
Dimension-Minimality and Primality of Counter
Nets⋆⋆⋆

Abstract. A k-Counter Net (k-CN) is a finite-state automaton equipped
with k integer counters that are not allowed to become negative, but
do not have explicit zero tests. This language-recognition model can be
thought of as labelled vector addition systems with states, some of which
are accepting. Certain decision problems for k-CNs become easier, or in-
deed decidable, when the dimension k is small. Yet, little is known about
the effect that the dimension k has on the class of languages recognised
by k-CNs. Specifically, it would be useful if we could simplify algorithmic
reasoning by reducing the dimension of a given CN.
To this end, we introduce the notion of dimension-primality for k-CN,
whereby a k-CN is prime if it recognises a language that cannot be de-
composed into a finite intersection of languages recognised by d-CNs, for
some d < k. We show that primality is undecidable. We also study two
related notions: dimension-minimality (where we seek a single language-
equivalent d-CN of lower dimension) and language regularity. Addition-
ally, we explore the trade-offs in expressiveness between dimension and
non-determinism for CN.

1 Introduction

A k-dimensional Counter Net (k-CN) is a finite-state automaton equipped with
k integer counters that are not allowed to become negative, but do not have
explicit zero tests (see Fig. 1a for an example). This language-recognition model
can be thought of as an alphabet-labelled Vector Addition System with States
(VASS), some of whose states are accepting [7]. A k-CN A over alphabet Σ

⋆ S. Almagor was supported by the ISRAEL SCIENCE FOUNDATION (grant No.
989/22), G. Avni was supported by the ISRAEL SCIENCE FOUNDATION (grant
No. 1679/21), H. Sinclair-Banks was supported by EPSRC Standard Research Stu-
dentship (DTP), grant number EP/T5179X/1.

⋆⋆ The full version can be found on https://arxiv.org/abs/2307.14492

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 229–249, 2024.
https://doi.org/10.1007/978-3-031-57231-9_11

Shaull Almagor1(B) , Guy Avni2(B) , Henry Sinclair-Banks3(B) ,

and Asaf Yeshurun1(B)

1 Technion, Haifa, Israel
shaull@technion.ac.il, asafyeshurun@campus.technion.ac.il

2 Department of Computer Science, University of Haifa, Haifa, Israel
gavni@cs.haifa.ac.il

3 Centre for Discrete Mathematics and its Applications (DIMAP) & Department of
Computer Science, University of Warwick, Coventry, UK

h.sinclair-banks@warwick.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_11&domain=pdf
http://orcid.org/0000-0001-9021-1175
http://orcid.org/0000-0001-5588-8287
http://orcid.org/0000-0003-1653-4069


230 S. Almagor et al.

accepts a word w ∈ Σ∗ if there is a run of A on w that ends in an accepting
state in which the counters stay non-negative. The language of A is the set L(A)
of words accepted by A.

Counter nets are a natural model of concurrency and are closely related —
and equivalent, in some senses — to labelled Petri Nets. These models have re-
ceived significant attention over the years [6,7,13,14,17,19,27], with specific inter-
est in the one-dimensional case, often referred to as one-counter nets [20,21,1,2].
Unfortunately, most decision problems for k-CNs are notoriously difficult and
are often undecidable [1,2]. In particular, k-CNs subsume VASS and Petri nets,
for which many problems are known to be Ackermann-complete, for example see
the recent breakthrough in the complexity of reachability in VASS [11,25].

In many cases, the complexity of decision problems for VASS, sometimes
with extensions, depends on the dimension, with low dimensions admitting more
tractable solutions. [9,8,10,16]. For example, reachability in dimensions one and
two is NP-complete [18] and PSPACE-complete [4], respectively, when counter
updates are encoded in binary.

A natural question, therefore, is whether we can decrease the dimension of
a given a k-CN whilst maintaining its language, to facilitate reasoning about
it. More generally, the trade-off between expressiveness and the dimension of
Counter Nets is poorly understood. We tackle this question in this work by
introducing two approaches. The first is straightforward dimension-minimality :
given a k-CN, does there exist a d-CN B recognising the same language for some
d < k?

The second approach is primality : given a k-CN, does there exist some d < k
and d-CNs B1, . . . ,Bn such that L(A) =

⋂n
i=1 L(Bi)? That is, we ask whether

the language of A can be decomposed as an intersection of languages recognised
by several lower-dimension CNs. We also consider compositeness, the dual of
primality. Intuitively, in a composite k-CN the usage of the counters can be “split”
across several lower-dimension CNs, allowing for properties (such as universality)
to be checked on each conjunct separately.

Example 1. We illustrate the model and the definition of compositeness. Con-
sider the 2-CN A depicted in Fig. 1a, and consider a word w = am#bn#ck. We
have that A has an accepting run on w iff m ≥ n and m ≥ k. Indeed, if m < n,
the first counter drops below 0 while cycling in the second state and so the run
is “stuck”, and similarly if m < k. It is not hard to show that there is no 1-CN
that recognizes the language of A. However, Fig. 1b shows two 1-CNs B1 and
B2 such that L(B) = L(B1)∩L(B2). Indeed, a word w = am#bn#ck ∈ L(B1) iff
m ≥ n, and w ∈ L(B2) iff m ≥ k.

Note that the decomposition in Example 1 is obtained by “splitting” the
counters between the two 1-CNs. This raises the question of whether such split-
tings are always possible. As we show in Proposition 1, for deterministic k-CNs
(k-DCNs) this is indeed the case. In general, however, it is not hard to find
examples where a k-CN cannot simply be split to an intersection by projecting
on each counter. This however, does not rule out that other decompositions are
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#, (0, 0) #, (0, 0)

a, (1, 1) b, (−1, 0) c, (0,−1)

(a) A composite 2-CN.

#, (0) #, (0)

a, (1) b, (−1) c, (0)

#, (0) #, (0)

a, (1) b, (0) c, (−1)

(b) Two 1-CNs showing compositeness of the 2-CN.

Fig. 1: A composite 2-CN whose language is {am#bn#ck | m ≥ n ∧m ≥ k} and
its decomposition into two 1-CNs recognising the languages {am#bn#ck | m ≥
n} and {am#bn#ck | m ≥ k}.

possible. Our main result, Theorem 1, gives an example of a prime 2-CN. That
is, a 2-CN whose language cannot be expressed as an intersection of 1-CNs.

The notion of primality has been studied for regular languages in [24,23,22],
the exact complexity of deciding primality is still open. There, an automaton is
composite if it can be written as an intersection of finite automata with fewer
states. In this work we introduce primality for CNs. We focus on dimension as a
measure of size, a notion which does not exist for regular languages. Thus, unlike
regular languages, the differences between prime and composite CNs is not only
in succinctness, but actually in expressiveness, as we later demonstrate.

We parameterise primality and compositeness by the dimension d and the
number n of lower-dimension factors. Thus, a k-CN A is (d, n)-composite if it can
be written as the intersection above. Then, A is composite if it is (d, n)-composite
for some d < k and n ∈ N. Under this view, dimension-minimality is a special
case of compositeness, namely A is dimension-minimal if it is not (k − 1, 1)-
composite. Another particular problem captured by compositeness is regularity.
Indeed, L(A) is regular if and only if A is (0, 1)-composite, since 0-CNs are just
NFAs. Since regularity is already undecidable for 1-CNs [2,28], it follows that
deciding whether a k-CN is (d, n)-composite is undecidable. Moreover, it follows
that both primality and dimension-minimality are undecidable for 1-CNs.

The undecidability of the above problems is not surprising, as the huge dif-
ference in expressive power between 1-CNs and regular languages is well un-
derstood. In contrast, even the expressive power difference between 1-CNs and
2-CNs is poorly understood, let alone what effect the dimension has on the
expressive power beyond regular languages. Already, 1-VASS and 2-VASS are
known to have flat equivalents with respect to reachability [26,4], but the com-
plexity differs greatly.

Our goal in this work is to shed light on these differences. In Section 4, we
give a concrete example of a prime 2-CN, which turns out to be technically
challenging. This example is the heart of our technical contribution, and we em-
phasise that we do not currently have a proved example of a prime 3-CN, let



alone for general k-CN (although we conjecture a candidate for such languages).
We consider this an interesting open problem, as it highlights the type of pump-
ing machinery that is currently missing from the VASS/CN reasoning arsenal.
The technical intricacy in proving our example suggests that generalising it is
highly nontrivial. Indeed, proving this claim would require intricate pumping
arguments, which are notoriously difficult even for low-dimensional CNs [9].

Using our example, we obtain in Section 5, the undecidability of primality and
of dimension-minimality for 2-CNs. To complement this, we show in Theorem 3,
that regularity of k-DCNs is decidable. In Section 6, we explore trade-offs in
expressiveness of CNs with increasing dimension and with nondeterminism. In
particular, we show that there is a strict hierarchy of expressiveness with respect
to the dimension. We conclude with a discussion in Section 7. For brevity, some
proofs only appear in the full version of the paper.

2 Preliminaries

We denote the non-negative integers {0, 1, . . .} by N. We write vectors in bold,
e.g., e ∈ Zk, and e[i] is the i-th coordinate. We use [k] = {1, . . . , k} for k ≥ 1.
We use Σ∗ to denote the set of all words over an alphabet Σ, and |w| is the
length of w ∈ Σ∗.

A k-dimensional Counter Net (k-CN) A is a quintuple A = ⟨Σ,Q,Q0, δ, F ⟩
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, δ ⊆ Q × Σ × Zk × Q is a set of transitions, and F ⊆ Q are the
accepting states. A k-CN is deterministic, denoted k-DCN, if |Q0| = 1, and for
every p ∈ Q and σ ∈ Σ there is at most one transition of the form (p, σ,v, q) ∈ δ.
For a transition (p, σ,v, q) ∈ δ, we refer to v ∈ Zk as its effect.

An N-configuration (resp. Z-configuration) of a k-CN A is a pair (q,v) ∈
Q × Nk (resp. (q,v) ∈ Q × Zk) representing the current state and values of
the counters. A transition (p, σ, e, q) ∈ δ is valid from N-configuration (q,v) if
v+e ∈ Nk, i.e., if all k counters remain non-negative after the transition. A Z-run
ρ of A on w is a sequence of Z-configurations ρ = (q0,v0), (q1,v1), . . . , (qn,vn)
such that (qi, σi,vi+1−vi, qi+1) ∈ δ for every 0 ≤ i ≤ n−1, we may also say that
ρ reads w = σ0σ1 · · ·σn. An N-run is a Z-run that visits only N-configurations.
Note that all the transitions in an N-run are valid. We may omit N or Z from the
run when it does not matter. For a run ρ = (q0,v0), (q1,v1), . . . , (qn,vn) of A,
we denote (q0,v0)

ρ→ (qn,vn). We define the effect of ρ to be eff(ρ) = vn − v0.
An N-run ρ is accepting if q0 ∈ Q0, v0 = 0, and qn ∈ F . We say that

A accepts w if there is an accepting N-run of A on w. The language of A is
L(A) = {w ∈ Σ∗ | A accepts w}. We say that A is unambiguous if it has at most
one accepting run on any given word. Otherwise we say that it is ambiguous.

An infix π = (qk,vk), (qk+1,vk+1), . . . , (qk+n,vk+n) of a run ρ is a cycle if
qk = qk+n and is a simple cycle if it does not contain a cycle as a proper infix.
When discussing an infix π of a 1-CN – we write that π is > 0, ≥ 0, or < 0 if
eff(π) > 0, eff(π) ≥ 0, or eff(π) < 0, respectively.

232 S. Almagor et al.



3 Primality and Compositeness

We begin by presenting our main definitions, followed by some introductory
properties.

Definition 1 (Compositeness, Primality, and Dimension-Minimality).
Consider a k-CN A, and let d, n ∈ N. We say that A is (d, n)-composite if there
exist d-CNs B1, . . . ,Bn such that L(A) =

⋂n
i=1 L(Bi). If A is (d, n)-composite

for some d < k and n ∈ N, we say A is composite. Otherwise, A is prime. If A
is not (k− 1, 1)-composite, we say that A is dimension-minimal. We also extend
the definition of primality to languages, and say that a language L is prime if
there is an integer d > 0 such that L = L(A) for some d-CN A, but there are
no (d− 1)-CNs B1, . . .Bn such that L =

⋂n
i=1 L(Bi).

Remark 1. Note that the special case where A is (0, n)-composite coincides with
the regularity of L(A), and hence also with being (0, 1)-composite.

Observe that in Fig. 1 we in fact show a composite 2-DCN. We now show that
every k-DCN is (1, k)-composite, by projecting to each of the counters separately.
In particular, a k-DCN is prime only when k = 1 and it recognises a non-regular
language, or when k = 0. Formally, consider a k-DCN D = ⟨Σ,Q,Q0, δ, F ⟩ and
let 1 ≤ i ≤ k. We define the i-projection to be the 1-DCN D|i = ⟨Σ,Q,Q0, δ|i, F ⟩
where δ|i = {(p, σ,v[i], q) | (p, σ,v, q) ∈ δ}.

Proposition 1. Every k-DCN D is (1, k)-composite, and L(D) =
⋂k

i=1 L(D|i).

Proof. Let w ∈ L(D) and let ρ be the accepting run of D on w, then the projec-
tion of ρ on counter i induces an accepting run of D|i on w, thus w ∈

⋂k
i=1 L(D|i).

Note that this direction does not use the determinism of D.
Conversely, let w ∈

⋂k
i=1 L(D|i), then each D|i has an accepting run ρi on

w. Since the structure of all the D|i is identical to that of D, all the runs ρi have
identical state sequences, and therefore are also a Z-run of D on w. Moreover, due
to this being a single N-run in each D|i, it follows that all counter values remain
non-negative in the corresponding run of D on w. Hence, this is an accepting
N-run of D on w, so w ∈ L(D). ⊓⊔

Remark 2 (Unambiguous Counter Nets are Composite). The proof of Proposi-
tion 1 applies also to structurally unambiguous CNs, i.e. CNs whose underlying
automaton, disregarding the counters, is unambiguous. Thus, every unambigu-
ous CN is (1, k)-composite.

Consider k-CNs B1, . . . ,Bn. By taking their product, we can construct a k ·n-
CN A such that L(A) =

⋂n
i=1 L(Bi). In particular, if each Bi is a 1-DCN, then

A is an n-DCN. Combining this with Proposition 1, we can deduce the following
(proof can be found in the full version).

Proposition 2. A k-DCN is dimension-minimal if and only if it is not (1, k−1)-
composite.
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4 A Prime Two-Counter Net

In this section we present our main technical contribution, namely an example
of a prime 2-CN. The technical difficulty arises from the need to prove that
this example cannot be decomposed as an intersection of nondeterministic 1-
CNs. Since intersection has a “universal flavour”, and nondeterminism has an
“existential flavour”, we have a sort of “quantifier alternation” which is often a
source of difficulty.

The importance of this example is threefold. First, it enables us to show that
primality is undecidable in Section 5. Second, it offers intuition on what makes
a language prime. Third, we suspect that the techniques developed here will
be useful in other settings when reasoning about nondeterministic automata,
perhaps with counters.

We start by presenting the prime 2-CN, followed by an overview of the proof,
before delving into the details.

Example 2. Consider the 2-CN P over alphabet Σ = {a, b, c,#} depicted in Fig. 2.
Intuitively, P starts by reading segments of the form am#, where in each seg-
ment it nondeterministically chooses whether to increase the first or second
counter by m. Then, it reads bmbcmc and accepts if the value of the first and
second counter is at least mb and mc, respectively. Thus, P accepts a word if its
am# segments can be partitioned into two sets I and I so that the combined
lengths of the segments in I (resp. I) is at least the length of the b segment
(resp. c segment). For example, a10#a20#a15#b15c30 ∈ L(P), since segments
1 and 2 have length 30, matching c30 and segment 3 matches b15. However,
a10#a20#a15#b21c21 /∈ L(P), since in any partition of {10, 20, 15}, one set will
have sum lower than 21. More precisely, we have the following:

L(P) = {am1#am2# · · ·#amt#bmbcmc | ∃I ⊆ [t] s.t.
∑
i∈I

mi ≥ mb∧
∑
i/∈I

mi ≥ mc}

#,(0,0)#,(0,0)

a,(1,0)
#,(0,0)

a,(0,1)
#,(0,0)

#,(0,0)

#,(0,0)

b,(−1,0) c,(0,−1)

c,(0,−1)

Fig. 2: The prime 2-CN P for Example 2 and Theorem 1.

Theorem 1. P is prime.

The high-level intuition behind Theorem 1 is that any 1-CN can either guess a
subset of segments that covers mb or mc, but not both, and in order to make sure
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the choices between two 1-CNs form a partition, we need to fix the partition in
advance. This is only possible if the number of segments is a priori fixed, which
is not true (c.f., Remark 3). This intuition, however, is far from a proof.

4.1 Overview of the Proof of Theorem 1

Assume by way of contradiction that P is not a prime 2-CN. Thus, there exist
1-CNs V1, . . .Vk such that L(P) =

⋂
1≤j≤k L(Vj). Throughout the proof, we

focus on words of the form am1#am2# · · ·#amk+1#bmbcmc for positive integers
{mi}k+1

i=1 ,mb,mc. We index the ami segments of these words, so ami is the i-th
segment. Note that we focus on words with k + 1 many a segments, one more
than the number of Vj factors in the intersection. It is useful to think about each
segment as “paying” for either b or c. Then, a word is accepted if there is a way
to choose for each segment whether it pays for b or c, such that there is sufficient
budget for both.

Let i ∈ [k + 1] and j ∈ [k]. We say that the i-th segment is bad in Vj

if, intuitively, we can pump the length mi of segment i whilst pumping both
mb and mc to unbounded lengths, such that the resulting words are accepted
by Vj (see Definition 2 for the formal definition). For example, consider the
word a10#a10#a10#b20c10 ∈ L(P). If the second segment is bad for Vj then
there exist x, y, z > 0 such that for every t, tb, tc ∈ N it holds that the word
a10#a10+tx#a10#b20+tbyc10+tcz is in L(Vj). Observe that such behaviour is un-
desirable, since for large enough t, tb, tc, the resulting word is not in L(P). Note,
however, that the existence of such a bad segment is not a contradiction by itself,
since the resulting pumped words might not be accepted by some other 1-CN
Vj′ .

In order to reach a contradiction, we need to show the existence of a segment i
that is bad for every Vj . Moreover, we must also show that arbitrarily increasing
mi,mb,mc can be simultaneously achieved in all the Vj together (i.e., the above
x, y, z > 0 are the same for all Vj). This would create a contradiction since all
the Vj accept a word that is not in L(P). Our goal is therefore to establish a
robust and precise definition of a “bad” segment, then find a word w comprising
k+ 1 segments where one of the segments is bad for every Vj , and pumping the
words in each segment can be done synchronously.

4.2 Pumping Arguments in One-Counter Nets

In this section we establish some pumping results for 1-CN which will be used
in the proof of Theorem 1. Throughout this section, we consider a 1-CN V =
⟨Σ,Q,Q0, δ, F ⟩.

Our first lemma states the intuitive fact that without > 0 cycles, the counter
value of a run is bounded (proof can be found in the full version).

Lemma 1. Let (q, n) be a configuration of V, let W be the maximal positive
update in V, σ ∈ Σ, and N ∈ N. If an N-run ρ of V on σN from configuration
(q, n) does not traverse any > 0 cycle, then the maximal possible counter value
anywhere along ρ is n+W |Q|.
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The next lemma shows that long-enough runs must contain ≥ 0 cycles.

Lemma 2. Let σ ∈ Σ and (q, n) be an N-configuration of V. Then there exists
N ∈ N such that for all N ′ ≥ N , every N-run of V on σN ′

from (q, n) traverses
a ≥ 0 cycle.

Proof. Let W be the maximal positive transition update in V , we show that
N = |Q|(n+ |Q| ·W ) satisfies the requirements. Assume by way of contradiction
that V can read σN via an N-run ρ = (q0, n0 = n)

ρ→ (qN , nN ) that only traverses
< 0 cycles.

Since ρ visits N + 1 states, then by the Pigeonhole Principle, there exists a
state p ∈ Q that is visited m ≥ (N + 1)/|Q| > N/|Q| many times in ρ.

Consider all the indices 0 ≤ i1 < i2 < . . . < im ≤ N such that p = qi1 = . . . =
qim . Each run segment (qi1 , ni1) → (qi2 , ni2), . . . , (qim−1 , nim−1) → (qim , nim) is
a cycle in ρ, and therefore must have negative effect. Thus ni1 > ni2 > . . . >
nim ≥ 0, so in particular ni1 ≥ nim +m− 1 ≥ 0 (as each cycle has effect at most
−1). Moreover, ni1 < n + |Q| · W since the prefix (q0, n) → (qi1 , ni1) cannot
contain a non-negative cycle. However, since m > N/|Q| = n + |Q| · W and
ni1 ≥ nim +m − 1 ≥ n + |Q| ·W , we get n + |Q| ·W < n + |Q| ·W which is a
contradiction.

⊓⊔

Next, we show that runs with ≥ 0 and > 0 cycles have “pumpable” infixes.

Lemma 3. Let σ ∈ Σ and consider a > 0 (resp. ≥ 0) cycle π = (q0, c0)
σ→

(q1, c1)
σ→ . . . (qn = q0, cn) on σn that induces an N-run. Then, there is a se-

quence of (not necessarily contiguous) indices 0 ≤ i1 ≤ . . . ≤ ik ≤ n such that
qi1

σ→ qi2
σ→ · · · qik is a simple > 0 (resp. ≥ 0) cycle with some effect e > 0 (resp.

e ≥ 0). In addition, this simple cycle is “pumpable” from the first occurrence of
qi1 in π; namely, for all m ∈ N there is a run πm obtained from π by traversing
the cycle m times so that eff(πm) = eff(π) + em.

Proof. We prove the ≥ 0 case, the > 0 case can be proved mutatis mutandis.
We define πm = (q0, c0)

σ→ . . . (qi1 , ci1)
σ→ . . . (qi1 , ci1 + em)

σ→ . . . (qn, cn +
em). The proof is now by induction on the length of π.

The base of the induction is a cyclic N-run of length 2. In this case π =
(q0, c0)

σ→ (q1 = q0, c1) is itself a ≥ 0 simple cycle that is infinitely pumpable
from (q0, c0).

We now assume correctness for length n, and discuss π = (q0, c0)
σ→ (q1, c1)

σ→
. . . (qn = q0, cn) of length n + 1. Let 0 ≤ j1 < j2 ≤ n be indices such that
qj1 = qj2 , for a maximal j1. Note that the cycle τ = (qj1 , cj1)

σ→ . . . (qj2 , cj2)
must be simple. If j1 = 0 and j2 = n, then π itself is a simple ≥ 0 cycle, and the
pumping argument is straightforward. Otherwise τ is nested. We now split into
two cases, based on whether eff(τ) ≥ 0.

1. τ is ≥ 0: then the induction hypothesis applies on τ . We take the guaranteed
constants j1 ≤ i1 ≤ . . . ≤ ik ≤ j2, which apply to π as well.
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2. τ is < 0: then we remove τ from π to obtain π′ = (q0, c0)
σ→ . . . (qj1 , cj1)

σ→
(qj2+1, c

′
j2+1)

σ→ . . . (qn, c
′
n), such that c′i ≥ ci for all j2 + 1 ≤ i ≤ n. The

induction hypothesis applies on π′, so let i1, . . . , ik be the guaranteed con-
stants. Note that i1 ≤ j1, since the cycle removed when obtaining π′ from
π is the last occurrence of a repetition of states in π. We therefore know
that qi1

σ→ qi2
σ→ · · · qik is a simple ≥ 0 cycle in π′ – which applies to π as

well. In addition, it is infinitely pumpable from N-configuration (qi1 , ci1) in
π′ for i1 ≤ j1. Indeed, since π and π′ coincide up to and including (qj1 , cj1)
between π and π′ - this cycle is infinitely pumpable in π as well. ⊓⊔

The simple cycle in Lemma 3 has length k < |Q|. By pumping it |Q|!
k times

we obtain a pumpable cycle of length |Q|!, allowing us to conclude with the
following.

Corollary 1. Let ρ be an N-run of V on σn that traverses a ≥ 0 cycle. For every
m ∈ N, we can construct an N-run ρ′ of V on σn+m|Q|! such that eff(ρ′) ≥ eff(ρ)
by pumping a ≥ 0 simple cycle in ρ.

4.3 Good and Bad Segments

We lift the colour scheme4 of > 0 and ≥ 0 to words and runs as follows. For a
word w = uv and a run ρ, we write e.g., uv to denote that ρ traverses a > 0
cycle when reading u, then a ≥ 0 cycle when reading v. Note that this does not
preclude other cycles, e.g., there could also be negative cycles in the u part, etc.
That is, the colouring is not unique, but represents elements of the run.

Recall our assumption that L(P) =
⋂

1≤j≤k L(Vj), and for all j ∈ [k] denote
Vj = ⟨Σ,Qj , Ij , δj , Fj⟩. Let Qmax = max{|Qj |}kj=1 and denote α = Qmax!. Fur-
ther recall that we focus on words of the form am1#am2# · · ·#amk+1#bmbcmc

for integers {mi}k+1
i=1 ,mb,mc ∈ N, and that we refer to the infix ami as the

i-th segment, for 1 ≤ i ≤ k + 1. We proceed to formally define good and bad
segments.

Definition 2 (Good and Bad Segments). The i-th segment is bad in Vj if
there exist constants {mi}k+1

i=1 ,mb,mc ∈ N such that the following hold.

(a) {mi}k+1
i=1 ,mb,mc are multiples of α, and

(b) there is an accepting N-run ρ of Vj on w = am1#am2# · · ·#amk+1#bmbcmc

that adheres to one of the three forms:
(i) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc ,
(ii) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc , or
(iii) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc .

The i-th segment is good in Vj if it is not bad in Vj.

4 The colours were chosen as accessible for the colourblind. For a greyscale-friendly
version, see the full paper.

Dimension-Minimality and Primality of Counter Nets 237



Lemma 4 formalises the intuition that a bad segment can be pumped simul-
taneously with both the b and c segments, giving rise to a word accepted by Vj

but rejected by P.
Intuitively, Forms (ii) and (iii) indicate that all segments are bad. Indeed,

the i-th segment has a ≥ 0 cycle, so it can be pumped safely, and in Form (ii)
both b and c can be pumped using ≥ 0 cycles. Whereas in Form (iii) we can
pump b using a > 0 cycle, and can use it to compensate for pumping c, even if
the latter requires iterating a negative cycle.

Form (i) is the interesting case, where we use a > 0 cycle in the i-th segment
to compensate for pumping both b and c. The requirement that all segments up
to the i-th are ≥ 0 is at the core of our proof and is explained in Section 4.4.

Lemma 4. Suppose the l-th segment is bad in Vj, then there exist x, y, z ∈ N,
that are multiples of α, such that for every n ∈ N the following word w is accepted
by Vj.

wn = am1#am2# · · ·#aml−1#aml+xn#aml+1# · · ·#amk+1#bmb+yncmc+zn

Proof. We can choose z = α, then take y to be large enough so that Form (iii)
runs can compensate for negative cycles in cz using > 0 cycles in by, whilst not
decreasing the counters in Form (ii) runs. We can indeed find such a y ∈ N that
is a multiple of α, since α is divisible by all lengths of simple cycles. Finally, we
choose x so that Form (i) runs can compensate for cz and by using > 0 cycles
on ax in the l-th segment, again whilst not decreasing the counters in Forms (ii)
and (iii). ⊓⊔

Recall that our goal is to show that there is a segment l ∈ [k+1] that is bad
in every Vj , for j ∈ [k]. In Lemma 5, We show that each Vj has at most one
good segment. Therefore, there are at most k good segments in total, leaving at
least one segment that is bad in every Vj , as desired.

Lemma 5. Let j ∈ [k] and 0 ≤ r < s ≤ k + 1. Then the r-th or s-th segment is
bad in Vj.

Proof. Since j is fixed, denote Vj = ⟨Σ,Q,Q0, δ, F ⟩. We inductively define con-
stants {ni}k+1

i=1 , nb, nc ∈ N as follows. Suppose that n1 is a large-enough multiple
of α so that Lemma 2 guarantees a ≥ 0 cycle in any accepting run of Vj on an1

from some (q0, 0) with q0 ∈ Q0. Now, assume that we have defined n1, . . . nl−1,
and consider the word u = an1#an2# · · ·#anl−1#. Define n = |u| · W where
W is the maximal update of any transition of Vj . Since u consists of n

W let-
ters, n + 1 is greater than any counter value that can be observed in any run
of Vj on u. We define nl to be a multiple of α large enough so that Lemma 2
guarantees a ≥ 0 cycle when reading anl from any configuration of the form
{(q, n′) | q ∈ Q, n′ ≤ n + 1}. We set nb = nc = α, the choice of nb, nc is
somewhat arbitrary. Finally, we set w = an1# · · ·#ank+1#bnbcnc .

Now, for every x ∈ N, we obtain from w a word wx by pumping xα many
a’s in the r-th and s-th segments and pumping xα many b’s and c’s in their
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segments. That is, let n′
i = ni + xα for i ∈ {r, s} and n′

i = ni for i /∈ {r, s},
and let n′

b = nb + xα and n′
c = nc + xα, then wx = an

′
1# · · ·#an

′
k+1#bn

′
bcn

′
c .

Observe that wx ∈ L(P). Indeed, since nr ≥ nb = α and ns ≥ nc = α we have
that nr + xα ≥ nb + xα and ns + xα ≥ nc + xα, so the r-th and s-th segments
can already pay for the b’s and c’s, respectively. In particular, wx ∈ L(Vj) via
some accepting N-run ρx.

We choose a particular value of x, as follows. Consider x and suppose some
accepting N-run ρx as above does not traverse a > 0 cycle neither in r-th nor s-th
segment. By Lemma 1, the maximal possible counter value of ρx after reading

an1# · · ·#anr+xα# · · ·#ans+xα# · · ·#ank+1#

is Mb = (k + 1 +
∑

z∈[k+1]\{r,s} nz) · W + 2|Q| · W . Crucially, this value does
not depend on x. Further, if there is no > 0 cycle in the segment of b’s as
well, again the maximal counter value of ρ up to the c segment is bounded by
Mc = (k + 2 +

∑
z∈[k+1]\{r,s} nz) ·W + 3|Q| ·W , that is independent of x and

Mb. By Lemma 2, we can now choose x large enough to satisfy that for every
accepting N-run ρx on wx:

1. If ρx does not traverse any > 0 cycle in the r-th or s-th segments, then ρx
has a ≥ 0 cycle reading b(nb+xα) from any configuration in {(q,M ′) | q ∈
Q, M ′ ≤ Mb}.

2. If ρx does not traverse any > 0 cycle in the r-th or s-th segment, nor in the
b segment, then ρx has a ≥ 0 cycle reading c(nc+xα) from any configuration
in {(q,M ′)|q ∈ Q, M ′ ≤ Mc}.

Having fixed x, we claim that for the constants of wx, one of the r-th or s-th
segment is bad in Vj . By construction, Lemma 2 guarantees that ρx has ≥ 0
cycles in segments 1, . . . r − 1. If ρx has a > 0 cycle in segment r, then ρx is of
Form (i):

an1#an2# · · ·#anr−1#anr+xα# · · ·#ans+xα# · · ·#ank+1#bnb+xαcnc+xα

and so the r-th segment must be bad in Vj .
Otherwise, if ρx does not have a > 0 cycle in the r-th segment, then the con-

struction in Lemma 2 guarantees ≥ 0 cycles in segments indexed r, r+1, . . . , s−1.
Indeed, for the r-th segment, we are guaranteed a ≥ 0 cycle reading anr , all the
more for anr+xα. As for segments indexed r + 1, . . . s− 1, if ρx does not have a
> 0 cycle in the r-th segment, then the maximal effect of segment r is |Q| ·W .
However, nr+1 was constructed to guarantee a ≥ 0 cycle even in case the effect
of segment r is Wnr ≥ Wα ≥ W |Q|.

If there is a > 0 cycle in segment s, then ρx is again of Form (i):

an1#an2# · · ·#ans−1#ans+xα#ans+1# · · ·#ank+1#bnb+xαcmc+xα

and so the s-th segment must be bad in Vj .
Otherwise, using the same arguments as for the r-th segment, we have that

segments indexed s + 1, . . . , k + 1 each contain a ≥ 0 cycle. In this case we are
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left with the b and c segments. The choice of x guarantees a ≥ 0 cycle in the b
segment. If ρx traverses a > 0 cycle in the b segment, then wx is of Form (iii).

an1#an2# · · ·#ank+1#bnb+xαcnc+xα

Finally, if there are no > 0 cycles in the b segment, then the choice of x again
guarantees a ≥ 0 cycle in the c segment, so wx is of Form (ii).

an1#an2# · · ·#ank+1#bnb+xαcnc+xα

In the two latter cases, both the r-th and the s-th segments are bad in Vj . ⊓⊔

4.4 Proof of Theorem 1

Given Lemma 5, we now know that each Vj has at most one good segment.
Therefore, all 1-CNs V1, . . . ,Vk together have at most k good segments. Recall
that the words we focus on have k+1 segments, and therefore there is at least one
segment, say the l-th segment, that is bad in every Vj . Note, however, that this
segment may correspond to different constants in each Vj . That is, there exists
constants {mj

i ,m
j
b,m

j
c | i ∈ [k + 1], j ∈ [k]} witnessing that the l-th segment is

bad for each Vj . We group the Vj according to the form of their accepting runs
ρj (see Definition 2):

(i) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c ,

(ii) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c , or

(iii) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

We now find constants resulting in a single word for which the l-th segment is
bad in every Vj . First, for i ∈ [k+1]\{l}, we define Mi = max{mj

i | j ∈ [k]}, note
that these values are still multiples of α. Similarly, we define Mc = max{mj

c |
j ∈ [k]}. It remains to fix new constants L and B, which we do in phases in the
following. The resulting word is then

w = aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
Most steps in the analysis below are based on Lemma 3 and Corollary 1. We

first, partially, handle Form (iii) runs. For such Vj , there is an accepting N-run
ρj on

am
j
1# · · ·#am

j
l−1#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c

By pumping ≥ 0 cycles as per Corollary 1 in all segments except l we obtain an
accepting N-run ρ′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bm

j
bcm

j
c .

We now pump arbitrary cycles in the c segment to construct a Z-run ρ′′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bm

j
bcMc .

Next, we compensate for possible negative cycles in the c segment by pumping
a > 0 cycle in the b segment. Thus, we construct an N-run ρ′′′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bBcMc ,
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where B is chosen to be large enough such that ρ′′′j is an N-run for all Vj , j ∈ [k].
Note that it remains to fix L.

We now turn to Form (i) with a similar process we start with an accepting
N-run ρj on

am
j
1# · · ·#am

j
l−1#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

Pump ≥ 0 cycles in segments indexed 1, . . . , l − 1 to obtain an accepting N-run
ρ′j on

aM1# · · ·#aMl−1#am
j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

Now, obtain a Z-run ρ′′j by pumping arbitrary cycles in the remaining segments,
including the b segment.

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bBcMc

Again, compensate for negative cycles by taking L large enough so that pumping
> 0 cycles in the l-th segment yields an accepting N-run ρ′′′j on

aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
We now return to Form (iii) and fix the l-th segment by pumping ≥ 0 cycles

to construct an accepting N-run on
aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .

We are left with Form (ii), which are the most straightforward to handle. We
simply pump ≥ 0 cycles in all segments to construct an accepting N-run ρ′j on

aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
Note that the requirement for all segments before the l-th to be ≥ 0 is crucial,

otherwise we won’t be able to pump all the cycles in all forms simultaneously.
We now have that w is accepted by every Vj , and the l-th segment is bad

for all Vj . By applying Lemma 4 for each of the Vj and taking global constants
to be the products of the respective constants x, y, z > 0 for each Vj , we now
obtain X,Y, Z ∈ N, multiples of α, such that for every n ∈ N the word

wn = aM1# · · ·#aMl−1#aL+Xn#aMl+1# · · ·#aMk+1#bB+Y ncMc+Zn ∈ L(Vj)

is accepted by every Vj , for every j ∈ [k].
Finally, we choose n large enough to satisfy

∑
i∈[k+1]\{l} Mi < min{B +

Y n,Mc + Zn}, so that wn /∈ L(P). This is possible because, w.l.o.g, the l-th
segment can only pay for b, and the remaining segments [k+1] \ {l} cannot pay
for c. This contradicts the assumption that L(P) =

⋂
j∈[k] L(Vj), concluding the

proof of Theorem 1. ⊓⊔

Remark 3 (Unbounded Compositeness). The proof of Theorem 1 shows that if
words with k+1 segments are allowed, then the language is not (1, k)-composite,
we use this to establish primality. By intersecting L(P) with words that allow
at most k + 1 segments, we obtain a language that is not (1, k)-composite, but
it is not hard to show that it is (1, 2k+1)-composite. This demonstrates that a
2-CN can be composite, but may require unboundedly many factors.

The intuition behind Theorem 1 is that separate counters are needed to keep
track of the elements that “cover” bmb and cmc . Extending this idea to k-CN,
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we require that the a segments are partitioned to k different sets that cover k
“targets”.

Conjecture 1. The following language is the language of a prime k-CN:

Lk ={am1#am2# · · ·#amt#bn1
1 #bn2

2 · · ·#bnk

k |

∃I1, . . . , Ik ⊆ [t] ∀i ∈ [k],
∑
j∈Ii

mj ≥ ni ∧ ∀i ̸= j, Ii ∩ Ij = ∅}

While constructing a k-CN for Lk is a simple extension of Example 2, proving
that it is indeed prime does not seem to succumb to our techniques, and we leave
it as an important open problem (see Section 7).

5 Primality of Counter Nets is Undecidable

In this section we consider the primality and dimension-minimality decision
problems: given a k-CN A, decide whether A is prime and whether A is dimension-
minimal, respectively.

We use our prime 2-CN from Example 2 and the results of Section 4 to
show that both problems are undecidable. Our proof is by reduction from the
containment problem5 for 1-CN: given two 1-CN A,B over alphabet Σ, decide
whether L(A) ⊆ L(B). This problem was shown to be undecidable in [20].

We begin by describing the reduction that applies to both problems. Consider
an instance of 1-CN containment with two 1-CNs A and B over the alphabet Σ.
We construct a 2-CN C as follows. Let Λ be the alphabet of the 2-CN from Ex-
ample 2 and Theorem 1, and let $ /∈ Σ ∪ Λ be a fresh symbol. Intuitively, C
accepts words of the form u$v when either u ∈ L(A) and v is accepted by P
starting from the maximal counter A ended with on u, or when u ∈ L(B) and
v ∈ Λ∗.

Formally, we convert A and B to 2-CNs A′ and B′ by adding a counter and
never modifying its value, so a transition (p, σ, v, q) in A becomes (p, σ, (v, 0), q))
in A′, for example. We construct a 2-CN C as follows (see Fig. 3). We take A′, B′,
and P, and for every accepting state q of A′ we introduce a transition (q, $,0, p0)
where p0 is an initial state of P. We then add a new accepting state q⊤ and add
the transitions (q⊤, λ,0, q⊤) for every letter λ ∈ Λ, in other words q⊤ is an
accepting sink for Λ. We also add transitions (s, $,0, q⊤) from every accepting
state s of B′. The initial states are those of A′ and B′, and the accepting states
are those of P and q⊤.

Theorem 2. Primality and dimension-minimality are undecidable, already for
2-CN.

Proof. We prove the theorem by establishing that C is not prime if and only if
L(A) ⊆ L(B), and C is not dimension-minimal if and only if L(A) ⊆ L(B).
5 Actually, the complement thereof.
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A′ P B′ q⊤
$,0 $,0

Λ,0

Fig. 3: The reduction from 1-CN non-containment to 2-CN primality and
dimension-minimality. The dashed accepting states are those of A′ and B′, and
are not accepting in the resulting construction.

Assume that L(A) ⊆ L(B), then the component of C containing A′ and P
(Fig. 3 left) becomes redundant. Since the component containing B′ and q⊤
only makes use of one counter, C is composite. Formally, we claim that L(C) =
{u$v | u ∈ L(B) ∧ v ∈ Λ∗}. Indeed, if w ∈ L(C) then w = u$v so either
u ∈ L(A′) = L(A) or u ∈ L(B), but since L(A) ⊆ L(B), this is equivalent to
u ∈ L(B), and in this case there is simply no condition on v ∈ Λ∗. Since the
second counter is not used in component containing B′ and q⊤ (Fig. 3 right), we
can construct a 1-CN equivalent to C by projecting on the first counter and just
deleting the component containing A′ and P completely. It follows that in this
case C is not dimension-minimal, and therefore is not prime either.

For the converse, assume that L(A) ̸⊆ L(B), and let u ∈ L(A)\L(B). Denote
m = max{eff(ρ) | ρ is an accepting run of A on u}. Thus, for a word v ∈ Λ∗ we
have that u$v ∈ L(C) if and only if v is accepted in P with initial counter m.
Assume by way of contradiction that C is not prime, then we can write L(C)
as an intersection of languages of 1-CNs. Loosely speaking, this will create a
contradiction as we will be able to argue that P is not prime. More precisely,
take v = am1#am2# · · ·#amk+1#bmbcmc for integers {mi}k+1

i=1 ,mb,mc ∈ N and
consider words of the form u$v. Our analysis from Section 4—specifically the
arguments used in the proof Lemma 5—on u$v can show, mutatis mutandis,
that the language of P is not composite regardless of any fixed initial counter
value (an analogue of Theorem 1).

We thus have that C is prime, and in particular C is dimension-minimal,
concluding the correctness of the reduction. ⊓⊔

To contrast the undecidability of primality in nondeterministic CNs, we turn
our attention to a decidable fragment of primality, for which we focus on deter-
ministic CNs. Recall that by Proposition 1, a k-DCN is dimension minimal if
and only if it is not (1, k− 1)-composite. Thus, dimension-minimality “captures”
primality. We show that regularity, which is equivalent to being (0, 1)-composite,
is decidable for k-DCNs for every dimension k.

For dimension one, regularity is already known to be decidable in EXPSPACE,
even for history-deterministic 1-CNs [5, Theorem 19]. History-determinism is a
restricted form of nondeterminism; history-deterministic CNs are less expressive
than nondeterministic CNs but more expressive than DCNs. However, already
for k ≥ 2, regularity is undecidable for history-deterministic k-CNs [5, Theorem
20].

Theorem 3. Regularity of k-DCN is decidable and is in EXPSPACE.
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We provide further details, including a proof of Theorem 3, in the full version.
In short, we translate our k-DCN into a regularity preserving Vector Addition
System (VAS) and use results on VAS regularity from [3, Theorem 4.5]. We
remark that an alternative approach may be taken by adapting the results of [12]
on regularity of VASS, although this seems more technically challenging because
CNs have accepting states.

6 Expressiveness Trade-Offs between Dimensions and
Nondeterminism

Theorem 1 implies that 2-CNs are more expressive than 1-CNs, and that non-
deterministic models are more expressive than deterministic ones. In particular,
a k-DCN can be decomposed by projection (Proposition 1), and have decidable
regularity (Theorem 3). It is therefore interesting to study the interplay be-
tween increasing the dimension and introducing nondeterminism. In this section
we present two results: first, we show that dimension and nondeterminism, are
incomparable notions, in a sense. Second, we show that increasing the dimen-
sion strictly increases expressiveness, for both CNs and DCNs. We remark that
the latter may seem like an intuitive and simple claim. However, to the best of
our knowledge it has never been proved, and moreover, it requires a nontrivial
approach to pumping with several counters.

We start by showing that nondeterminism can sometimes compensate for low
dimension. Let k ∈ N and Σ = {a1, . . . , ak, b1, . . . , bk, c}; consider the language
Lk = {an1

1 an2
2 · · · ank

k bic
m | i ∈ [k]∧ ni ≥ m}. It is easy to construct a k-DCN as

well as a 1-CN for Lk, as depicted by Figs. 4 and 5 for k = 3. To construct a
1-CN we guess which bi will be later read, and verify the guess using the single
counter in the ani

i part.

a2,(0,1,0) a3,(0,0,1)

b1,0

b2,0

b3,0

a1,(1,0,0) a2,(0,1,0) a3,(0,0,1) c,(−1,0,0)

c,(0,−1,0)

c,(0,0,−1)

Fig. 4: A 3-DCN for L3 = {an1
1 an2

2 an3
3 bic

m | i ∈ [3] ∧ ni ≥ m}. Intuitively,
the 3-DCN counts the number of occurrences of each letter, and decreases the
appropriate counter once the letter bi selects it.

We now show that Lk’s dimension cannot be minimised whilst maintaining
determinism.

Theorem 4. Lk is not recognisable by a (k − 1)-DCN.

Proof. Assume by way of contradiction that there exists a (k − 1)-DCN D =
⟨Σ,Q,Q0, δ, F ⟩ such that L(D) = Lk. Let n > |Q| and for every i ∈ [k] consider
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a2,0 a3,0

a2,1 a3,0

a2,0 a3,1

a1,1 a2,0 a3,0

a1,0 a2,1 a3,0

a1,0 a2,0 a3,1

b
1 ,0

b2,0

b3
,0

c,−1

Fig. 5: A 1-CN for L3 = {an1
1 an2

2 an3
3 bic

m | i ∈ [3] ∧ ni ≥ m}. Intuitively, the CN
guesses which bi will be seen, and counts the respective occurrences of the letter
ai. Then, once bi is seen, the counter is decreased on c.

the word wi = an1a
n
2 · · · ankbicn ∈ Lk. Since D is deterministic and n > |Q|, all of

the accepting runs on the wi coincide up to the bi part and have cycles in each
ani segment as well as in the cn segment (the latter may differ according to i).
Let M be the product of the lengths of all these cycles.

First, observe that the cycles in all of the ani segments cannot decrease any
counter. Indeed, otherwise by pumping such a cycle for large enough t > 0 times,
there would not exist an N-run on words with the prefix an1 · · · ani−1a

n+tM
i . This

creates a contradiction since, with an appropriate suffix, such words can be
accepted.

Thus, all ai cycles have non-negative effects for all counters. Indeed, for each
counter i – associate with i the minimal segment index whose cycle strictly in-
creases i. Since there are k−1 counters and k segments this map is not surjective,
in other words, there is a segment (without loss of generality, the ak segment)
such that every counter that is increased in the ak cycle is also increased in a
previous segment. Therefore, there exist s, t > 0 such that the word

an+sM
1 an+sM

2 · · · as+sM
k−1 ankbkc

n+tM /∈ Lk

is accepted by D, which is a contradiction.

We now turn to show that conversely, dimension can sometimes compensate
for nondeterminism. Moreover, we show that there is a strict hierarchy of expres-
siveness with respect to dimension. Specifically, for k ∈ N consider the language
Hk = {am1

1 am2
2 · · · amk

k bn1
1 bn2

2 · · · bnk

k | ∀1 ≤ i ≤ k, mi ≥ ni}.

Theorem 5. Hk is recognisable by a k-DCN, but not by a (k − 1)-CN.

Proof (sketch). Constructing a k-DCN for Hk is straightforward, by using the
i-th counter to check that mi ≥ ni, for each i ∈ [k].

We turn to argue that Hk is not recognisable by a (k − 1)-CN (See the
full version for a complete proof). Assume by way of contradiction that A =
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⟨Σ,Q,Q0, δ, F ⟩ is a (k − 1)-CN with L(A) = Hk. We first observe that there
exists m1 ∈ N large enough so that every run of A on am1

1 must traverse a non-
negative cycle, i.e., a cycle whose overall effect is u1 ∈ Zk−1 such that u1[i] ≥ 0
for all i ∈ [k− 1]. Indeed, this is immediate by a “uniformly bounded” version of
Dickson’s lemma [15]; any long-enough “controlled” sequence of vectors in Nk−1

must contain an r-increasing chain, for any r ∈ N.
By repeating this argument we can ultimately find m1, . . . ,mk such that any

run of A on am1
1 am2

2 · · · amk

k traverses a non-negative cycle in each aj segment for
j ∈ [k]. Consider now the word w = am1

1 am2
2 · · · amk

k bm1
1 bm2

2 · · · bmk

k ∈ Hk, then
there exists an accepting run ρ of A on w such that for each j ∈ [k], the run ρ
traverses a non-negative cycle in segment aj , with effect uj ∈ Nk−1.

Consider the vectors u1, . . . ,uk. We claim that there exists ℓ ∈ [k] such that
the support of uℓ is covered by u1, . . . ,uℓ−1 in the following sense: for every
counter i ∈ [k−1], if uℓ[i] > 0, then there exists j < ℓ such that uj [i] > 0. Indeed,
this holds since otherwise every uj must contribute a fresh positive coordinate
to the union of supports of the previous vectors, but there are k vectors and only
k − 1 coordinates.

Next, observe that since each uj is a non-negative cycle taken in ρ, then
it can be pumped without decreasing any following counters, and hence induce
an accepting run on a pumped word. Intuitively, we now proceed by pumping
all the uj cycles for j < ℓ for some large-enough number of times M , which
enables us to remove one iteration of the cycle with effect uℓ while maintaining
an accepting run on a word of the form:

w′ = am1+Md1
1 am2+Md2

2 · · · amℓ−1+Mdℓ−1

ℓ−1 amℓ−dℓ

ℓ a
mℓ+1

ℓ+1 · · · amk

k bm1
1 bm2

2 · · · bmk

k .

Since mℓ > mℓ−dℓ, the bℓ segment is longer than the aℓ segment. Thus w′ /∈ Hk,
this yields a contradiction. ⊓⊔

Apart from showing that nondeterminism cannot always compensate for in-
creased dimension, Theorem 5 also shows that for every dimension k, there are
languages recognisable by a (k + 1)-DCN (and in particular by a (k + 1)-CN),
but not by any k-CN (and in particular not by any k-DCN). Thus, we obtain
the following hierarchy.

Corollary 2. For every k ∈ N, k-CNs (resp. k-DCNs) are strictly less expres-
sive than (k + 1)-CNs (resp. (k + 1)-DCNs).

7 Discussion

Broadly, this work explores the interplay between the dimension of a CN and its
expressive power. This is done by studying the dimension-minimality problem,
where we ask whether the dimension of a given CN can be decreased while pre-
serving its language, and by the more involved primality problem, which allows a
decomposition to multiple CNs of lower dimension. We show that both primality
and dimension-minimality are undecidable. Moreover, they remain undecidable
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even when we discard the degenerate dimension 0 case, which corresponds to
finite memory, i.e., regular languages. On the other hand, this degenerate case
is one where we can show decidability for DCNs.

This work also highlights a technical shortcoming of current understanding
of high-dimensional CNs: pumping arguments in the presence of k dimensions
and nondeterminism are very involved, and are (to our best efforts) insufficient
to prove Conjecture 1. To this end, we present novel pumping arguments in the
proof of Theorem 1 and to some extent in the proof of Theorem 5, which make
progress towards pumping in the presence of k dimensions and nondeterminism.
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