
Parameterized Broadcast Networks with
Registers: from NP to the Frontiers of

Decidability⋆

Abstract. We consider the parameterized verification of networks of
agents which communicate through unreliable broadcasts. In this model,
agents have local registers whose values are unordered and initially dis-
tinct and may therefore be thought of as identifiers. When an agent
broadcasts a message, it appends to the message the value stored in one
of its registers. Upon reception, an agent can store the received value
or test it for equality against one of its own registers. We consider the
coverability problem, where one asks whether a given state of the system
may be reached by at least one agent. We establish that this problem is
decidable, although non-primitive recursive. We contrast this with the
undecidability of the closely related target problem where all agents must
synchronize on a given state. On the other hand, we show that the cov-
erability problem is NP-complete when each agent only has one register.

Keywords: Parameterized verification · Well quasi-orders · Distributed
systems

1 Introduction

We consider Broadcast Networks of Register Automata (BNRA), a model for
networks of agents communicating by broadcasts. These systems are composed
of an arbitrary number of agents whose behavior is specified with a finite au-
tomaton. This automaton is equipped with a finite set of private registers that
contain values from an infinite unordered set. Initially, registers all contain dis-
tinct values, so these values can be used as identifiers. A broadcast message is
composed of a symbol from a finite alphabet along with the value of one of the
sender’s registers. When an agent broadcasts a message, any subset of agents
may receive it; this models unreliable systems with unexpected crashes and dis-
connections. Upon reception, an agent may store the received value or test it for
equality with one of its register values. For example, an agent can check that
several received messages have the same value.

⋆ Partly supported by ANR project PaVeDyS (ANR-23-CE48-0005).

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 250–270, 2024.
https://doi.org/10.1007/978-3-031-57231-9_12

Lucie Guillou1, Corto Mascle2, and Nicolas Waldburger3(B)

1 IRIF, CNRS, Université Paris Cité, Paris, France
guillou@irif.fr

2 LaBRI, Université de Bordeaux, Bordeaux, France
corto.mascle@labri.fr

3 IRISA, Université de Rennes, Rennes, France
nicolas.waldburger@irisa.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_12&domain=pdf

This model was introduced in [10], as a natural extension of Reconfigurable
Broadcast Networks [12]. In [10], the authors established that coverability is
undecidable if the agents are allowed to send two values per message. They
moreover claimed that, with one value per message, coverability was decidable
and PSPACE-complete; however, the proof turned out to be incorrect [22]. As
we will see, the complexity of that problem is in fact much higher.

In this paper we establish the decidability of the coverability problem and
its completeness for the hyper-Ackermannian complexity class Fωω , showing
that the problem has nonprimitive recursive complexity. The lower bound comes
from lossy channel systems, which consist (in their simplest version) of a finite
automaton that uses an unreliable FIFO memory from which any letter may
be erased at any time [3, 8, 26]. We further establish that our model lies at the
frontier of decidability by showing undecidability of the target problem (where
all agents must synchronize in a given state). We contrast these results with the
NP-completeness of the coverability problem if each agent has only one register.

Related work Broadcast protocols are a widely studied class of systems in which
processes are represented by nodes of a graph and can send messages to their
neighbors in the graph. There are many versions depending on how one models
processes, the communication graph, the shape of messages... A model with a
fully connected communication graph and messages ranging over a finite alpha-
bet was presented in [13]. When working with parameterized questions over this
model (i.e., working with systems of arbitrary size), many basic problems are
undecidable [14]; similar negative results were found for Ad Hoc Networks where
the communication graph is fixed but arbitrary [12]. This lead the community
to consider Reconfigurable Broadcast Networks (RBN) where a broadcast can
be received by an arbitrary subset of agents [12].

Parameterized verification problems over RBN have been the subject of ex-
tensive study in recent years, concerning for instance reachability questions [5,
11], liveness [9] or alternative communication assumptions [4]; however, RBN
have weak expressivity, in particular because agents are anonymous. In [10],
RBN were extended to BNRA, the model studied in this article, by the addition
of registers allowing processes to exchange identifiers.

Other approaches exist to define parameterized models with registers [6],
such as dynamic register automata in which processes are allowed to spawn
other processes with new identifiers and communicate integers values [1]. While
basic problems on these models are in general undecidable, some restrictions on
communications allow to obtain decidability [2, 20].

Parameterized verification problems often relate to the theory of well quasi-
orders and the associated high complexities obtained from bounds on the length
of sequences with no increasing pair (see for example [25]). In particular, our
model is linked to data nets, a classical model connected to well-quasi-orders.
Data nets are Petri nets in which tokens are labeled with natural numbers and
can exchange and compare their labels using inequality tests [18]; in this model,
the coverability problem is Fωωω -complete [15]. When one restricts data nets to
only equality tests, the coverability problem becomes Fωω -complete [21]. Data

Parameterized broadcast networks with registers 251

nets with equality tests do not subsume BNRA. Indeed, in data nets, each process
can only carry one integer at a time, and problems on models of data nets where
tokens carry tuples of integers are typically undecidable [17].

Overview We start with the model definition and some preliminary results in
Section 2. As our decidability proof is quite technical, we start by proving de-
cidability of the coverability problem in a subcase called signature protocols in
Section 3. We then rely on the intuitions built in that subcase to generalize the
proof to the general case in Section 4. We also show the undecidability of the
closely-related target problem. Finally, we prove the NP-completeness of the
coverability problem for protocols with one register in Section 5. Due to space
constraints, a lot of proofs, as well as some technical definitions, are only sketched
in this version. Detailed proofs can be found in the full version, available here.

In this document, each notion is linked to its definition using the knowledge
package. On electronic devices, clicking on words or symbols allows to access
their definitions.

2 Preliminaries

2.1 Definitions of the Model

A Broadcast Network of Register Automata (BNRA) [10] is a model describing
broadcast networks of agents with local registers. A finite transition system
describes the behavior of an agent; an agent can broadcast and receive messages
with integer values, store them in local registers and perform (dis)equality tests.
There are arbitrarily many agents. When an agent broadcasts a message, every
other agent may receive it, but does not have to do so.

Definition 1. A protocol with r registers is a tuple P = (Q,M, ∆, q0) with Q
a finite set of states, q0 ∈ Q an initial state, M a finite set of message types
and ∆ ⊆ Q× Op×Q a finite set of transitions, with operations Op =

{br(m, i), rec(m, i, ∗), rec(m, i, ↓), rec(m, i,=), rec(m, i, ̸=) |m ∈ M, 1 ≤ i ≤ r}.

Label br stands for broadcasts and rec for receptions. In a reception rec(m, i, α),
α is its action. The set of actions is Actions := {=, ̸=, ↓, ∗}, where ‘=’ is an
equality test, ‘ ̸=’ is a disequality test, ‘ ↓ ’ is a store action and ‘∗’ is a dummy
action with no effect. The size of P is |P| := |Q|+ |M|+ |∆|+ r.

We now define the semantics of those systems. Essentially, we have a finite
set of agents with r registers each; all registers initially contain distinct values. A
step consists of an agent broadcasting a message that other agents may receive.

Definition 2 (Semantics). Let (Q,M, ∆, q0) be a protocol with r registers,
and A a finite non-empty set of agents. A configuration over A is a function

252 L. Guillou, C. Mascle, N. Waldburger

https://arxiv.org/abs/2306.01517
https://www.irif.fr/~colcombe/knowledge_en.html
https://www.irif.fr/~colcombe/knowledge_en.html

q0 q1

q3q2 q4q5

br(m1, 1)

br(m2, 1)rec(m2, 1, ↓) rec(m3, 2, ↓)

br(m3, 2)
br(m4, 1)

rec(m4, 1,=)

br(m4, 1)

rec(m1, 1,=)

Fig. 1: Example of a protocol.

γ : A → Q×Nr mapping each agent to its state and its register values. We write
st(γ) for the state component of γ and data(γ) for its register component.

An initial configuration γ is one where for all a ∈ A, st(γ)(a) = q0 and
data(γ)(a, i) ̸= data(γ)(a′, i′) for all (a, i) ̸= (a′, i′).

Given a finite non-empty set of agents A and two configurations γ, γ′ over A,
a step γ −→ γ′ is defined when there exist m ∈ M, a0 ∈ A and i ∈ [1, r] such that
(st(γ)(a0), br(m, i), st(γ

′)(a0)) ∈ ∆, data(γ)(a0) = data(γ′)(a0) and, for all a ̸=
a0, either γ

′(a) = γ(a) or there exists (st(γ)(a), rec(m, j, α), st(γ′)(a)) ∈ ∆ s.t.
data(γ′)(a, j′) = data(γ)(a, j′) for j′ ̸= j and:

– if α = ‘∗’ then data(γ′)(a, j) = data(γ)(a, j),
– if α = ‘ ↓ ’ then data(γ′)(a, j) = data(γ)(a0, i),
– if α = ‘=’ then data(γ′)(a, j) = data(γ)(a, j) = data(γ)(a0, i),
– if α = ‘ ̸=’ then data(γ′)(a, j) = data(γ)(a, j) ̸= data(γ)(a0, i).

A run over A is a sequence of steps ρ : γ0 −→ γ1 −→ · · · −→ γk with γ0, . . . , γk

configurations over A. We write γ0
∗−→ γk when there exists such a run. A run is

initial when γ0 is an initial configuration.

Remark 3. In our model, agents may only send one value per message. Indeed,
coverability is undecidable if agents can broadcast several values at once [10].

Example 4. Figure 1 shows a protocol with 2 registers. Let A = {a1, a2}. We
denote by ⟨st(γ)(a1), data(γ)(a1), st(γ)(a2), data(γ)(a2)⟩ a configuration γ over
A. The following sequence is an initial run:

⟨q0, (1, 2), q0, (3, 4)⟩ −→ ⟨q1, (1, 2), q2, (1, 4)⟩ −→ ⟨q3, (1, 4), q3, (1, 4)⟩
−→ ⟨q4, (1, 4), q3, (1, 4)⟩ −→ ⟨q4, (1, 4), q4, (1, 4)⟩

The broadcast messages are, in this order: (m2, 1) by a1, (m3, 4) by a2, (m4, 1)
by a2 and (m4, 1) by a1. In this run, each broadcast message is received by the
other agent; in general, however, this does not have to be true. ⊓⊔

Remark 5. From a run ρ : γ0
∗−→ γ, we can build a larger run ρ′ in which, for

each agent a of ρ, there are arbitrarily many extra agents in ρ′ that end in the
same state as a, all with distinct register values. To obtain this, ρ′ make many

Parameterized broadcast networks with registers 253

copies of ρ run in parallel on disjoint sets of agents. Because all these copies of
ρ do not interact with one another and because all agents start with distinct
values in initial configurations, the different copies of ρ have no register values
in common. This property is called copycat principle: if state q is coverable, then
for all n there exists an augmented run which puts n agents on q.

Definition 6. The coverability problem Cover asks, given a protocol P and
a state qf , whether there is a finite non-empty set of agents A, an initial run

γ0
∗−→ γf over A that covers qf , i.e., there is a ∈ A such that st(γf)(a) = qf .
The target problem Target asks, given a protocol P and a state qf , whether

there is there is a finite non-empty set of agents A and an initial run γ0
∗−→ γf

over A such that, for every a ∈ A, st(γf)(a) = qf , i.e., all agents end on qf .

Example 7. Let P the protocol of Figure 1. As proven in Example 4, (P, q4) is a
positive instance of Cover and Target. However, let P ′ the protocol obtained
from P by removing the loop on q4; (P ′, q4) becomes a negative instance of
Target. Indeed, there must be an agent staying on q3 to broadcast m4. Also,
(P, q5) is a negative instance of Cover: we would need to be able to have one
agent on q2 and one agent on q0 with the same value in their first registers.
However, an agent in q0 has performed no transition so it cannot share register
values with other agents. ⊓⊔

Remark 8. In [10], the authors consider the query problem where one looks for
a run reaching a configuration satisfying some queries. In fact, this problem
exponentially reduces to Cover hence our complexity result of Fωω also holds for
the query problem. In the case with one register, one can even find a polynomial-
time reduction hence our NP result also holds with queries.

We finally introduce signature BNRA, an interesting restriction of our model
where register 1 is broadcast-only and all other registers are reception-only. Said
otherwise, the first register acts as a permanent identifier with which agents sign
their messages. An example of such a protocol is displayed in Fig. 2. Under this
restriction, a message is composed of a message type along with the identifier
of the sender. This restriction is relevant for pedagogical purposes: we will see
that it falls into the same complexity class as the general case but makes the
decidability procedure simpler.

Definition 9 (Signature protocols). A signature protocol with r registers is
a protocol P = (Q,M, ∆, q0) where register 1 appears only in broadcasts in ∆
and registers i ≥ 2 appear only in receptions in ∆.

2.2 Classical Definitions

Fast-growing hierarchy For α an ordinal in Cantor normal form, we denote by Fα

the class of functions corresponding to level α in the Fast-Growing Hierarchy.
We denote by Fα the associated complexity class and use the notion of Fα-
completeness. All these notions are defined in [23]. We will specifically work with

254 L. Guillou, C. Mascle, N. Waldburger

complexity class Fωω . For readers unfamiliar with these notions, Fωω -complete
problems are decidable but with very high complexity (non-primitive recursive,
and even much higher than the Ackermann class Fω).

We highlight that our main result is the decidability of the problem. We show
that the problem lies in Fωω because it does not complicate our decidability proof
significantly; also, it fits nicely into the landscape of high-complexity problems
arising from well quasi-orders.

Well-quasi orders For our decidability result, we rely on the theory of well
quasi-orders in the context of subword ordering. Let Σ be a finite alphabet,
w1, w2 ∈ Σ∗, w1 is a subword of w2, denoted w1 ⪯ w2, when w1 can be obtained
from w2 by erasing some letters. A sequence of words w0, w1, . . . is good if there
exist i < j such that wi ⪯ wj , and bad otherwise. Higman’s lemma [16] states
that every bad sequence of words over a finite alphabet is finite, but there is
no uniform bound. In order to bound the length of all bad sequences, one must
bound the growth of the sequence of words. We will use the following result,
known as the Length function theorem [24]:

Theorem 10 (Length function theorem [24]). Let Σ a finite alphabet and
g : N → N a primitive recursive function. There exists a function f ∈ Fω|Σ|−1

such that, for all n ∈ N, every bad sequence w1, w2, . . . such that |wi| ≤ g(i)(n)
for all i has at most f(n) terms (where g(i) denotes g applied i times).

2.3 A Complexity Lower Bound for COVER Using LCS

Lossy channel systems (LCS) are systems where finite-state processes communi-
cate by sending messages from a finite alphabet through lossy FIFO channels.
Unlike in the non-lossy case [7], reachability of a state is decidable for lossy chan-
nel systems [3], but has non-primitive recursive complexity [26] and is in fact
Fωω -complete [8]. By simulating LCS using BNRA, we obtain our Fωω lower
bound for the coverability problem:

Proposition 11. Cover for signature BNRA is Fωω -hard.

Proof sketch. Given an LCS L, we build a signature protocol P with two regis-
ters. Each agent starts by receiving a foreign identifier and storing it in its second
register; using equality tests, it then only accepts messages with this identifier.
Each agent has at most one predecessor, so the communication graph is a forest
where messages propagate from roots to leaves. Each branch simulates an execu-
tion of L. Each agent of the branch simulates a step of the execution: it receives
from its predecessor a configuration of L, chooses the next configuration of L
and broadcasts it, sending first the location of L and then, letter by letter, the
content of the channel. It could be that some messages are not received, hence
the lossiness. ⊓⊔

Parameterized broadcast networks with registers 255

3 Coverability Decidability for Signature Protocols

This section and the next one are dedicated to the proof of our main result:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

For the sake of clarity, in this section, we will first focus on the case of
signature BNRA. As a preliminary, we start by defining a notion of local run
meant to represent the projection of a run onto a given agent.

3.1 Local runs

A local configuration is a pair (q, ν) ∈ Q × Nr. An internal step from (q, ν) to

(q′, ν′) with transition δ ∈ ∆, denoted (q, ν)
int(δ)−−−→ (q′, ν′), is defined when ν = ν′

and δ = (q,br(m, i), q′) is a broadcast. A reception step from (q, ν) to (q′, ν′)

with transition δ ∈ ∆ and value v ∈ N, denoted (q, ν)
ext(δ,v)−−−−→ (q′, ν′), is defined

when δ is of the form (q, rec(m, j, α), q′) with ν(j′) = ν′(j′) for all j′ ̸= j and:
– if α = ‘∗’ then ν(j) = ν′(j),
– if α = ‘ ↓ ’ then ν′(j) = v,

– if α = ‘=’ then ν(j) = ν′(j) = v,
– if α = ‘ ̸=’ then ν(j) = ν′(j) ̸= v.

Such a reception step corresponds to receiving message (m, v); in a local run,
one does not specify the origin of a received message. A local step (q, ν) −→ (q′, ν′)
is either a reception step or an internal step. A local run u is a sequence of local
steps denoted (q0, ν0)

∗−→ (q, ν). Its length |u| is its number of steps.
A value v ∈ N appearing in u is initial if it appears in ν0 and non-initial

otherwise. For v ∈ N, the v-input Inv(u) (resp. v-output Outv(u)) is the sequence
m0 · · ·mℓ ∈ M∗ of message types received (resp. broadcast) with value v in u.

3.2 Unfolding Trees

We first prove decidability of Cover for signature BNRA. Note that, in signature
protocols, the initial values of reception-only registers are not relevant as they
can never be shared with other agents. We deduce from this idea the following
informal observation:

Observation 13 In signature BNRA, when some agent receives a message, it
can compare the value of the message only with the ones of previously received
messages, i.e., check whether the sender is the same.

If we want to turn a local run u of an agent a into an actual run, we must
match a’s receptions with broadcasts. Because of Observation 13, what matters
is not the actual values of the receptions in u but which ones are equal to which.
Therefore, for a value v received in u, if m1 . . .mk ∈ M∗ are the message types
received in u with value v in this order, it means that to execute u, a need
another agent a′ to broadcast messages types m1 to mk, all with the same value.
We describe what an agent needs from other agents as a set of specifications
which are words of M∗.

256 L. Guillou, C. Mascle, N. Waldburger

q0

q1 q2 q3 q4

q5

q6

q7

br(go, 1)

br(hlt, 1)
br(rdy, 1)br(rdy, 1)

rec(rdy, 2, ↓)

rec(rdy, 3, ↓) rec(go, 2,=) rec(hlt, 3,=)

rec(rdy, 2, ∗)

Fig. 2: Example of a signature protocol.

To represent runs, we consider unfolding trees that abstract runs by repre-
senting such specifications, dependencies between them and how they are carried
out. In this tree, each node is assigned a local run and the specification that it
carries out. Because of copycat arguments, we will in fact be able to duplicate
agents so that each agent only accomplishes one task, hence the tree structure.

Definition 14. An unfolding tree τ over P is a finite tree where nodes µ have
three labels:

– a local run of P, written lr(µ);
– a value in N, written val(µ);
– a specification spec(µ) ∈ M∗.

Moreover, all nodes µ in τ must satisfy the three following conditions:

(i) Initial values of lr(µ) are never received in lr(µ),
(ii) spec(µ) ⪯ Outval(µ)(lr(µ)), (recall that ⪯ denotes the subword relation)
(iii) For each value v received in lr(µ), µ has a child µ′ s.t. Inv(lr(µ)) ⪯ spec(µ′).

Lastly, given τ an unfolding tree, we define its size by |τ | :=
∑
µ∈τ |µ| where

|µ| := |lr(µ)| + |spec(µ)|. Note that the size of τ takes into account the size of
its nodes, so that a tree τ can be stored in space polynomial in |τ | (renaming the
values appearing in τ if needed).

We explain this definition. Condition (i) enforces that the local run cannot
cheat by receiving its initial values. Condition (ii) expresses that lr(µ) broadcasts
(at least) the messages of spec(µ). We can use the subword relation ⪯ (instead
of equality) because messages do not have to be received. Condition (iii) expresses
that, for each value v received in the local run lr(µ), µ has a child who is able
to broadcast the sequence of messages that lr(µ) receives with value v.

Example 15. Figure 2 provides an example of a signature protocol. Let A =
{a1, a2, a3}. We denote a configuration γ by ⟨st(γ)(a1), (data(γ)(a1)),
st(γ)(a2), (data(γ)(a2)), st(γ)(a3), (data(γ)(a3))⟩. Irrelevant register values are
denoted by . Let ρ be the run over A of initial configuration
⟨q0, (1, ,), q0, (2, ,), q0, (3, ,)⟩ where the following occurs:

Parameterized broadcast networks with registers 257

Node µ1 (a1 in ρ)
spec = ε

v = 1

reg 1
reg 2
reg 3

q0
1

→
ext(δ01, 2)

q1
1
2

→
ext(δ12, 3)

q2
1
2
3

→
ext(δ23, 2)

q3
1
2
3

→
ext(δ34, 3)

q4
1
2
3

q0
2

→
int(δ00)

q5
2

→
ext(δ05, 4)

q5
2

→
int(δ56)

q6
2Node µ2 (a2)

spec = rdy · go
v = 2

q0
3

→
int(δ00)

q0
3

→
ext(δ05, 5)

q5
3

→
int(δ57)

q7
3 Node µ3 (a3)

spec = rdy · hlt
v = 3

q0
4

→
int(δ00)

q0
4Node µ4 (a3)

spec = rdy
v = 4

q0
5

→
ext(δ05, 6)

q5
5

→
int(δ55)

q5
5 Node µ5 (a2)

spec = rdy
v = 5

q0
6

→
int(δ00)

q0
6 Node µ6 (a3)

spec = rdy
v = 6

Fig. 3: Example of an unfolding tree derived from ρ. Grids correspond to local
runs, a column of a grid is a local configuration. Transition δij is the transition
between state qi and state qj , for example δ01 = (q0, rec(rdy, 2, ↓), q1). If δ is a
reception of m ∈ M, ext(δ, v) corresponds to receiving message (m, v); if δ is a
broadcast of m ∈ M, int(δ) corresponds to broadcasting (m, id) where id is the
value in the first register of the agent. Initial values of reception-only registers
are irrevelant and written as ‘ ’. Colors correspond to message types.

– a2 broadcasts rdy, a1 receives: ⟨q1, (1, 2,), q0, (2, ,), q0, (3, ,)⟩,
– a3 broadcasts rdy, a1 and a2 receive: ⟨q2, (1, 2, 3), q5, (2, ,), q0, (3, ,)⟩,
– a2 broadcasts rdy, a3 receives: ⟨q2, (1, 2, 3), q5, (2, ,), q5, (3, ,)⟩,
– a2 broadcasts go, a1 receives: ⟨q3, (1, 2, 3), q6, (2, ,), q5, (3, ,)⟩,
– a3 broadcasts hlt, a1 receives: ⟨q4, (1, 2, 3), q6, (2, ,), q7, (3, ,)⟩.

Figure 3 provides an unfolding tree derived from ρ by applying a procedure
introduced later. Because agents a2 and a3 broadcast to several other agents,
they each correspond to several nodes of the tree.

We explain why this tree is an unfolding tree. Condition (i) is trivially sat-
isfied. Condition (ii) holds at every node because the local run of each node
exactly broadcasts the specification of the node. Condition (iii) is satisfied at
µ1: In2(lr(µ1)) = rdy · go = spec(µ2) and In3(lr(µ1)) = rdy · hlt = spec(µ3). It is
also satisfied at µ2, µ3 and µ5 because their local runs only receive rdy and they
each have a child with specification rdy. It is trivially satisfied at µ4 and µ6 as
their local runs have no reception. ⊓⊔

258 L. Guillou, C. Mascle, N. Waldburger

Lemma 16. Given a signature protocol P with a state qf , qf is coverable in P
if and only if there exists an unfolding tree whose root is labelled by a local run
covering qf . We call such an unfolding tree a coverability witness.

Proof. Given a run ρ, agent a satisfies a specification w ∈ M∗ in ρ if the sequence
of message types broadcast by a admits w as subword.

Let τ be a coverability witness. We prove the following property by strong
induction on the depth of µ: for every µ in τ , there exists a run ρ with an agent
a whose local run in ρ is lr(µ) and who satisfies specification spec(µ). This
is trivially true for leaves of τ because their local runs have no reception (by
condition (iii)) hence are actual runs by themselves. Let µ a node of τ , u :=
lr(µ) and v1, . . . , vc the values received in u. These values are non-initial thanks
to condition (i); applying condition (iii) gives the existence of corresponding
children µ1, . . . , µc in τ . We apply the induction hypothesis on the subtrees
rooted in µ1, . . . , µc to obtain runs ρ1, . . . , ρc satisfying the specifications of the
children of µ. Up to renaming agents, we can assume the set of agents of these
runs are disjoint; up to renaming values, we can assume that vj = val(µj) for
all j and that all agents start with distinct values. We build an initial run ρ
whose agents is the union of the agents of the c runs along with a fresh agent
a. In ρ, we make ρ1 to ρc progress in parallel and make a follow the local run
u, matching each reception with value vj in u with a broadcast in ρj . This is
possible because, for all j, Invj (u) ⪯ spec(µj) ⪯ Outvj (ρj) (by (ii)).

Conversely, we prove the following by induction on the length of ρ: for every
initial run ρ, for every agent a in ρ and for every v ∈ N, there exists an unfolding
tree whose root has as local run the projection of ρ onto a and as specification
the v-output of a in ρ. If ρ is the empty run, consider the unfolding tree with a
single node whose local run and specification are empty. Suppose now that ρ has
non-zero length, let a an agent in ρ, v ∈ N and let ρp the prefix run of ρ of length
|ρ| − 1. Let τ1 the unfolding tree obtained by applying the induction hypothesis
to ρp, a and v, and consider τ2 obtained by simply appending the last step of a
in ρ to the local run at the root of τ1. If this last step is a broadcast, we obtain
an unfolding tree; if the broadcast value is v, we append the broadcast message
type to the specification at the root of τ2 and we are done. Suppose that, in the
last step of ρ, a performs a reception (q, rec(m, i, α), q′) of a message (m, v′).
We might need to adapt τ2 to respect condition (iii) at the root. Let a′ the agent
broadcasting in the last step of ρ. Let τ3 the unfolding tree obtained by applying
the induction to ρp, a

′ and v′. Let τ4 the unfolding tree obtained by appending
the last broadcast to the local run at the root of τ3 and the corresponding
message type to the specification at the root of τ3. Attaching τ4 below the root
of τ2 gives an unfolding tree satisfying the desired properties. ⊓⊔

The unfolding tree τ of Figure 3 is built from ρ of Example 15 using the
previous procedure. Observe that the unfolding tree τ is a coverability witness
for q4. However, one can find a smaller coverability witness. Indeed, in the right
branch of τ , µ5 and µ6 have the same specification, therefore µ5 can be deleted
and replaced with µ6. More generally, we would have also been able to shorten
the tree if we had spec(µ5) ⪯ spec(µ6).

Parameterized broadcast networks with registers 259

Remark 17. With the previous notion of coverability witness, the root has to
cover qf but may have an empty specification. However, we will later need the
length of the specification of a node to be equal to the number of tasks that
it must carry out. For this reason, we will, in the rest of this paper, consider
that the roots of coverability witnesses have a specification of length 1. This can
be formally achieved by introducing a new message type mf that may only be
broadcast from qf and require that, at the root, spec = mf .

3.3 Bounding the Size of a Coverability Witness

In all the following, we fix a positive instance (P, qf) ofCover with r+1 registers
(i.e., r registers used for reception) and a coverability witness τ of minimal size.
We turn the observation above into an argument that will be useful towards
bounding the length of branches of a coverability witness:

Lemma 18. If a coverability witness τ for (P, qf) of minimal size has two nodes
µ, µ′ with µ a strict ancestor of µ′ then spec(µ) cannot be a subword of spec(µ′).

Proof. Otherwise, replacing the subtree rooted in µ with the one rooted in µ′

would contradict minimality of τ . ⊓⊔

We would now like to use the Length function theorem to bound the height
of τ , using the previous lemma. To do so, we need a bound on the size of a node
with respect to its depth. The following lemma bounds the number of steps of a
local run between two local configurations: we argue that if the local run is long
enough we can replace it with a shorter one that can be executed using the same
input. This will in turn bound the length of a local run of a node with respect
to the size of its specification, which is the first step towards our goal.

Lemma 19. There exists a primitive recursive function ψ so that, for every local
run u : (q, ν)

∗−→ (q′, ν′), there exists u′ : (q, ν)
∗−→ (q′, ν′) with |u′| < ψ(|P|, r)

and for all value v′ ∈ N, there exists v ∈ N such that Inv′(u
′) ⪯ Inv(u).

Proof. Let ψ(n, 0) = n + 1 and ψ(n, k + 1) = 2ψ(n, k) · (|∆|2ψ(n,k) + 1) + 1
for all k. Observe that ψ(n, k) is a tower of exponentials of height k, which is
primitive-recursive although non-elementary. A register i ≥ 2 is active in a local
run u if u has some ‘ ↓ ’ action on register i. Let u a local run, k the number of
active registers in u, n := |P| and M := ψ(n, k). We prove by induction on the
number k of active registers in u that if |u| ≥ ψ(n, k) then u can be shortened.

If k = 0, any state repetition can be removed. Suppose that |u| > ψ(n, k+1)
and that the set I of active registers of u is such that |I| = k+ 1. If there exists
an infix run of u of length M with only k active registers, we shorten u using the
induction hypothesis. Otherwise, every sequence of M steps in u has a ‘ ↓ ’ on
every register of I. Because |u| > 2M (|∆|2M +1), u contains at least |∆|2M +1
disjoint sequences of length 2M and some s ∈ ∆2M appears twice: in infix run
u1 first, then in infix run u2. We build a shorter run u′ by removing all steps
between u1 and u2 and merging u1 and u2 (see Fig. 4). We need suitable values

260 L. Guillou, C. Mascle, N. Waldburger

Original
local run

reg 2

reg 3

reg 4 v2

v1

‘ ↓ ’ actions

Shortened
local run

reg 2

reg 3

reg 4

s

v′2

m2

m1

fresh
values

v1

s s

Fig. 4: Illustration of the proof of Lemma 19.

for the reception steps in s in the shortened run u′. For a given register i ∈ I, we
would like to pick a ‘ ↓ ’ step on register i in s, use values from u1 before that
step and values from u2 after that step. This would guarantee that all equality
and disequality tests still pass. However, there is an issue if a value v appears in
several registers in u. For example, if v1 = v2 = v in Figure 4, we might interleave
receptions of v on registers 2 and 4: if we had a ext(rec(m1, 2,=), v) in u1 and a
ext(rec(m2, 4,=), v) in u2, we could have m1 before m2 in Inv(u) but m1 after
m2 in Inv(u

′), so that we do not have Inv(u
′) ⪯ Inv(u). We solve this issue by

introducing fresh values between values of u1 and values of u2; because |s| = 2M ,
there is a ‘ ↓ ’ for each register in I in each half of s. In the shortened run u′,
before the first ‘ ↓ ’ on register i (excluded), we use values of u1, and after the
last ‘ ↓ ’ on register i (included), we use values of u2. For every value v appearing
in register i between these two steps in u1, we select a fresh value vf (i.e., a value
that does not appear anywhere in the run) and consistently replace v with vf
(hatched blocks in Fig. 4). With this technique, receptions with values from u1
and receptions with values from u2 cannot get interleaved in u′. Therefore, for
every value that appeared in u, we have Inv(u

′) ⪯ Inv(u). Also, for every fresh
value v′ there is a value v such that Inv′(u

′) ⪯ Inv(u). Moreover, u′ is shorter
than u; we conclude by iterating this shortening procedure. ⊓⊔

Using the previous lemma, we will bound the size of a node in τ with respect
to its specification therefore with respect to its parent’s size. By induction, we
will then obtain a bound depending on the depth, and apply the Length function
theorem to bound the height of the tree.

Lemma 20. For all nodes µ, µ′ in τ :

1. |lr(µ)| ≤ ψ(|P|, r) |spec(µ)|,
2. if µ is the child of µ′, |spec(µ)| ≤ ψ(|P|, r) |spec(µ′)|.

Proof. Thanks to Remark 17, we assume that the specification at the root is of
length 1. For the first item, by minimality of τ , lr(µ) ends with the last broadcast

Parameterized broadcast networks with registers 261

required by spec(µ); we identify in lr(µ) the broadcast steps witnessing spec(µ)
and shorten the local run between these steps using Lemma 19. We thus obtain
|lr(µ)| ≤ ψ(|P|, r) |spec(µ)|, proving 1. For the second item, by minimality of τ ,
|spec(µ)| ≤ maxv∈N |Inv(lr(µ′))| ≤ |lr(µ′)| ≤ ψ(|P|, r) |spec(µ′)|. ⊓⊔

Proposition 21. There exists a function f of class Fω|M|−1 s.t. |τ | ≤ f(|P|).

Proof. Let n := |P|, let r + 1 be the number of registers in P. Thanks to
Lemma 18, for all µ ̸= µ′ in τ with µ ancestor of µ′, spec(µ) is not a sub-
word of spec(µ′). Let µ1, . . . , µm the node appearing in a branch of τ , from
root to leaf. The sequence spec(µ1), . . . , spec(µm) is a bad sequence. For all
i ∈ [1,m], |spec(µi+1)| ≤ ψ(n, r) |spec(µi)| by Lemma 20. By direct induction,
|spec(µi)| is bounded by g(i)(n) where g : n 7→ nψ(n, n) is a primitive recursive
function. Let h of class Fω|M|−1 the function obtained when applying the Length
function theorem on g and M; we have m ≤ h(n).

By immediate induction, thanks to Lemma 20.2, for every node µ at depth d,
|spec(µ)| ≤ ψ(n, r)d+1 which, by Lemma 20.1 and because d ≤ h(n), bounds the
size of every node by h′(n) = ψ(n, n)h(n)+2. By minimality of τ , the number of
children of a node is bounded by the number of values appearing in its local run
hence by h′(n), so the total number of nodes in τ is bounded by h′(n)h(n)+1

and the size of τ by f(n) := h′(n)h(n)+2. Because Fω|M|−1 is closed under
composition with primitive-recursive functions, f is in Fω|M|−1 . ⊓⊔

The previous argument shows that Cover for signature protocols is decidable
and lies in complexity class Fωω . Because the hardness from Proposition 11 holds
for signature protocols, Cover is in fact complete for this complexity class.

We now extend this method to the general case.

4 Coverability Decidability in the General Case

4.1 Generalizing Unfolding Trees

In the general case, a new phenomenon appears: an agent may broadcast a value
that it did not initially have but that it has received and stored. In particular,
an agent starting with value v could broadcast v then require someone else to
make a broadcast with value v as well. For example, in the run described in
Example 4, 1 is initially a value of a1 that a2 receives and rebroadcasts to a1.

We now have two types of specifications. Boss specifications describe the
task of broadcasting with one of its own initial values; this is the specification
we had in signature protocols and, as before, it consists of a word bw ∈ M∗

describing a sequence of message types that should be all broadcast with the
same value. Follower specifications describe the task of broadcasting with a non-
initial value received previously. More precisely, a follower specification is a pair
(fw, fm) ∈ M∗ ×M asking to broadcast a message (fm, v) under the condition
of previously receiving the sequence of message types fw with value v.

262 L. Guillou, C. Mascle, N. Waldburger

A key idea is that, if an agent that had v initially receives some message
(m, v), then intuitively we can isolate a subset of agents that did not have v ini-
tially but that are able to broadcast (m, v) after receiving a sequence of messages
with that value. We can then copy them many times in the spirit of the copycat
principle. Each copy receives the necessary sequence of messages in parallel, and
they then provide us with an unbounded supply of messages (m, v). In short, if
an agent broadcasts (m, v) while not having v as an initial value, then we can
consider that we have an unlimited supply of messages (m, v).

Example 22. Assume that A = {a1, a2, a3} and let v be initial for a1. Consider
an execution where the broadcasts with value v are: a1 broadcasts a · b, then
a2 broadcasts c, then a1 broadcasts a3 then a3 broadcasts b. The follower spec-
ification of a2’s task would be of the form (w, c) where w ⪯ a · b: a2 must be
able to broadcast (c, v) once a · b has been broadcast with value v. By contrast,
a3’s follower specification would be of the form (w · w′, c) where w ⪯ a · b and
w′ ∈ {a, c}∗ is a subword of a3 enriched with as many c as desired, because a2
may be cloned at will. For example, one could have w = b and w′ = c ·a ·c4 ·a ·c2.
This idea is formalized in the full version of the paper with the notion of de-
composition. Using this notion, the previous condition becomes: w · w′ admits
decomposition (a · b, c, a3). ⊓⊔

In our new unfolding trees, a node is either a boss node or a follower node,
depending on its type of specification. A boss node with a boss specification bw
must broadcast that sequence of message types with one of its initial values. A
follower node µ with follower specification (fw, fm) is allowed to receive sequence
of messages fw with value val(µ) (which must be non-initial) without it being
broadcast by its children. Other conditions are similar to the ones for signature
protocols: if µ is a node and v ̸= val(µ) a non-initial value received in its local
run, µ must have a boss child broadcasting this word. Moreover, for each (m, v)
received where v is an initial value of the local run, µ must have a follower child
that is able to broadcast (m, v) after receiving messages sent previously with
value v; the formal statement is more technical because it takes into account the
observation of Example 22. The formal definition of unfolding tree is given in
the full version.

Example 23. Figure 5 depicts the unfolding tree associated to a1 in the run of
Example 4. Follower node µ3 can have a m2 reception that is not matched by its
children because m2 is in fw(µ3). µ1 broadcasts (m2, 1) before receiving (m4, 1)
hence the follower specification of µ3 witnesses broadcast of (m4, 1). ⊓⊔

A coverability witness is again an unfolding tree whose root covers qf (or
broadcasts a message mf , see Remark 17), with the extra condition that the
root is a boss node (a follower node implicitly relies on its parent’s ability to
broadcast).

Proposition 24. An instance of Cover (P, qf) is positive if and only if there
exists a coverability witness for that instance.

Parameterized broadcast networks with registers 263

Boss node µ1 (a1 in ρ)

bw = ε

v = 1

reg 1
reg 2

q0
1

→
int(δb2)

q1
1

→
ext(δr3, 2)

q3
1
2

→
ext(δr4, 1)

q4
1
2

→
int(δb4)

q4
1
2

q0

2

→
ext(δr2, 3)

q2
3
2

→
int(δb3)

q3
3
2

Boss node µ2 (a2)

bw = m3

v = 2

q0 →
ext(δr2, 1)

q2
1

→
int(δb3)

q3
1

→
int(δb4)

q3
1

Follower node µ3 (a2)

fw = m2, fm = m4

v = 1

q0
3

→
int(δb2)

q1
3

Boss node µ4 (a1)

bw = m2

v = 3

Fig. 5: Example of an unfolding tree. δri (resp. δbi) denotes the reception (resp.
broadcast) transition of message mi in the protocol described in Fig. 1. Values
that are never broadcast are omitted and written as ‘ ’.

Proof sketch. The proof is quite similar to the one of Lemma 16, but is made
more technical by the addition of follower nodes. When translating an unfolding
tree to a run, if the root of the tree is a follower node µ of specification (fw, fm),
then we actually obtain a partial run, i.e., a run except that the receptions from
fw are not matched by broadcasts in the run. We then combine this partial run
with the run corresponding to the parent of µ and with the runs of other children
of µ so that every reception is matched with a broadcast. For the translation
from run to tree, we inductively construct the tree by extracting from the run
the agents and values responsible for satisfying the specifications of each node
and analyzing the messages they receive to determine their set of children (as in
Example 22). ⊓⊔

Bounding the Size of the Unfolding Tree. Our aim is again to bound the
size of a minimal coverability witness. In the following, we fix an instance (P, qf)
with r registers and a coverability witness of minimal size. We start by providing
new conditions under which a branch can be shortened; for boss specifications, it
is the condition of Lemma 18 but for follower specifications, the subword relation
goes the opposite direction because the shorter the requirement fw, the better.

Lemma 25. Let µ ̸= µ′ be two nodes of τ such that µ is an ancestor of µ′. If one
of those conditions holds, then τ can be shortened (contradicting its minimality):

– µ and µ′ are boss nodes with boss specifications respectively bw and bw′, and
bw ⪯ bw′;

– µ and µ′ are follower nodes with follower specifications respectively (fw, fm)
and (fw′, fm′), and fw′ ⪯ fw and fm′ = fm.

We can generalize Lemma 19 to bound the size of a node by the number of
messages that it must broadcast times a primitive-recursive function ψ(|P|, r).
The proof is more technical than the one of Lemma 19 but the idea is essentially

264 L. Guillou, C. Mascle, N. Waldburger

altitude

-2

-1

0

1

Boss

Follower

Boss

Boss

Follower

BossBoss

Follower

Follower

Boss

Fig. 6: Rearrangement of a tree. The root is in red, black solid arrows connect
parents to children, blue dashed arrows highlight that long words of messages
are sent upwards.

the same. The formal statement is given below. One can therefore bound the
size of a node with respect to the size of the nodes that it must broadcast to.

Lemma 26. There exists a primitive recursive function ψ such that, for every
protocol P with r registers, for all local runs u0 : (q0, ν0)

∗−→ (q, ν), u : (q, ν)
∗−→

(q′, ν′), uf : (q′, ν′)
∗−→ (qf , νf), there exists a local run u′ : (q, ν)

∗−→ (q′, ν′) with
|u′| ≤ ψ(|P|, r) and for all v′ ∈ N:

1. if v′ appears in u0, u, or uf , Inv′(u
′) ⪯ Inv′(u),

2. otherwise, there exists v ∈ N, not initial in u0, such that Inv′(u
′) ⪯ Inv(u).

It is however now much harder than in the signature case to bound the size of
the coverability witness. Indeed, the broadcasts no longer go only from children
to parents in the unfolding tree. If µp is the parent of µc, then µc broadcasts
to µp if µc is a boss node, but µp broadcasts to µc if µc is a follower node,
in which case µc only broadcasts one message to µp. Therefore, we cannot in
general bound |µp| with respect to |µc| nor |µc| with respect to |µp|, making us
unable to apply the Length function theorem immediately.

This leads us to arrange the unfolding tree so that long broadcast sequences
are sent upwards, using the notion of altitude depicted in Figure 6, formally
defined as follows. The altitude of the root is 0, the altitude of a boss node is the
altitude of its parent minus one, and the altitude of a follower node is the altitude
of its parent plus one. We denote the altitude of µ by alt(µ). This way the nodes
of maximal altitude are the ones that do not need to send long sequences of
messages. We will bound the size of nodes with respect to their altitude, from
the highest to the lowest, and then use the Length function theorem to bound
the maximal and minimal altitudes. We present here a sketch of the proof.

Let altmax ≥ 0 (resp. altmin ≤ 0) denote the maximum (resp. minimum)
altitude in τ . We first bound the size of a node with respect to the difference
between its altitude and altmax.

Parameterized broadcast networks with registers 265

Lemma 27. There is a primitive recursive function f0 such that, for every node
µ of τ , |µ| ≤ f0(|P|+ altmax− alt(µ)).

Proof sketch. We proceed by induction on the altitude, from highest to lowest. A
node of maximal altitude has at most one message to broadcast (a follower node
must broadcast one message to its parent), so its size is bounded by ψ(|P|, r)
by Lemma 26 (applying the Lemma to its local run minus its final step, i.e., the
step making the broadcast to its parent). Let µ be a node of τ whose neighbors
of higher altitude have size bounded by K. We claim that |µ| ≤ (ψ(|P|, r) +
2) (|M| rK +K), with ψ the primitive-recursive function defined in Lemma 26.
The idea is similar to the one for Lemma 20. The neighbors of higher altitude
are the nodes which require sequences of messages from µ. Their size bounds the
number of messages that µ needs to send; we then apply Lemma 26 to bound
the size of the local run of µ. We finally obtain f0 by iteratively applying the
inequality above. ⊓⊔

We now bound altmax and altmin:

Lemma 28. altmax and |altmin| are bounded by a function of class Fω|M| .

Proof sketch. We first bound altmax. Consider a branch of τ that has a node
at altitude altmax. We follow this branch from the root to a node of altitude
altmax: for every j ∈ [1,altmax], let µj be the first node of the branch that
has altitude j. All such nodes are necessarily follower nodes as they are above
their parent. Sequence µaltmax, . . . , µ2, µ1 is so that the ith term is at altitude
altmax − i hence its size is bounded by f0(|P| + i) (Lemma 27). With the
observation of Lemma 25, we retrieve from the follower specifications of this
sequence of nodes a bad sequence and we apply the Length function theorem to
bound altmax. This yields in turn a bound on the size of the root of τ . In order
to bound altmin, we proceed similarly, using boss nodes this time. We follow
a branch from the root to a node of altitude altmin. The sequence of nodes
that are lower than all previous ones yields a sequence of boss specifications,
which is a bad sequence by Lemma 25, and whose growth can be bounded using
Lemma 27 and the bound on altmax. We apply the Length function theorem
to bound |altmin|. ⊓⊔

Once we have bounded altmax and altmin, we can infer a bound on the
size of all nodes (Lemma 27), and then on the length of branches: by minimality,
a branch cannot have two nodes with the same specification. The bound on the
size of the tree then follows from the observation that bounding the size of nodes
of τ also allows to bound their number of children.

We obtain a computable bound (of the class Fωω) on the size of a minimal
coverability witness if it exists. Our decidability procedure computes that bound,
enumerates all trees of size below the bound and checks for each of them whether
it is coverability witness. This yields the main result of this paper:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

266 L. Guillou, C. Mascle, N. Waldburger

4.2 Undecidability of the target problem

A natural next problem, after Cover, is the target problem (Target). Our
Cover procedure heavily relies on the ability to add agents at no cost. For
Target we need to guarantee that those agents can then reach the target state,
which makes the problem harder. In fact, Target is undecidable, which indicates
that our model lies at the frontier of decidability.

Proposition 29. Target is undecidable for BNRA, even with two registers.

Proof sketch. We simulate a Minsky machine with two counters. As in Propo-
sition 11, each agent starts by storing some other agent’s identifier, called its
“predecessor”. It then only accepts messages from its predecessor. As there are
finitely many agents, there is a cycle in the predecessor graph.

In a cycle, we use the fact that all agents must reach state qf to simulate faith-
fully a run of the machine: agents alternate between receptions and broadcasts
so that, in the end, they have received and sent the same number of messages,
implying that no message has been lost along the cycle. We then simulate the
machine by having an agent (the leader) choose transitions and the other ones
simulate the counter values by memorizing a counter (1 or 2) and a binary value
(0 or 1). For instance, an increment of counter 1 takes the form of a message
propagated in the cycle from the leader until it finds an agent simulating counter
1 and having bit 0. This agent switches to 1 and sends an acknowledgment that
propagates back to the leader. ⊓⊔

5 Cover in 1-BNRA

In this section, we establish the NP-completeness of the restriction of Cover to
BNRA with one register per agent, called 1-BNRA. Here we simply sketch the
key observations that allow us to abstract runs into short witnesses, leading to
an NP algorithm for the problem.

In 1-BNRA, thanks to the copycat principle, any message can be broadcast
with a fresh value, therefore one can always circumvent ‘ ̸=’ tests. In the end,
our main challenge for 1-BNRA is ‘=’ tests upon reception. For this reason, we
look at clusters of agents that share the value in their registers.

Consider a run in which some agent a reaches some state q,; we can duplicate
a many times to have an unlimited supply of agents in state q. Now assume
that, at some point in the run, agent a stored a received value. Consider the
last storing action performed by a: a was in a state q1 and performed transition
(q1, rec(m, 1, ↓), q2) upon reception of a message (m, v). Because we can assume
that we have an unlimited supply of agents in q1 thanks to the copycat principle,
we can make as many agents as we want take transition (q1, rec(m, 1, ↓), q2) at
the same time as a by receiving the same message (m, v). These new agents end
up in q2 with value v, and then follow a along every transition until they all
reach q, still with value v. In summary, because a has stored a value in the run,
we can have an unlimited supply of agents in state q with the same value as a.

Parameterized broadcast networks with registers 267

Following those observations, we define an abstract semantics with abstract
configurations of the form (S, b,K) with S,K ⊆ Q and b ∈ Q ∪ {⊥}. The first
component S is a set of states that we know we can cover (hence we can assume
that there are arbitrarily many agents in all these states). We start with S = {q0}
and try to increase it. To do so, we use the two other components (the gang)
to keep track of the set of agents sharing a value v: b (the boss) is the state of
the agent which had that value at the start, K (the clique) is the set of states
covered by other agents with that value. As mentioned above, we may assume
that every state of K is filled with as many agents with value v as we need. We
will thus define abstract steps which allow to simulate steps of the agents with
the value we are following. When they cover states outside of S, we may add
those to S and reset b to q0 and K to ∅, to then start following another value. We
can bound the length of relevant abstract runs, and thus use them as witnesses
for our NP upper bound.

The NP lower bound follows from a reduction from 3SAT. An agent a sends a
sequence of messages representing a valuation, with its identifier, to other agents
who play the role of an external memory by broadcasting back the valuation.
This then allows a to check the satisfaction of a 3SAT formula.

Theorem 30. The coverability problem for 1-BNRA is NP-complete.

6 Conclusion

We established the decidability (and Fωω -completeness) of the coverability prob-
lem for BNRA, as well as the NP-completeness of the problem for 1-BNRA.
Concerning future work, one may want to push decidability further, for instance
by enriching our protocols with inequality tests, as done in classical models such
as data nets [15]. Reductions of other distributed models to this one are also
being studied.

Acknowledgements. We are grateful to Arnaud Sangnier for encouraging us to
work on BNRA, for the discussions about his work in [10] and for his valuable
advice. We also thank Philippe Schnoebelen for the interesting discussion and
Sylvain Schmitz for the exchange on complexity class Fωω and related topics.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014. LIPIcs, vol. 29, pp. 653–665.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014). https://doi.org/10.
4230/LIPIcs.FSTTCS.2014.653

2. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of buffered dynamic
register automata. In: Networked Systems, NETYS 2015. Lecture Notes in Com-
puter Science, vol. 9466, pp. 15–31. Springer (2015). https://doi.org/10.1007/
978-3-319-26850-7_2

268 L. Guillou, C. Mascle, N. Waldburger

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996). https://doi.org/10.1006/inco.
1996.0053

4. Balasubramanian, A.R., Bertrand, N., Markey, N.: Parameterized verification of
synchronization in constrained reconfigurable broadcast networks. In: Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2018. Lecture
Notes in Computer Science, vol. 10806, pp. 38–54. Springer (2018). https://doi.
org/10.1007/978-3-319-89963-3_3

5. Balasubramanian, A.R., Guillou, L., Weil-Kennedy, C.: Parameterized anal-
ysis of reconfigurable broadcast networks. In: Foundations of Software Sci-
ence and Computation Structures, FoSSaCS 2022. Lecture Notes in Computer
Science, vol. 13242, pp. 61–80. Springer (2022). https://doi.org/10.1007/

978-3-030-99253-8_4
6. Bollig, B., Ryabinin, F., Sangnier, A.: Reachability in distributed memory au-

tomata. In: Annual Conference on Computer Science Logic, CSL 2021. LIPIcs,
vol. 183, pp. 13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.13

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

8. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: Annual IEEE Symposium on Logic in Computer Science, LICS 2008.
pp. 205–216. IEEE Computer Society (2008). https://doi.org/10.1109/LICS.
2008.47

9. Chini, P., Meyer, R., Saivasan, P.: Liveness in broadcast networks. Computing
104(10), 2203–2223 (2022). https://doi.org/10.1007/s00607-021-00986-y

10. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast
networks of register automata. In: Reachability Problems , RP 2013. Lecture Notes
in Computer Science, vol. 8169, pp. 109–121. Springer (2013). https://doi.org/
10.1007/978-3-642-41036-9_11

11. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.FSTTCS.2012.
289

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: CONCUR 2010. Lecture Notes in Computer Science, vol. 6269, pp.
313–327. Springer (2010). https://doi.org/10.1007/978-3-642-15375-4_22

13. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: Annual IEEE Symposium on Logic in Computer Science, LICS
1998. pp. 70–80. IEEE Computer Society (1998). https://doi.org/10.1109/

LICS.1998.705644
14. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:

14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-
5, 1999. pp. 352–359. IEEE Computer Society (1999). https://doi.org/10.1109/
LICS.1999.782630

15. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of
timed-arc petri nets, data nets, and other enriched nets. In: Proceedings of the 27th
Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik,
Croatia, June 25-28, 2012. pp. 355–364. IEEE Computer Society (2012). https:
//doi.org/10.1109/LICS.2012.46

Parameterized broadcast networks with registers 269

https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46

16. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society s3-2(1), 326–336 (1952). https://doi.org/10.1112/
plms/s3-2.1.326

17. Lasota, S.: Decidability border for petri nets with data: WQO dichotomy conjec-
ture. In: Kordon, F., Moldt, D. (eds.) Application and Theory of Petri Nets and
Concurrency - 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9698,
pp. 20–36. Springer (2016). https://doi.org/10.1007/978-3-319-39086-4_3,
https://doi.org/10.1007/978-3-319-39086-4_3

18. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008). https:

//doi.org/10.1007/978-3-540-73094-1_19

19. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA
(1967)

20. Rezine, O.: Verification of networks of communicating processes: Reachability prob-
lems and decidability issues. Ph.D. thesis, Uppsala University, Sweden (2017)

21. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Information
and Computation 254, 41–58 (2017). https://doi.org/10.1016/j.ic.2017.02.
002

22. Sangnier, A.: Erratum to parameterized verification of broadcast networks of reg-
ister automata (2023), https://www.irif.fr/~sangnier/publications.html

23. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Transactions on
Computation Theory 8(1), 3:1–3:36 (2016). https://doi.org/10.1145/2858784

24. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: International Colloquium on Automata, Languages and Programming,
ICALP 2011. Lecture Notes in Computer Science, vol. 6756, pp. 441–452. Springer
(2011). https://doi.org/10.1007/978-3-642-22012-8_35

25. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H.C. (eds.) CONCUR 2013 - Concurrency Theory - 24th Interna-
tional Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8052, pp. 5–24. Springer
(2013). https://doi.org/10.1007/978-3-642-40184-8_2

26. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83(5), 251–261 (2002). https://doi.org/
10.1016/S0020-0190(01)00337-4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

270 L. Guillou, C. Mascle, N. Waldburger

https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://www.irif.fr/~sangnier/publications.html
https://doi.org/10.1145/2858784
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
http://creativecommons.org/licenses/by/4.0/

	Parameterized Broadcast Networks with Registers: from NP to the Frontiers of Decidability

