the probability of termination does not increase during this replacement. We can
then repeat this replacement for every non-innermost rewrite step, i.e., we again

replace a first non-innermost rewrite step in (µ
(1)
n )n∈N to obtain (µ

(2)
n )n∈N with

the same termination probability, etc. In the end, the limit of all these rewrite

sequences limi→∞(µ
(i)
n )n∈N is an innermost rewrite sequence that converges with

probability at most c < 1, and hence, the PTRS S is not innermost AST.
For fPAST and iPAST, we start with an infinite rewrite sequence µ⃗ such

that edl(µ⃗) = ∞. Again, we replace the first non-innermost rewrite step with
an innermost rewrite step using exactly the same construction as before to
obtain µ⃗(1), etc., since µ⃗(1) does not only have the same termination proba-
bility as µ⃗, but we also have edl(µ⃗(1)) ≥ edl(µ⃗). In the end, the limit of all
these rewrite sequences limi→∞ µ⃗(i) is an innermost rewrite sequence such that
edl(limi→∞ µ⃗(i)) ≥ edl(µ⃗) =∞, and hence, the PTRS S is not innermost PAST.

⊓⊔

One may wonder whether we can remove the left-linearity requirement from
Thm. 17, as in the non-probabilistic setting. It turns out that this is not possible.

Counterexample 18 (Left-Linearity Cannot be Removed). Consider the PTRS S2
with the rules:

f(x, x)→ {1 : f(a, a)} a→ {1/2 : b, 1/2 : c}

S2 is not fAST (hence also not fPAST), since {1 : f(a, a)}⇒S2
{1 : f(a, a)}⇒S2

. . .
is an infinite rewrite sequence that converges with probability 0. However, it
is iPAST (and hence, iAST) since the corresponding innermost sequence has
the form {1 : f(a, a)} i⇒S2

{ 12 : f(b, a), 1
2 : f(c, a)} i⇒S2

{ 14 : f(b, b), 1
4 : f(b, c), 1

4 :
f(c, b), 1

4 : f(c, c)}. Here, the last distribution contains two normal forms f(b, c)
and f(c, b) that did not occur in the previous rewrite sequence. Since all innermost
rewrite sequences keep on adding such normal forms after a certain number of
steps for each start term, they always have finite expected derivation length and
thus, converge with probability 1 (again, iAST can be shown automatically by
AProVE). Note that adding the requirement of being non-erasing would not help
to get rid of the left-linearity either, as shown by the PTRS S3 which results
from S2 by replacing the f-rule with f(x, x)→ {1 : d(f(a, a), x)}.
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The problem here is that although we rewrite both occurrences of a with the
same rewrite rule, the two a-symbols are replaced by two different terms (each
with a probability > 0). This is impossible in the non-probabilistic setting.

Next, one could try to adapt Thm. 4 to the probabilistic setting (when
requiring linearity in addition). So one could investigate whether iAST implies
fAST for PTRSs that are linear locally confluent overlay systems. A PTRS S is
locally confluent if for all multi-distributions µ, µ1, µ2 such that µ1 ⇔S µ ⇒S µ2,
there exists a multi-distribution µ′ such that µ1 ⇒∗

S µ′ ⇔∗
S µ2, see [14]. Note

that in contrast to the probabilistic setting, there are non-overlapping PTRSs
that are not locally confluent (e.g., the variant S ′2 of S2 that consists of the
rules f(x, x) → {1 : d} and a → {1/2 : b, 1/2 : c}, since we have {1 : d} ⇔S′

2
{1 :

f(a, a)}⇒S′
2
{1/2 : f(b, a), 1/2 : f(c, a)} and the two resulting multi-distributions

are not joinable). Thus, such an adaption of Thm. 4 would not subsume Thm. 17.
In contrast to the proof of Thm. 2, the proof of Thm. 4 relies on a minimality

requirement for the used redex. In the non-probabilistic setting, whenever a term
t starts an infinite rewrite sequence, then there exists a position π of t such
that there is an infinite rewrite sequence of t starting with the redex t|π, but no
infinite rewrite sequence of t starting with a redex at a position τ > π which
is strictly below π. In other words, if t starts an infinite rewrite sequence, then
there is a “minimal” infinite rewrite sequence starting in t, i.e., as soon as one
reduces a proper subterm of one of the redexes in the sequence, then one obtains
a term which is terminating. However, such minimal infinite sequences do not
always exist in the probabilistic setting.

Example 19 (No Minimal Infinite Rewrite Sequence for AST). Reconsider the
PTRS S1 from Ex. 16, which is not fAST. However, there is no “minimal” rewrite
sequence with convergence probability < 1 such that one rewrite step at a proper
subterm of a redex would modify the multi-distribution in such a way that now
only rewrite sequences with convergence probability 1 are possible. We have
{1 : g}⇒S1

{3/4 : d(g), 1/4 : ⊥}. In Ex. 16, we now alternated between the d- and
the g-rule, resulting in a biased random walk, i.e., we obtained {3/4 : d(g), 1/4 :
⊥} ⇒S1 {3/4 : c(g, g), 1/4 : ⊥} ⇒S1 {3/4 : c(d(g), g), 1/4 : ⊥} ⇒S1 . . . The steps
with the d-rule use redexes that have g as a proper subterm.

However, there does not exist any “minimal” non-fAST sequence. If we rewrite
the proper subterm g of a redex d(g), then this still yields a multi-distribution that
is not fAST, i.e., it can still start a rewrite sequence with convergence probability
< 1. For example, we have {3/4 : d(g), 1/4 : ⊥} ⇒S1

{(3/4)2 : d(d(g)), 1/4 · 3/4 :
d(⊥), 1/4 : ⊥}, but the obtained multi-distribution still contains the subterm
g, and thus, one can still continue the rewrite sequence in such a way that its
convergence probability is < 1. Again, the same example also shows that there is
no “minimal” non-fPAST sequence.

It remains open whether one can also adapt Thm. 4 to the probabilistic setting
(e.g., if one can replace non-overlappingness in Thm. 17 by the requirement of
locally confluent overlay systems). There are two main difficulties when trying
to adapt the proof of this theorem to PTRSs. First, the minimality requirement
cannot be imposed in the probabilistic setting, as discussed above. In the non-
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probabilistic setting, this requirement is needed to ensure that rewriting below a
position that was reduced in the original (minimal) infinite rewrite sequence leads
to a strongly normalizing rewrite sequence. Second, the original proof of Thm. 4
uses Newman’s Lemma [39] which states that local confluence implies confluence
for strongly normalizing terms t, and thus it implies that t has a unique normal
form. Local confluence and adaptions of the unique normal form property for the
probabilistic setting have been studied in [14, 15], which concluded that obtaining
an analogous statement to Newman’s Lemma for PTRSs that are AST (or PAST)
would be very difficult. The reason is that one cannot use well-founded induction
on the length of a rewrite sequence of a PTRS that is AST (or PAST), since
these rewrite sequences may be infinite.

4.2 From wAST to fAST

Next, we investigate wAST. Since iAST implies wAST, we essentially have the
same problems as for innermost AST, i.e., in addition to non-overlappingness,
we need linearity, as seen in Ex. 16 and 18, as S1 and S3 are iAST (and hence
wAST) but not fAST, while they are non-overlapping and non-erasing, but not
linear. Furthermore, we need non-erasingness as we did in the non-probabilistic
setting for the same reasons, see Ex. 5.

Theorem 20 (From wAST/wPAST to fAST/fPAST). If a PTRS S is
non-overlapping, linear, and non-erasing, then

S is fAST⇐⇒ S is wAST

S is fPAST⇐⇒ S is wPAST

4.3 From liAST to fAST

Finally, we look at leftmost-innermost AST as an example for a rewrite strategy
that uses an ordering for parallel redexes. In contrast to the non-probabilistic
setting, it turns out that liAST and iAST are not equivalent in general. The
counterexample is similar to Ex. 18, which illustrated that fAST and iAST are
not equivalent without left-linearity.

Counterexample 21. Consider the PTRS S4 with the five rules:

a→ {1 : c1}
a→ {1 : c2}

b→ {1/2 : d1, 1/2 : d2}
f(c1, d1)→ {1 : f(a, b)}
f(c2, d2)→ {1 : f(a, b)}

This PTRS is not iAST (and hence not iPAST) since there exists the infi-
nite rewrite sequence {1 : f(a, b)} i⇒S4

{1/2 : f(a, d1), 1/2 : f(a, d2)}
i⇒2
S4
{1/2 :

f(c1, d1), 1/2 : f(c2, d2)}
i⇒2
S4
{1/2 : f(a, b), 1/2 : f(a, b)} i⇒S4

. . ., which converges
with probability 0. It first “splits” the term f(a, b) with the b-rule, and then
applies one of the two different a-rules to each of the resulting terms. In contrast,
when applying a leftmost innermost rewrite strategy, we have to decide which
a-rule to use. For example, we have {1 : f(a, b)} li⇒S4

{1 : f(c1, b)}
li⇒S4

{1/2 :
f(c1, d1), 1/2 : f(c1, d2)}. Here, the second term f(c1, d2) is a normal form. Since
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all leftmost innermost rewrite sequences keep on adding such normal forms after
a certain number of steps for each start term, the PTRS is liAST (and also
liPAST).

The counterexample above can easily be adapted to variants of innermost
rewriting that impose different orders on parallel redexes like, e.g., rightmost
innermost rewriting.

However, liAST and iAST are again equivalent for non-overlapping TRSs. For
such TRSs, at most one rule can be used to rewrite at a given position, which
prevents the problem illustrated in Ex. 21.

Theorem 22 (From liAST/liPAST to iAST/iPAST). If a PTRS S is
non-overlapping, then

S is iAST⇐⇒ S is liAST

S is iPAST⇐⇒ S is liPAST

The relations between the different properties for AST of PTRSs (given in
Thm. 17, 20, and 22) are summarized below. An analogous figure also holds for
PAST.

fASTiAST wASTliAST

NO NO+LL+RL NO+LL+RL+NE

5 Improving Applicability

In this section, we improve the applicability of Thm. 17, which relates fAST and
iAST. The results of Sect. 5.1 allow us to remove the requirement of left-linearity
by modifying the rewrite relation to simultaneous rewriting. Then in Sect. 5.2 we
show that the requirement of right-linearity can be weakened to spareness if one
only considers rewrite sequences that start with basic terms.

5.1 Removing Left-Linearity by Simultaneous Rewriting

First, we will see that we do not need to require left-linearity if we allow the
simultaneous reduction of several copies of identical redexes. For a PTRS S, this
results in the notion of simultaneous rewriting, denoted S . While

i

S over-
approximates

i→S , existing techniques for proving iAST [29, 32] (except for the
rewriting processor4) do not distinguish between both notions of rewriting, i.e.,
these techniques even prove that every rewrite sequence with the lifting

i

S of
i

S converges with probability 1. So for non-overlapping and right-linear PTRSs,
these techniques can be used to prove innermost almost-sure termination w.r.t.

4 This processor is an optional transformation technique which was added in [32] when
improving the DP framework further since it sometimes helps to increase power, but
all other (major) DP processors do not distinguish between

i→S and
i

S .
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S , which then implies fAST. The following example illustrates our approach
for handling non-left-linear PTRSs by applying the same rewrite rule at parallel
positions simultaneously.

Example 23 (Simultaneous Rewriting). Reconsider the PTRS S2 from Ex. 18
with the rules f(x, x)→ {1 : f(a, a)} and a→ {1/2 : b, 1/2 : c} which is iAST, but
not fAST. Our new rewrite relation S2

allows us to reduce several copies of
the same redex simultaneously, so that we get {1 : f(a, a)} i

S2 { 12 : f(b, b), 1
2 :

f(c, c)} i 2
S2
{1/2 : f(a, a), 1/2 : f(a, a)}, i.e., this i

S2-sequence converges with
probability 0 and thus, S2 is not iAST w.r.t. S2

. Note that we simultaneously
reduced both occurrences of a in the first step.

Definition 24 (Simultaneous Rewriting). Let S be a PTRS. A term s
rewrites simultaneously to a multi-distribution µ = {p1 : t1, . . . , pk : tk} (denoted
s S µ) if there is a non-empty set of parallel positions Π, a rule ℓ → {p1 :
r1, . . . , pk : rk} ∈ S, and a substitution σ such that s|π = ℓσ and tj = s[rjσ]π
for every position π ∈ Π and for all 1 ≤ j ≤ k. We call s S µ an innermost
simultaneous rewrite step (denoted s

i

S µ) if all proper subterms of the redex
ℓσ are in normal form w.r.t. S.

Clearly, if the set of positions Π from Def. 24 is a singleton, then the resulting
simultaneous rewrite step is an “ordinary” probabilistic rewrite step, i.e., →S ⊆

S and
i→S ⊆

i

S .

Corollary 25 (From S to →S). If S is fAST (iAST) w.r.t. S , i.e., every
infinite S- (resp.

i

S-) rewrite sequence converges with probability 1, then
S is fAST (iAST). Analogously, if S is fPAST (iPAST) w.r.t. S , i.e., every
infinite S- (resp.

i

S-) rewrite sequence has finite expected derivation length,
then S is fPAST (iPAST).

However, the converse of Cor. 25 does not hold. Ex. 23 shows that
i

S allows
for rewrite sequences that are not possible with

i→S , and the following example
shows the same for S and →S .

Counterexample 26. Consider the PTRS S2 with the three rules:

f(b, b)→ {1 : f(a, a)}
f(c, c)→ {1 : f(a, a)}

a→ {1/2 : b, 1/2 : c}

This PTRS is fAST. But as in Ex. 23, we have {1 : f(a, a)} i

S2
{ 12 : f(b, b), 1

2 :

f(c, c)} i 2
S2
{1/2 : f(a, a), 1/2 : f(a, a)}, i.e., there are rewrite sequences with

i

S2
and thus, also with S2

that converge with probability 0. Hence, S2 is
not iAST or fAST w.r.t. S2

. Again, the same example also shows that fPAST
and fPAST w.r.t. simultaneous rewriting are not equivalent either.

Note that this kind of simultaneous rewriting is different from the “ordinary”
parallelism used for non-probabilistic rewriting, which is typically denoted by
→||. There, one may reduce multiple parallel redexes in a single rewrite step.
Here, we do not only allow reducing multiple redexes, but in addition we “merge”
the corresponding terms in the multi-distributions that result from rewriting
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the different redexes. Because of this merging, we only allow the simultaneous
reduction of equal redexes, whereas “ordinary” parallel rewriting allows the
simultaneous reduction of arbitrary parallel redexes. For example, for S2 from
Ex. 18 we have {1 : f(a, a)} i

S2 { 12 : f(b, b), 1
2 : f(c, c)}, whereas using ordinary

parallel rewriting we would get {1 : f(a, a)} i⇒||S2
{ 14 : f(b, b), 1

4 : f(b, c), 1
4 :

f(c, b), 1
4 : f(c, c)}.

The following theorem shows that indeed, we do not need to require left-
linearity when moving from iAST/iPAST w.r.t. S to fAST/fPAST w.r.t. →S .

Theorem 27 (From iAST/iPAST to fAST/fPAST (2)). If a PTRS S is
non-overlapping and right-linear, then

S is fAST⇐= S is iAST w.r.t. S

S is fPAST⇐= S is iPAST w.r.t. S

Proof Sketch. We use an analogous construction as for the proof of Thm. 17, but
in addition, if we replace a non-innermost rewrite step by an innermost one, then
we check whether in the original rewrite sequence, the corresponding innermost
redex is “inside” the substitution used for the non-innermost rewrite step. In
that case, if this rewrite step applied a non-left-linear rule, then we identify all
other (equal) innermost redexes and use

i

S to rewrite them simultaneously (as
we did for the innermost redex a in Ex. 23). ⊓⊔

Note that Ex. 26 shows that the direction “ =⇒ ” does not hold in Thm. 27.
The following example shows that right-linearity in Thm. 27 cannot be weakened
to the requirement that S is non-duplicating (i.e., that no variable occurs more
often in a term on the right-hand side of a rule than on its left-hand side).

Counterexample 28 (Non-Duplicating Does Not Suffice). Let d(f(a, a)3) abbreviate
d(f(a, a), f(a, a), f(a, a)). Consider the PTRS S5 with the four rules:

f(x, x)→ {1 : g(x, x)}
a→ {1/2 : b, 1/2 : c}

g(b, c)→ {1 : d(f(a, a)3)}
g(c, b)→ {1 : d(f(a, a)3)}

S5 is not fAST (and thus, also not fPAST), since the infinite rewrite sequence
{1 : f(a, a)} ⇒S5 {1 : g(a, a)} ⇒2

S5
{1/4 : g(b, b), 1/4 : g(b, c), 1/4 : g(c, b), 1/4 :

g(c, c)}⇒2
S5
{1/4 : g(b, b), 1/4 : d(f(a, a)3), 1/4 : d(f(a, a)3), 1/4 : g(c, c)} can be seen

as a biased random walk on the number of f(a, a)-subterms that is not AST.
However, for every innermost evaluation with

i→S5
or

i

S5
we have to rewrite

the inner a-symbols first. Afterwards, the f-rule can only be used on redexes
f(t, t) where the resulting term g(t, t) is a normal form. Thus, S5 is iPAST (and
hence, iAST) w.r.t. S5 .

Note that for wAST, the direction of the implication in Cor. 25 is reversed,
since wAST requires that for each start term, there exists an infinite rewrite
sequence that is almost-surely terminating, whereas fAST requires that all infinite
rewrite sequences are almost-surely terminating. Thus, if there exists an infinite
⇒S -rewrite sequence that converges with probability 1 (showing that S is wAST),
then this is also a valid S -rewrite sequence that converges with probability 1
(showing that S is wAST w.r.t. S).
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Corollary 29 (From →S to S for wAST/wPAST). If S is wAST
(wPAST), then S is wAST (wPAST) w.r.t. S .

One may wonder whether simultaneous rewriting could also be used to improve
Thm. 20 by removing the requirement of left-linearity, but Ex. 30 shows this is
not possible.

Counterexample 30. Consider the non-left-linear PTRS S6 with the two rules:

g→ {3/4 : d(g, g), 1/4 : ⊥} d(x, x)→ {1 : x}

This PTRS is not fAST (and thus, also not fPAST), as we have {1 : g} ⇒S6

{3/4 : d(g, g), 1/4 : ⊥}, which corresponds to a random walk biased towards
non-termination if we never use the d-rule (since 3

4 > 1
2 ). However, if we always

use the d-rule directly after the g-rule, then we essentially end up with a PTRS
whose only rule is g→ {3/4 : c(g), 1/4 : ⊥}, which corresponds to flipping a biased
coin until heads comes up. This proves that S6 is wPAST and hence, also wAST.
As S6 is non-overlapping, right-linear, and non-erasing, this shows that a variant
of Thm. 20 without the requirement of left-linearity needs more than just moving
to simultaneous rewriting.

5.2 Weakening Right-Linearity to Spareness

To improve our results further, we introduce the notion of spareness. The idea
of spareness is to require that variables which occur non-linear in right-hand
sides may only be instantiated by normal forms. We already used spareness
for non-probabilistic TRSs in [17] to find classes of TRSs where innermost and
full runtime complexity coincide. For a PTRS S, we decompose its signature
Σ = ΣC ⊎ ΣD such that f ∈ ΣD iff f = root(ℓ) for some rule ℓ → µ ∈ S. The
symbols in ΣC and ΣD are called constructors and defined symbols, respectively.

Definition 31 (Spareness). Let ℓ → µ ∈ S. A rewrite step ℓσ →S µσ is
spare if σ(x) is in normal form w.r.t. S for every x ∈ V that occurs more than
once in some r ∈ Supp(µ). A ⇒S-sequence is spare if each of its →S-steps is
spare. S is spare if each ⇒S-sequence that starts with {1 : t} for a basic term t
is spare. A term t ∈ T (Σ,V) is basic if t = f(t1, . . . , tn) such that f ∈ ΣD and
ti ∈ T (ΣC ,V) for all 1 ≤ i ≤ n.

Example 32. Consider the PTRS S7 with the two rules:

g→ {3/4 : d(⊥), 1/4 : g} d(x)→ {1 : c(x, x)}

It is similar to the PTRS S1 from Ex. 16, but we exchanged the symbols g and
⊥ in the right-hand side of the g-rule. This PTRS is orthogonal but duplicating
due to the d-rule. However, in any rewrite sequence that starts with {1 : t} for
a basic term t we can only duplicate the constructor symbol ⊥ but no defined
symbol. Hence, S7 is spare.
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In general, it is undecidable whether a PTRS is spare, since spareness is
already undecidable for non-probabilistic TRSs. However, there exist computable
sufficient conditions for spareness, see [17].

If a PTRS is spare, and we start with a basic term, then we will only duplicate
normal forms with our duplicating rules. This means that the duplicating rules
do not influence the (expected) runtime and, more importantly for AST, the
probability of termination. As in [17], which analyzed runtime complexity, we
have to restrict ourselves to rewrite sequences that start with basic terms. So
we only consider start terms where a single algorithm is applied to data, i.e.,
we may not have any nested defined symbols in our start terms. This leads to
the following theorem, where “on basic terms” means that one only considers
rewrite sequences that start with {1 : t} for a basic term t. It can be proved by
an analogous limit construction as in the proof of Thm. 17.

Theorem 33 (From iAST/iPAST to fAST/fPAST (3)). If a PTRS S is
orthogonal and spare, then

S is fAST on basic terms⇐⇒ S is iAST on basic terms

S is fPAST on basic terms⇐⇒ S is iPAST on basic terms

While iAST on basic terms is the same as iAST in general, the requirement
of basic start terms is real restriction for fAST, i.e., there exists PTRSs that are
fAST on basic terms, but not fAST in general.

Counterexample 34. Consider the PTRS S8 with the two rules:

g→ {3/4 : s(g), 1/4 : ⊥} f(s(x))→ {1 : c(f(x), f(x))}

This PTRS behaves similarly to S1 (see Ex. 16). It is not fAST (and thus, also
not fPAST), as we have {1 : f(g)} ⇒2

S8
{3/4 : c(f(g), f(g)), 1/4 : f(⊥)}, which

corresponds to a random walk biased towards non-termination (since 3
4 > 1

2 ).
However, the only basic terms for this PTRS are g and f(t) for terms t that

do not contain g or f. A sequence starting with g corresponds to flipping a biased
coin and a sequence starting with f(t) will clearly terminate. Hence, S8 is fAST
(and even fPAST) on basic terms. Furthermore, note that S8 is iPAST (and thus,
also iAST) analogous to S1. This shows that Thm. 33 cannot be extended to
fAST or fPAST in general.

One may wonder whether Thm. 33 can nevertheless be used in order to prove
fAST of a PTRS S on all terms by using a suitable transformation from S to
another PTRS S ′ such that S is fAST on all terms iff S ′ is fAST on basic terms.

There is an analogous difference in the complexity analysis of non-probabilistic
term rewrite systems. There, the concept of runtime complexity is restricted to
rewrite sequences that start with a basic term, whereas the concept of derivational
complexity allows arbitrary start terms. In [19], a transformation was presented
that extends any (non-probabilistic) TRS R by so-called generator rules G(R)
such that the derivational complexity of R is the same as the runtime complexity
of R∪ G(R), where G(R) are considered to be relative rules whose rewrite steps
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do not “count” for the complexity. This transformation can indeed be reused to
move from fAST on basic terms to fAST in general.

Lemma 35. A PTRS S is fAST iff S ∪ G(S) is fAST on basic terms.

For every defined symbol f , the idea of the transformation is to introduce
a new constructor symbol consf and for every function symbol f it introduces
a new defined symbol encf . As an example for S8 from Ex. 32, then instead
of starting with the non-basic term c(g, f(g)), we start with the basic term
encc(consg, consf(consg)), its so-called basic variant. The new defined symbol encc
is used to first build the term c(g, f(g)) at the beginning of the rewrite sequence,
i.e., it converts all occurrences of consf for f ∈ ΣD back into the defined symbol
f , and then we can proceed as if we started with the term c(g, f(g)) directly. For
this conversion, we need another new defined symbol argenc that iterates through
the term and replaces all new constructors consf by the original defined symbol
f . Thus, we define the generator rules as in [19] (just with trivial probabilities in
the right-hand sides ℓ→ {1 : r}), since we do not need any probabilities during
this initial construction of the original start term.

Definition 36 (Generator Rules G(S)). Let S be a PTRS over the signature
Σ. Its generator rules G(S) are the following set of rules

{encf (x1, . . . , xn) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ Σ}
∪ {argenc(consf (x1, . . . , xn)) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ ΣD}
∪ {argenc(f(x1, . . . , xn)) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ ΣC},

where x1, . . . , xn are pairwise different variables and where the function symbols
argenc, consf , and encf are fresh (i.e., they do not occur in S). Moreover, we
define ΣG(S) = {encf | f ∈ Σ} ∪ {argenc} ∪ {consf | f ∈ ΣD}.

Example 37. For the PTRS S8 from Ex. 34, we obtain the following generator
rules G(S8):

encg → {1 : g}
encf(x1)→ {1 : f(argenc(x1))}

encc(x1, x2)→ {1 : c(argenc(x1), argenc(x2))}
encs(x1)→ {1 : s(argenc(x1))}

enc⊥ → {1 : ⊥}
argenc(consg)→ {1 : g}

argenc(consf(x1))→ {1 : f(argenc(x1))}
argenc(c(x1, x2))→ {1 : c(argenc(x1), argenc(x2))}

argenc(s(x1))→ {1 : s(argenc(x1))}
argenc(⊥)→ {1 : ⊥}

As mentioned, using the symbols consf and encf , as in [19] every term over
Σ can be transformed into a basic term over Σ ∪ΣG(S).

However, even if S is spare, the PTRS S ∪G(S) is not guaranteed to be spare,
although the generator rules themselves are right-linear. The problem is that
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the generator rules include a rule like encf(x1) → {1 : f(argenc(x1))} where a
defined symbol argenc occurs below the duplicating symbol f on the right-hand
side. Indeed, while S8 is spare, S8 ∪ G(S8) is not. For example, when starting
with the basic term encf(s(consg)), we have

{1 : encf(s(consg))} ⇒2
G(S8)

{1 : f(s(argenc(consg)))}
⇒S8

{1 : c(f(argenc(consg)), f(argenc(consg))),

where the last step is not spare. In general, S ∪ G(S) is guaranteed to be spare
if S is right-linear. So we could modify Thm. 33 into a theorem which states
that S is fAST on all terms iff S ∪ G(S) is iAST on basic terms (and thus, on all
terms) for orthogonal and right-linear PTRSs S. However, this theorem would
be subsumed by Thm. 17, where we already showed the equivalence of fAST and
iAST if S is orthogonal and right-linear. Indeed, our goal in Thm. 33 was to
find a weaker requirement than right-linearity. Hence, such a transformational
approach to move from fAST on all start terms to fAST on basic terms does not
seem viable for Thm. 33.

Finally, we can also combine our results on simultaneous rewriting and
spareness to relax both left- and right-linearity in case of basic start terms. The
proof for the following theorem combines the proofs for Thm. 27 and Thm. 33.

Theorem 38 (From iAST/iPAST to fAST/fPAST (4)). If S is non-
overlapping and spare, then

S is fAST on basic terms⇐= S is iAST w.r.t. S on basic terms

S is fPAST on basic terms⇐= S is iPAST w.r.t. S on basic terms

6 Conclusion and Evaluation

In this paper, we presented numerous new results on the relationship between
full and restricted forms of AST, including several criteria for PTRSs such that
innermost AST implies full AST. All of our results also hold for PAST, and all
of our criteria are suitable for automation (for spareness, there exist sufficient
conditions that can be checked automatically).

We implemented our new criteria in our termination prover AProVE [21]. For
every PTRS, one can indicate whether one wants to analyze its termination
behavior for all start terms or only for basic start terms. Up to now, AProVE’s
main technique for termination analysis of PTRSs was the probabilistic DP
framework from [29, 32] which however can only prove iAST. If one wants to
analyze fAST for a PTRS S, then AProVE now first tries to prove that the
conditions of Thm. 33 are satisfied if one is restricted to basic start terms, or that
the conditions of Thm. 17 hold if one wants to consider arbitrary start terms. If
this succeeds, then we can use the full probabilistic DP framework in order to
prove iAST, which then implies fAST. Otherwise, we try to prove all conditions
of Thm. 38 or Thm. 27, respectively. If this succeeds, then we can use most of
the processors from the probabilistic DP framework to prove iAST, which again
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implies fAST. If none of these theorems can be applied, then AProVE tries to
prove fAST using a direct application of polynomial orderings [29]. Note that
for AST w.r.t. basic start terms, Thm. 33 generalizes Thm. 17 and Thm. 38
generalizes Thm. 27, since right-linearity implies spareness.

For our evaluation, we compare the old AProVE without any of the new
theorems (which only uses direct applications of polynomial orderings to prove
fAST), to variants of AProVE where we activated each of the theorems individually,
and finally to the new AProVE strategy explained above. The following diagram
shows the theoretical subsumptions of each of these strategies for basic start
terms, where an arrow from strategy A to strategy B means that B is strictly
better than A.

old AProVE

Thm. 17

Thm. 27

Thm. 33

Thm. 38

new AProVE

We used the benchmark set of 100 PTRSs from [32], and extended it by
15 new PTRSs that contain all the examples presented in this paper and some
additional examples which illustrate the power of each strategy. AProVE can
prove iAST for 93 of these 118 PTRSs. The following table shows for how many
of these 93 PTRSs the respective strategy allows us to conclude fAST for basic
start terms from AProVE’s proof of iAST.

old AProVE Thm. 17 Thm. 27 Thm. 33 Thm. 38 new AProVE

36 48 44 58 56 61

From the 61 examples that we can solve by using both Thm. 33 and Thm. 38
in “new AProVE”, 5 examples (that are all right-linear) can only be solved by
Thm. 33, 3 examples (where one is right-linear and the others only spare) can only
be solved by Thm. 38, and 53 examples can be solved by both. If one considers arbitrary
start terms, then the new AProVE can conclude fAST (using only Thm. 17 and
Thm. 27) for 49 examples.

Currently, we only use the switch from full to innermost rewriting as a
preprocessing step before applying the DP framework. As future work, we want
to develop a processor within the DP framework that can perform this switch in
a modular way. Then, the criteria of our theorems do not have to be required
for the whole PTRS anymore, but just for specific sub-problems within the
termination proof. This, however, requires developing a DP framework for fAST
directly, which we will investigate in future work.

For details on our experiments, our collection of examples, and for instructions
on how to run our implementation in AProVE via its web interface or locally, we
refer to:

https://aprove-developers.github.io/InnermostToFullAST/

In addition, an artifact is available at [31].

Acknowledgements. We thank Stefan Dollase for pointing us to [19].
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