
1 Introduction

Logical relations are arguably the most widely used method for reasoning on higher-order
languages. Historically, early examples of logical relations [44,46,47,51,55,56,58,59]
were based on denotational semantics, before the method evolved into logical relations
based on operational semantics [7,17,34,50,52,53]. Today, operationally-based logical
relations are ubiquitous and serve purposes ranging from strong normalization proofs [6]
and safety properties [21,22] to reasoning about contextual equivalence [5,60] and
formally verified compilation [8,33,45,48], in a variety of settings such as effectful [37],
probabilistic [4,10,63], and differential programming [15,40,41].

Unfortunately, despite the extensive literature, there is a distinct lack of a general
formal theory of (operational) logical relations. As a reasoning method, logical relations
are applied in a largely empirical manner, more so because their core principles are well
understood on an intuitive level. For example, there is typically no formal notion of a
logical predicate or relation; instead, if a predicate or relation is defined by induction on

⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 501369690

⋆⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
numbers 419850228

⋆ ⋆ ⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
numbers 419850228 and 527481841

† Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 470467389

Logical Predicates in Higher-Order
Mathematical Operational Semantics

Sergey Goncharov1,⋆, Alessio Santamaria , Lutz Schroder2 ¨ 1,⋆⋆, Stelios Tsampas ,⋆ ⋆ ⋆

and Henning Urbat1,†

Abstract. We present a systematic approach to logical predicates based on univer-
sal coalgebra and higher-order abstract GSOS, thus making a first step towards a
unifying theory of logical relations. We start with the observation that logical pred-
icates are special cases of coalgebraic invariants on mixed-variance functors. We
then introduce the notion of a locally maximal logical refinement of a given predi-
cate, with a view to enabling inductive reasoning, and identify sufficient conditions
on the overall setup in which locally maximal logical refinements canonically exist.
Finally, we develop induction-up-to techniques that simplify inductive proofs via
logical predicates on systems encoded as (certain classes of) higher-order GSOS
laws by identifying and abstracting away from their boiler-plate part.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 47– 9, 2024.
https://doi.org/10.1007/978-3-031-57231-9_3

9

1(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
sergey.goncharov,lutz.schroder,stelios.tsampas@fau.de,

henning.urbat @fau.de
2 University of Sussex, Brighton, UK
a.santamaria@sussex.ac.uk

{
}

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_3&domain=pdf

types and maps “related inputs to related outputs”, it then meets the informal criteria to
be called “logical”. However, the empirical character of logical relations is problematic
for two main reasons: (i) complex machinery associated to logical relations needs to be
re-established anew on a per-case basis, and (ii) it is hard to abstract and simplify said
machinery, even though certain parts of proofs via logical relations seem generic.

Recently, Higher-order Mathematical Operational Semantics [24], or higher-order
abstract GSOS, has emerged as a unifying approach to the operational semantics of
higher-order languages. In this framework, languages are represented as higher-order
GSOS laws, a form of distributive law of a syntax functor Σ over a mixed-variance be-
haviour bifunctor B. In further work [62], an abstract form of Howe’s method [16,31,32]
for higher-order abstract GSOS has been identified, in which an otherwise complex and
application-specific operational technique is, at the same time, lifted to an appropriate
level of generality and reduced to a simple lax bialgebra condition.

In the present paper, we work towards establishing a theory of logical relations based
on coalgebra and higher-order abstract GSOS, starting from logical predicates, under-
stood as unary logical relations. In more detail, we present the following contributions:

(i) A systematization of the method of logical predicates (Section 3), achieved by
(a) identifying logical predicates as certain coalgebraic invariants (Definition 12),

parametric in a predicate lifting of the underlying mixed-variance bifunctor,
(b) introducing the locally maximal logical refinement □P of a predicate P (Defini-

tion 14), which enables inductive proofs of □P, and
(c) identifying an abstract setting in which locally maximal logical refinements of

predicates exist and are unique (Section 3.3).
(ii) The development of efficient reasoning techniques on logical predicates, which we
call induction up-to (Theorems 34 and 36), for higher-order GSOS laws satisfying a
relative flatness condition (Definition 30).

We illustrate (ii) by providing proofs of strong normalization for typed combinatory
logic and type safety for the simply typed λ-calculus which, thanks to the use of our
up-to techniques, are significantly shorter and simpler than standard arguments found
in the literature. Finally, we exploit the genericity of our framework to study strong
normalization on the level of higher-order GSOS laws (Theorem 42). We note that the
implementation of typed languages as higher-order GSOS laws as such is also novel.

Full proofs and additional details can be found in the arXiv version [25] of our paper.

Related work While denotational logical relations have been studied in categorical
generality, e.g. [27,28,29,38], general abstract foundations of operational logical rela-
tions are far less developed. In recent work [13,14], Dagnino and Gavazzo introduce
a categorical notion of operational logical relations that is largely orthogonal to ours,
in particular regarding the parametrization of the framework: In op. cit., the authors
work with a fixed fine-grain call-by-value language [42], parametrized by a signature
of generic effects, while the notion of logical relation is kept variable and in fact is
parametrized over a fibration; contrastingly, we keep to the traditional notion of logical
relation but parametrize over the syntax and semantics of the language. Moreover, we
work with a small-step operational semantics, whereas the semantics used in op. cit. is
an axiomatically defined categorical evaluation semantics.

48 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

2 Preliminaries

2.1 Category Theory

Familiarity with basic category theory [43] (e.g. functors, natural transformations,
(co)limits, monads) is assumed. We review some concepts and notation.

Notation. Given objects X1, X2 in a category C, we write X1 × X2 for the product and
⟨ f1, f2⟩ : X → X1 × X2 for the pairing of fi : X → Xi, i = 1, 2. We let X1 + X2 denote the
coproduct, inl : X1 → X1+X2 and inr : X2 → X1+X2 the injections, [g1, g2] : X1+X2 → X
the copairing of gi : Xi → X, i = 1, 2, and ∇ = [idX , idX] : X + X → X the codiagonal.
The slice category C/X, where X ∈ C, has as objects all pairs (Y, pY) of an object Y ∈ C

and a morphism pY : Y → X, and a morphism from (Y, pY) to (Z, pZ) is a morphism
f : Y → Z of C such that pY = pZ · f . The coslice category X/C is defined dually.

Extensive categories. A category C is (finitely) extensive [12] if it has finite coproducts
and for every finite family of objects Xi (i ∈ I) the functor E :

∏
i∈I C/Xi → C/

∐
i∈I Xi

sending (pi : Yi → Xi)i∈I to
∐

i∈I pi :
∐

i Yi →
∐

i Xi is an equivalence of categories.
A countably extensive category satisfies the analogous property for countable coprod-
ucts. In extensive categories, coproduct injections inl, inr are monic, and coproducts of
monomorphisms are monic; generally, coproducts behave like disjoint unions of sets.

Example 1. Examples of countably extensive categories include the category Set of
sets and functions; the category SetC of presheaves on a small category C and natural
transformations; and the categories of posets and monotone maps, nominal sets and
equivariant maps, and metric spaces and non-expansive maps, respectively.

Algebras. Given an endofunctor F on a category C, an F-algebra is a pair (A, a) consisting
of an object A and a morphism a : FA → A (the structure). A morphism from (A, a) to
an F-algebra (B, b) is a morphism h : A → B of C such that h · a = b · Fh. Algebras
for F and their morphisms form a category Alg(F), and an initial F-algebra is simply an
initial object in that category. We denote the initial F-algebra by µF if it exists, and its
structure by ι : F(µF) → µF. Initial algebras admit the structural induction principle:
the algebra µF has no proper subalgebras, that is, every F-algebra monomorphism
m : (A, a) ↣ (µF, ι) is an isomorphism.

More generally, a free F-algebra on an object X of C is an F-algebra (F⋆X, ιX)
together with a morphism ηX : X → F⋆X of C such that for every algebra (A, a) and
every h : X → A in C, there exists a unique F-algebra morphism h♯ : (F⋆X, ιX) → (A, a)
such that h = h♯ · ηX . If free algebras exist on every object, their formation induces a
monad F⋆ : C → C, the free monad generated by F. Every F-algebra (A, a) yields an
Eilenberg-Moore algebra â : F⋆A → A as the free extension of idA : A → A.

The most familiar example of functor algebras are algebras for a signature. Given a
set S of sorts, an S -sorted algebraic signature consists of a set Σ of operation symbols
together with a map ar : Σ → S ⋆ × S associating to every f ∈ Σ its arity. We write
f : s1 × · · · × sn → s if ar(f) = (s1, . . . , sn, s), and f : s if n = 0 (in which case f is
called a constant). Every signature Σ induces a polynomial functor on the category SetS

of S -sorted sets, denoted by the same letter Σ, given by (ΣX)s =
∐

f : s1···sn→s
∏n

i=1 Xsi

for X ∈ SetS and s ∈ S . An algebra for the functor Σ is precisely an algebra for

Logical Predicates in Higher-Order Mathematical Operational Semantics 49

the signature Σ, viz. an S -sorted set A = (As)s∈S in SetS equipped with an operation
fA :

∏n
i=1 Asi → As for every f : s1 · · · sn → s in Σ. Morphisms of Σ-algebras are S -sorted

maps respecting the algebraic structure. Given an S -sorted set X of variables, the free
algebra Σ⋆X is the Σ-algebra of Σ-terms with variables from X; more precisely, (Σ⋆X)s

is inductively defined by Xs ⊆ (Σ⋆X)s and f(t1, . . . , tn) ∈ (Σ⋆X)s for all f : s1 · · · sn → s
and ti ∈ (Σ⋆X)si . In particular, the free algebra on the empty set is the initial algebra µΣ;
it is formed by all closed terms of the signature. For every Σ-algebra (A, a), the induced
Eilenberg-Moore algebra â : Σ⋆A → A is given by the map that evaluates terms over A
in the algebra A.

Coalgebras. Dual to the notion of algebra, a coalgebra for an endofunctor F on C is a
pair (C, c) of an object C (the state space) and a morphism c : C → FC (the structure).

2.2 Higher-Order Abstract GSOS

We summarize the framework of higher-order abstract GSOS [24], which extends the
original, first-order counterpart introduced by Turi and Plotkin [61]. In higher-order
abstract GSOS, the operational semantics of a higher-order language is presented in the
form of a higher-order GSOS law, a categorical structure parametric in
(1) a category C with finite products and coproducts;
(2) an object V ∈ C of variables;
(3) an endofunctor Σ : C → C, where Σ = V + Σ′ for some endofunctor Σ′, such that
free Σ-algebras exist on every object (hence Σ generates a free monad Σ⋆);
(4) a mixed-variance bifunctor B : Cop × C → C.
The functors Σ and B represent the syntax and the behaviour of a higher-order language.
The motivation behind B having two arguments is that transitions have labels, which
behave contravariantly, and poststates, which behave covariantly; in term models the
objects of labels and states will coincide. The presence of an object V of variables is
a technical requirement for the modelling of languages with variable binding [19,20],
such as the λ-calculus. An object of V/C, the coslice category of V-pointed objects, is
thought of as a set X of programs with an embedding pX : V → X of the variables. In
point-free calculi, e.g. xTCL as introduced below, we put V = 0 (the initial object).

Definition 2. A (V-pointed) higher-order GSOS law of Σ over B is a family of mor-
phisms (1) that is dinatural in (X, pX) ∈ V/C and natural in Y ∈ C:

ϱ(X,pX),Y : Σ(X × B(X,Y)) → B(X, Σ⋆(X + Y)) (1)

Notation 3. (i) In (1), we have implicitly applied the forgetful functor V/C → C at
(X, pX). In addition, we write ϱX,Y for ϱ(X,pX),Y if the point pX is clear from the context.
(ii) For (A, a) ∈ Alg(Σ), we view A as V-pointed by pA =

(
V inl
−→ V + Σ′A = ΣA a

−→ A
)
.

Informally, ϱX,Y assigns to an operation of the language with formal arguments from X
having specified next-step behaviours in B(X,Y) (i.e. with labels in X and formal post-
states in Y) a next-step behaviour in B(X, Σ⋆(X + Y)), i.e. with the same labels, and
with poststates being program terms mentioning variables from both X and Y . Every

50 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

e ✓
−→ S τ1 ,τ2 ,τ3

t
−→ S ′

τ1 ,τ2 ,τ3
(t) S ′

τ1 ,τ2 ,τ3
(p) t

−→ S ′′
τ1 ,τ2 ,τ3

(p, t)

S ′′
τ1 ,τ2 ,τ3

(p, q) t
−→ (p t) (q t) Kτ1 ,τ2

t
−→ K′

τ1 ,τ2
(t) K′

τ1 ,τ2
(p) t

−→ p

Iτ t
−→ t

p → p′

p q → p′ q

p q
−→ p′

p q → p′

Fig. 1. (Call-by-name) operational semantics of xTCL.

higher-order GSOS law (1) induces a canonical operational model γ : µΣ → B(µΣ, µΣ),
viz. a B(µΣ,−)-coalgebra on the initial algebra µΣ, defined by primitive recursion [36,
Prop. 2.4.7] as the unique morphism γ making the following diagram commute:

Σ(µΣ) µΣ

Σ(µΣ × B(µΣ, µΣ)) B(µΣ, Σ⋆(µΣ + µΣ)) B(µΣ, µΣ)

Σ⟨id, γ⟩

ι

γ

ϱµΣ,µΣ B(µΣ,ι̂·Σ⋆∇)

Here, we regard the initial algebra (µΣ, ι) as V-pointed as explained in Notation 3.

Simply Typed SKI Calculus. We illustrate the ideas behind higher-order abstract GSOS
with an extended version of the simply typed SKI calculus [30], a typed combinatory
logic which we call xTCL. It is expressively equivalent to the simply typed λ-calculus
but does not use variables; hence it avoids the complexities associated to variable binding
and substitution in the λ-calculus, which we treat in Section 4.2. The set Ty of types is
inductively defined as

TyF unit | Ty _ Ty. (2)

The constructor _ is right-associative, i.e. τ1 _ τ2 _ τ3 is parsed as τ1 _ (τ2 _ τ3).
The terms of xTCL are formed over the Ty-sorted signature Σ whose operation symbols
are listed below, with τ, τ1, τ2, τ3 ranging over all types in Ty:

e : unit appτ1,τ2
: (τ1 _ τ2) × τ1 → τ2

S τ1,τ2,τ3 : (τ1 _ τ2 _ τ3) _ (τ1 _ τ2) _ τ1 _ τ3 Kτ1,τ2 : τ1 _ τ2 _ τ1

S ′
τ1,τ2,τ3

: (τ1 _ τ2 _ τ3) → ((τ1 _ τ2) _ τ1 _ τ3) K′
τ1,τ2

: τ1 → (τ2 _ τ1)
S ′′
τ1,τ2,τ3

: (τ1 _ τ2 _ τ3) × (τ1 _ τ2) → (τ1 _ τ3) Iτ : τ _ τ

We let Tr = µΣ denote the Ty-sorted set of closed Σ-terms. Informally, app represents
function application (we write s t for app(s, t)), and the constants Iτ, Kτ1,τ2 , S τ1,τ2,τ3

represent the λ-terms λt. t, λt. λs. t and λt. λs. λu. (s u) (t u), respectively. The operational
semantics of xTCL involves three kinds of transitions: ✓

−→, t
−→ and −→. It is presented

in Figure 1; here, p, p′, q, t range over terms in Tr of appropriate type. Intuitively, s ✓
−→

identifies s as an explicitly irreducible term; s t
−→ r states that s acts as a function

mapping t to r; and s → t indicates that s reduces to t. Our use of labelled transitions

Logical Predicates in Higher-Order Mathematical Operational Semantics 51

in higher-order operational semantics is inspired by work on bisimilarity in the λ-
calculus [1,26]. The use of K′, S ′ and S ′′ does not impact the behaviour of programs,
except for possibly adding more unlabelled transitions. For example, the standard rule
S tse → (te)(se) for the S-combinator is rendered as the chain of transitions S tse →

S ′(t) se → S ′′(t, s) e → (te)(se). The transition system for xTCL is deterministic:
for every term s, either s ✓

−→, or there exists a unique t such that s → t, or for each
appropriately typed t there exists a unique st such that s t

−→ st. Therefore, given

Bτ(X,Y) = Yτ + Dτ(X,Y), (3)

Dunit(X,Y) = 1 = {∗} and Dτ1_τ2 (X,Y) = Y
Xτ1
τ2 , (4)

the operational rules in Figure 1 determine a SetTy-morphism γ : Tr → B(Tr,Tr):

γunit(s) = inr(∗) if s ✓
−→ where s : unit,

γτ(s) = inl(t) if s −→ t where s, t : τ, (5)
γτ1_τ2 (s) = inr(λt. st) if s t

−→ st for s : τ1 _ τ2 and t : τ1.

Proposition 4. The object assignments (3) and (4) extend to mixed-variance bifunctors

B, D : (SetTy)op × SetTy → SetTy. (6)

The semantics of xTCL in Figure 1 corresponds to a (0-pointed) higher-order GSOS
law of the syntax functor Σ over the behaviour bifunctor B, i.e. to a family of maps (1)
dinatural in X ∈ SetTy and natural in Y ∈ SetTy. The maps ϱX,Y are cotuples defined by
distinguishing cases on the constructors e, S , S ′, S ′′, K, K′, I, app of xTCL, and each
component of ϱ is determined by the rules that apply to the corresponding constructor.
We provide a few illustrative cases; see [25, p. 25], for a complete definition.

ϱX,Y : Σ(X × B(X,Y)) → B(X, Σ⋆(X + Y)) (7)

ϱX,Y (S ′′
τ1,τ2,τ3

((p, f), (q, g))) = λt. (p t) (q t) (8)

ϱX,Y ((p, f) (q, g)) = f (q) if f : Y
Xτ1
τ2 (9)

ϱX,Y ((p, f) (q, g)) = f q if f : Yτ1_τ2 (10)

The operational model γ : Tr → B(Tr,Tr) of ϱ coincides with the coalgebra (5).

Remark 5. The rules for application in Figure 1 implement the call-by-name evaluation
strategy. Other strategies can be captured by varying the rules and consequently the
corresponding higher-order GSOS law. For the call-by-value strategy, one replaces
the last rule with (11) and (12) below and modifies clause (9) in the definition of ϱ
accordingly. One can also model the traditional view of combinatory logic as a rewrite
system [30] where any redex can be reduced, no matter how deeply. This amounts
to specifying a maximally nondeterministic strategy by adding the rule (13) below to
Figure 1. Notably, this makes the operational model nondeterministic, and hence the
corresponding higher-order GSOS law relies on the behaviour functor PB instead of the
original B given by (3), where P is the powerset functor.

p t
−→ p′ q → q′

p q → p q′
(11)

p q
−→ p′ q t

−→ q′

p q → p′
(12)

q → q′

p q → p q′
(13)

52 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

3 Coalgebraic Logical Predicates

3.1 Predicate Lifting

Predicates and relations on coalgebras are often most conveniently modelled through
predicate and relation liftings [39] of the underlying type functors. In the following
we introduce a framework of predicate liftings for mixed-variance bifunctors, adapting
existing notions of relation lifting [62], which enables reasoning about “higher-order”
coalgebras, such as operational models of higher-order GSOS laws. The following global
assumptions ensure that predicates and relations behave in an expected manner:

Assumptions 6. From now on, we fix C to be a complete, well-powered and extensive
category in which, additionally, strong epimorphisms are stable under pullbacks.

The categories of Example 1 satisfy these assumptions. Since C is complete and well-
powered, every morphism f admits a (strong epi, mono)-factorization f = m ·e [11, Prop.
4.4.3]; we call m the image of f . The category Pred(C) of predicates over C has as objects
all monics (predicates) P ↣ X from C, and as morphisms (p : P ↣ X) → (q : Q ↣ Y)
all pairs (f : X → Y, f |P : P → Q) such that q · f |P = f · p (so f |P is uniquely determined
by f). (Co)products in Pred(C) are lifted from C. The fiber PredX(C) is the subcategory
of all monics P ↣ X for fixed X and morphisms (idX ,−). It is is preordered by p ≤ q
if p factors through q; identifying p, q if p ≤ q and q ≤ p, we regard PredX(C) as a poset.
Since C is complete and well-powered, PredX(C) is a complete lattice; we write

∧
for

meets (i.e. pullbacks) and
∨

for joins. We will also write f ⋆[P] for the inverse image of
a predicate p : P ↣ X under f : Y → X, i.e. the pullback of p along f . The direct image
f ⋆[Q] of q : Q ↣ Y under f : Y → X is the image of the composite f · p : Q → X. This
yields an adjunction between PredX(C) and PredY (C), i.e. Q ≤ f ⋆[P] iff f ⋆[Q] ≤ P.

A predicate lifting of an endofunctor Σ : C → C is an endofunctor Σ : Pred(C) →
Pred(C) making the left-hand diagram below commute; similarly, a predicate lifting of
a mixed-variance bifunctor B : Cop × C → C is a bifunctor B : Pred(C)op × Pred(C) →
Pred(C) making the right-hand diagram below commute. Here |−| is the forgetful functor
sending p : P ↣ X to X.

Pred(C) Pred(C)

C C

|−|

Σ

|−|

Σ

Pred(C)op × Pred(C) Pred(C)

Cop × C C

|−|op×|−|

B

|−|

B

(14)

We denote by Σ both the action on predicates and on the corresponding objects in C, i.e.
Σ(p : P ↣ X) : ΣP ↣ ΣX.

Every endofunctor Σ on C admits a canonical predicate lifting Σ mapping p : P ↣ X
to the image Σp : ΣP ↣ ΣX of Σp : ΣP → ΣX [36]. Note that Σp = Σp if Σ preserves
monos. In the remainder we will only consider canonical liftings of endofunctors.

Proposition 7. If Σ preserves strong epis, then Σ
⋆
= Σ⋆.

The canonical predicate liftings for mixed-variance bifunctors are slightly more
complex. Similarly to the case of relation liftings of such functors developed in recent
work [62], their construction involves suitable pullbacks.

Logical Predicates in Higher-Order Mathematical Operational Semantics 53

Proposition 8. Every bifunctor B : Cop × C → C admits a canonical predicate lifting
B : Pred(C)op × Pred(C) → Pred(C) sending (p : P ↣ X, q : Q ↣ Y) to the predicate
mP,Q : B(P, Q) ↣ B(X,Y), the image of the morphism rP,Q given by the pullback below:

TP,Q B(P, Q)

B(P, Q)

B(X,Y) B(P,Y)

eP,Q

mP,Q

sP,Q

rP,Q B(id,q)

B(p,id)

(15)

If B preserves monos in the covariant argument, then B(id, q) is monic and, since monos
are pullback-stable, B(P, Q) is simply the predicate rP,Q : TP,Q ↣ B(X,Y).

Example 9. The bifunctors B and D of (3) and (4) have canonical predicate liftings

Bτ(P, Q) = Qτ + Dτ(P, Q) where (16)

Dunit(P, Q) = 1, Dτ1_τ2 (P, Q) = { f : Xτ1 → Yτ2 | ∀x ∈ Pτ1 . f (x) ∈ Qτ2 } ⊆ Y
Xτ1
τ2 . (17)

Predicate liftings allow us to generalize coalgebraic invariants [36, §6.2], viz. predicates
on the state space of a coalgebra that are closed under the coalgebra structure in a suitable
sense, from endofunctors to mixed-variance bifunctors:

Notation 10. For the remainder of the paper, we fix a mixed-variance bifunctor B : Cop×

C → C and a predicate lifting B : Pred(C)op × Pred(C) → Pred(C).

Definition 11 (Coalgebraic invariant). Let c : Y → B(X,Y) be a B(X,−)-coalgebra.
Given predicates S ↣ X, P ↣ Y , we say that P is an S -relative (B-)invariant (for c) if
P ≤ c⋆[B(S , P)], equivalently, c⋆[P] ≤ B(S , P). (Mention of B is usually omitted.)

Coalgebraic invariants will feature centrally in our notion of logical predicate.

3.2 Logical Predicates via Lifted Bifunctors

As a reasoning device, the method of logical predicates (which are unary logical relations)
typically applies to the following scenario: One has an operational semantics on an
inductively defined set µΣ of Σ-terms and a target predicate P ↣ µΣ to be proved, in
the sense that one wants to show P = µΣ. Logical predicates come into play when a
direct proof of P = µΣ by structural induction is not possible. The classical example of
such a predicate is strong normalization [23,59]. The idea is to strengthen P, obtaining a
predicate featuring a certain “logical” structure that does allow for a proof by induction.
We now develop this scenario in our abstract bifunctorial setting.

Definition 12 (Coalgebraic logical predicate). Suppose that c : X → B(X, X) is a B(X,−)
coalgebra with state space X. A predicate P ↣ X is logical (for c) if it is a P-relative
B-invariant (as per Def. 11), i.e. P ≤ c⋆[B(P, P)], equivalently, c⋆[P] ≤ B(P, P).

In applications, c is the operational model γ : µΣ → B(µΣ, µΣ) of a higher-order lan-
guage, or some coalgebra derived from it. The self-referential nature of logical predicates
(as relative to themselves) is meant to cater for the property that “inputs in P are mapped
to outputs in P”. The following example from xTCL illustrates this:

54 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 13. For B given by (3) and its canonical lifting B, a predicate P ↣ Tr is
logical for the operational model γ : Tr → B(Tr,Tr) from (5) if γ⋆[P] ≤ B(P, P), that is,

(γunit)⋆[Punit] ≤ Punit + 1,
∀τ1, τ2. (γτ1_τ2)⋆[Pτ1_τ2] ≤ Pτ1_τ2 + { f : Trτ1 → Trτ2 | ∀s ∈ Pτ1 . f (s) ∈ Pτ2 },

using the description of B from Example 9. More explicitly, this means that

– if s ∈ Pτ and s → t then t ∈ Pτ;
– if s ∈ Pτ1_τ2 and s t

−→ u, then t ∈ Pτ1 implies u ∈ Pτ2 .

As we can see in the second clause, function terms that satisfy P produce outputs that
satisfy P on all inputs that satisfy P. This is the key property of any logical predicate.

Defining a suitable logical predicate (or relation) is the centerpiece of various sophis-
ticated arguments in higher-order settings. One standard application of logical predicates
are proofs of strong normalization, which we now illustrate in the case of xTCL. For the
operational model γ : Tr → B(Tr,Tr) and terms r, s, t of compatible type, put

– s ⇒ t if s = s0 → s1 → · · · → sn = t for some n ≥ 0 and terms s0, . . . , sn;
– s

t
=⇒ r if s ⇒ s′ and s′ t

−→ r for some (unique) s′;

– ⇓(s) if s ⇒ s′ and γ(s′) ∈ D(Tr,Tr) for some (unique) s′.

Coalgebraically, this associates a weak operational model γ̃ : Tr → PB(Tr,Tr) to γ, where
γ̃(t) = {t′ | t ⇒ t′} ∪ {γ(t′) | t ⇒ t′, γ(t′) ∈ D(Tr,Tr)}.

Strong normalization of xTCL asserts that ⇓ = Tr: every term eventually reduces
to a function or explicitly terminates. We now devise three different logical predicates
on Tr, each of which provides a proof of that property. The idea is to refine the target
predicate ⇓ ↣ Tr to a logical predicate, for which showing that it is totally true will be
facilitated by its invariance w.r.t. a corresponding coalgebra structure. Our first example
will be based on the following notion of refinement:

Definition 14 (Locally maximal logical refinement). Let c : X → B(X, X) be a coalgebra
and let P ↣ X be a predicate. A predicate □P ↣ X is a locally maximal logical
refinement of P if (i) □P ≤ P, (ii) □P is logical (i.e. a □P-relative B-invariant), and (iii)
for every predicate Q ≤ P that is a □P-relative B-invariant, one has Q ≤ □P.

Example 15. We define the predicate □⇓ ↣ Tr, i.e. a family of subsets □⇓τ ⊆ Trτ
(τ ∈ Ty), by induction on the structure of the type τ: we put □⇓unit = ⇓unit, and we take
□⇓τ1_τ2

to be the greatest subset of Trτ1_τ2 satisfying

□⇓τ1_τ2
(t) =⇒ ⇓τ1_τ2

(t) ∧

□⇓τ1_τ2
(t′) if t → t′

□⇓τ1
(s) =⇒ □⇓τ2

(t′) if t s
−→ t′

From this definition it is not difficult to verify by induction on the type that

□⇓ is a locally maximal logical refinement of ⇓. (18)

Logical Predicates in Higher-Order Mathematical Operational Semantics 55

Our goal is to show that □⇓ is a subalgebra of µΣ, equivalently Σ(□⇓) ≤ ι⋆[□⇓], which
then implies □⇓ = Tr and hence ⇓ = Tr by structural induction. Taking the partition
Σ = Ξ + ∆ where Ξ is the part of the signature for application and ∆ is the part of the
signature for the remaining term constructors, we separately prove Ξ(□⇓) ≤ ι⋆[□⇓] and
∆(□⇓) ≤ ι⋆[□⇓]. It suffices to come up with □⇓-relative invariants A,C ⊆ ⇓ such that
Ξ(□⇓) ≤ ι⋆[A] and ∆(□⇓) ≤ ι⋆[C]. Then by (18) we can conclude A,C ⊆ □⇓, so

Ξ(□⇓) ≤ ι⋆[A] ≤ ι⋆[□⇓] and ∆(□⇓) ≤ ι⋆[C] ≤ ι⋆[□⇓].

Let us record for further reference what it means for Q ↣ Tr to be a □⇓-relative invariant
contained in ⇓. Given t ∈ Qτ, the following must hold:

(1) ⇓τ t, (2) if t → t′ then Qτ(t′), (3) if t : τ1 _ τ2 and t s
−→ t′ and □⇓τ1

s then Qτ2 (t′).

We first put A = □⇓ ∨ (ι · inl)⋆[Ξ□⇓], and prove (1)–(3) for Q = A. So let t ∈ Aτ; we
distinguish cases on the disjunction defining A. If □⇓τ t, then (1)–(3) follow easily by
definition. Otherwise, we have t = p q such that □⇓τ1_τ2

p and □⇓τ1
q.

(1) By definition, □⇓τ1_τ2
p and □⇓τ1

q entail that p
q
=⇒ p′ for a (unique) term p′, and

that □⇓τ2
p′, hence ⇓τ2 p′. Since p q ⇒ p′, it follows that ⇓τ2 p q.

(2) We distinguish cases over the semantic rules for application:
(a) p q → p′ q where p → p′. Then □⇓τ1_τ2

p′, hence Aτ2 (p′ q).
(b) p q → p′ where p q

−→ p′. Since □⇓τ1_τ2
p and □⇓τ1

q, we have □⇓τ2
p′, so Aτ2 (p′).

(3) t does not have labelled transitions, hence this case is void.
Next, we show that C = □⇓∨ (ι · inr)⋆[∆(□⇓)] is a □⇓-relative invariant. We consider

two representative cases; the remaining cases are handled similarly.

– Case Iτ : τ _ τ. Since I terminates immediately, property (1) holds by definition of ⇓
and (2) holds vacuously. For (3), if I s

−→ t′ and □⇓τs, then t′ = s ∈ □⇓τ ⊆ Cτ.
– Case S ′′

τ1,τ2,τ3
(t, s) : τ1 _ τ3 with □⇓τ1_τ2_τ3

t and □⇓τ1_τ2
s. Again, (1) holds be-

cause S ′′(t, s) terminates immediately, and (2) holds vacuously. For (3), suppose
that □⇓τ1

r; we have to show (t r) (s r) ∈ Cτ3 . This follows from the inequality
Ξ(□⇓) ≤ ι⋆[□⇓] shown above, because □⇓τ2_τ3

(t r), □⇓τ2
(s r) by definition of □⇓.

Note that the definition of □⇓ uses both induction (over the structure of types) and
coinduction (by taking at every type the greatest predicate satisfying some property).

Example 16. We give an alternative logical predicate defined purely inductively. It
resembles Plotkin’s original concept of logical relation [55]. We define

⇛

↣ Tr by

⇛

unit (t) ⇐⇒ ⇓unit (t),

⇛

τ1_τ2
(t) ⇐⇒ ⇓τ1_τ2

t ∧ (∀s : τ1. t
s
=⇒ t′ ∧

⇛

τ1
(s) =⇒

⇛

τ2
(t′)).

(19)

It is evidently logical for the restriction γ̃̃ : Tr → PD(Tr,Tr) of the weak operational
model to labelled transitions, given by γ̃̃(t) := {γ(t′)} if t ⇒ t′ and γ(t′) ∈ D(Tr,Tr), and
γ̃̃(t) := ∅ otherwise. A proof of strong normalization using

⇛

is given in [25, App. A].

56 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 17. A more popular (cf. [57,58]) and subtly different variant of

⇛

for proving
strong normalization goes back to Tait [59]. We define SN ↣ Tr by

SNunit (t) ⇐⇒ ⇓unit (t)
SNτ1_τ2 (t) ⇐⇒ ⇓τ1_τ2

(t) ∧ (∀s : τ1.SNτ1 (s) =⇒ SNτ2 (t s))
(20)

Unlike

⇛

, it is not immediate that SN is logical for γ̃̃ (see [25, App. A]). For a proof of
strong normalization based on SN in the context of the λ-calculus, see [57, Sec. 2].

While all three logical predicates □⇓,

⇛

, SN are eligible for proving strong normal-
ization, with proofs of similar length and complexity, the predicate □⇓ arguably has the
most generic flavour, as it depends neither on a system-specific notion of weak transition
(which appears in the definition of

⇛

) nor on the syntax of the language (such as the
application operator appearing in the definition of SN). Thus, our abstract categorical
approach to logical predicates will be based on a generalization of □⇓.

3.3 Constructing Logical Predicates

Our abstract coalgebraic notion of logical predicate (Definition 12) is parametric in the
bifunctor B and its lifting B and decoupled from any specific syntax. Next, we develop a
systematic construction that promotes a predicate P to a logical predicate, specifically to
a locally maximal refinement of P, generalizing □⇓ in Example 15. The construction
proceeds in two stages. First, we fix the contravariant argument of the lifted bifunctor B
and construct a greatest coalgebraic invariant w.r.t. the resulting endofunctor [36, §6.3]:

Definition 18 (Relative henceforth). Let c : Y → B(X,Y) and let S ↣ X be a predicate.
The (S -)relative henceforth modality sends P ↣ Y to □B,c(S , P) ↣ Y , which is the
supremum in PredY (C) of all S -relative invariants contained in P:

□B,c(S , P) =
∨

{Q ≤ P | Q is an S -relative B-invariant for c}. (21)

We will omit the superscripts B, c when they are irrelevant or clear from the context.

Proposition 19. The predicate □(S , P) is the greatest S -relative B-invariant contained
in P. Moreover, the map (S , P) 7→ □(S , P) is antitone in S and monotone in P.

Proof. The first statement follows from the Knaster-Tarski theorem since □(S , P) is the
greatest fixed point □(S , P) = νG. P ∧ c⋆[B(S ,G)] in the complete lattice PredY (C).
The second statement holds due to the mixed variance of the predicate lifting B. □

The relative henceforth modality only yields relative invariants. To obtain a logical
predicate, i.e. an invariant relative to itself, we move to the second stage of our construc-
tion, which is based on ultrametric semantics, see e.g. [9]. Let us briefly recall some
terminology. A metric space (X, d : X × X → R) is 1-bounded if d(x, y) ≤ 1 for all
x, y, an ultrametric space if d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z, and complete if
every Cauchy sequence converges. A map f : (X, d) → (X′, d′) between metric spaces
is nonexpansive if d′(f (x), f (y)) ≤ d(x, y) for all x, y, and contractive if there exists

Logical Predicates in Higher-Order Mathematical Operational Semantics 57

c ∈ [0, 1), called a contraction factor, such that d′(f (x), f (y)) ≤ c · d(x, y) for all x, y. A
family of maps (fi : X → X′)i∈I is uniformly contractive if there exists c ∈ [0, 1) such that
each fi is contractive with factor c. By Banach’s fixed point theorem, every contractive
endomap f : X → X on a non-empty complete metric space has a unique fixed point.

Definition 20. The category C is predicate-contractive if
(1) every PredX(C) carries the structure of a complete 1-bounded ultrametric space;
(2) for every f : X → Y in C, the map f ⋆[−] : PredY (C) → PredX(C) is non-expansive;
(3) for any two co-well-ordered families (Pi ↣ X)i∈I and (Qi ↣ X)i∈I of predicates,

d
(∧

i∈I Pi,
∧

i∈I Qi) ≤ supi∈I d(Pi, Qi).

Here (Pi ↣ X)i∈I is co-well-ordered if each nonempty subfamily has a greatest element.

Example 21. The category C = SetTy is predicate-contractive when equipped with the
ultrametric on PredX(C) given by d(P, Q) = 2−n for P, Q ↣ X, where n = inf{♯τ |

Pτ , Qτ} and ♯τ is the size of τ, defined by ♯unit = 1 and ♯(τ1 _ τ2) = ♯τ1 + ♯τ2. By
convention, inf ∅ = ∞ and 2−∞ = 0. To see predicate-contractivity, first note that a
function F : PredY (C) → PredX(C) is non-expansive iff

inf{♯τ | (F P)τ , (F Q)τ} ≥ inf{♯τ | Pτ , Qτ} for all P, Q ↣ Y ,

and contractive (necessarily with factor at most 1/2) iff that inequality holds strictly.
This immediately implies clause (2) of Definition 20: inverse images in SetTy are

computed pointwise, and fτ⋆[Pτ] , fτ⋆[Qτ] implies Pτ , Qτ for f : X → Y and
P, Q ↣ Y . Similarly, since intersections are computed pointwise, clause (3) amounts to

inf
{
♯τ |

⋂
i∈I

Pi
τ ,

⋂
i∈I

Qi
τ

}
≥ inf{♯τ | ∃i ∈ I : Pi

τ , Qi
τ},

which is clearly true, for if
⋂

i∈I Pi
τ ,

⋂
i∈I Qi

τ then Pi
τ , Qi

τ for some i ∈ I.

Definition 22 (Contractive lifting). Suppose that C is predicate-contractive. The predi-
cate lifting B : Pred(C)op × Pred(C) → Pred(C) is contractive if for every S ↣ X the
map B(S ,−) is non-expansive, and the family (B(−, P))P↣X is uniformly contractive.

Proposition 23. Let B be contractive and c : X → B(X, X). For every S ↣ X, the map
□B,c(S ,−) is non-expansive, and the family (□B,c(−, P))P↣X is uniformly contractive.

Contractive liftings allow us to augment every predicate P to a logical predicate:

Definition 24 (Henceforth). Let B be contractive and c : X → B(X, X). For each predicate
P ↣ X we define □B,cP ↣ X (where we usually omit the superscripts) to be the unique
fixed point of the contractive endomap

S 7→ □B,c(S , P) on PredX(C). (22)

Theorem 25. The predicate □P is the unique locally maximal logical refinement of P.

Proof. By (22), □P is the unique predicate satisfying □P = □(□P, P). By (21), this
equality says that □P is the greatest □P-relative invariant contained in P, as needed. □

58 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 26. Let B be the behaviour bifunctor on SetTy given by (3). Its canonical
lifting B (Example 9) is contractive because Bτ1_τ2 (P, Q) depends only on Pτ1 , Qτ2 ,
Qτ1_τ2 ; in other words, B decreases the size of types in the contravariant argument and
does not increase it in the covariant argument. Given a coalgebra c : X → B(X, X) and
P ↣ X, the fixed point □B,cP is given by the Ty-indexed family of greatest fixed points

□Punit = νG. Punit ∧ cunit
⋆[G + 1],

□Pτ1_τ2 = νG. Pτ1_τ2 ∧ cτ1_τ2
⋆[G + { f : Trτ1 → Trτ2 | ∀s ∈ □Pτ1 . f (s) ∈ □Pτ2 }].

This follows from Theorem 25 since the above predicate is clearly a locally maximal
refinement of P. By instantiating c to the operational model γ : µΣ → B(µΣ, µΣ) of
xTCL and taking P = ⇓, we recover the definition of □⇓ in Example 15.

Example 27. The logical predicate

⇛

↣ Tr of Example 16 is precisely □⇓ for PD
w.r.t. its canonical lifting and the coalgebra γ̃̃ : Tr → PD(Tr,Tr). More generally, for a
coalgebra c : X → PD(X, X), the predicate □P is inductively defined as follows:

□Punit = Punit,

□Pτ1_τ2 = Pτ1_τ2 ∧ cτ1_τ2
⋆[{F ⊆ X

Xτ1
τ2 | ∀ f ∈ F. s ∈ □Pτ1 =⇒ f (s) ∈ □Pτ2 }].

Remark 28. The construction of logical predicates for typed languages is enabled by the
“type-decreasing” nature of the associated behaviour bifunctors. In untyped settings, e.g.
for B(X,Y) = Y + YX on Set modelling untyped combinatory logic [24], the canonical
lifting B is not contractive, hence the fixed point □P in general fails to exist.

Remark 29. The forgetful functor |−| : Pred(C) → C forms a complete lattice fibra-
tion [35], equivalently a topological functor [2], and all notions and results of the present
subsection extend to that level of generality. We leave the details for future work, as our
reasoning techniques found in the upcoming sections are tailored to logical predicates.

We are now in a position to state precisely what a proof via logical predicates is
in our framework. Given the operational model γ : µΣ → B(µΣ, µΣ) of a higher-order
language, a predicate lifting B, and a target predicate P ↣ µΣ, a proof of P via logical
predicates is a proof that □P forms a subalgebra of the initial algebra µΣ, which means

Σ(□P) ≤ ι⋆[□P], equivalently ι⋆[Σ(□P)] ≤ □P. (23)

Then □P = µΣ by structural induction, whence P = µΣ because □P ≤ P.
Up to this point, we have streamlined and formalized coalgebraic logical predicates

as a certain abstract construction on predicates (Definition 24) and presented proofs
by coalgebraic logical predicates as standard structural induction on said construction.
This presentation is indeed that of an abstract method: the various parts of the problem
setting, namely the syntax, the behaviour and its predicate lifting, as well as the opera-
tional semantics, are all parameters. In the next section, we exploit the parametric and
generic nature of this method in two main ways. First, we present up-to techniques that
simplify the proof goal (23) as much as possible. Second, we look to instantiate our
method to problems on classes of higher-order languages, as opposed to reasoning about
operational models of individual languages such as xTCL or the λ-calculus.

Logical Predicates in Higher-Order Mathematical Operational Semantics 59

4 Logical Predicates and Higher-Order Abstract GSOS

As indicated before, substantial parts of the proof of strong normalization in Example 15
look generic. Specifically, the properties (2) and (3) established for Q = A and Q = C
are independent of the choice of predicate P = ⇓ in □P. Moreover, these steps are either
obvious or follow immediately from the operational rules of xTCL: the predicates A
and C being invariants can be attributed to the fact that except for terms of the form
S ′′(−,−), all terms evolve either to a variable or to some flat term such as p′ q. The core
of the proof, which is tailored to the choice of P, lies in proving property (1).

As it turns out, for a class of higher-order GSOS laws that we call relatively flat
higher-order GSOS laws, conditions (2) and (3) are automatic. This insight leads us to a
powerful up-to technique that simplifies proofs via logical predicates.

4.1 Relatively Flat Higher-Order GSOS Laws

The following definition abstracts the restricted nature of the rules of xTCL to the level
of higher-order GSOS laws. For simplicity, we confine ourselves to 0-pointed laws,
however all the results of this subsection easily extend to the V-pointed case.

Definition 30. Let Σ : C → C be a syntax functor of the form Σ =
∐

j∈J Σ j, where (J,≺)
is a non-empty well-founded strict partial order, and put Σ≺k =

∐
j≺k Σ j. A relatively flat

(0-pointed) higher-order GSOS law of Σ over B is a J-indexed family of morphisms

ϱ
j
X,Y : Σ j(X × B(X,Y)) → B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y)) (24)

dinatural in X ∈ C and natural in Y ∈ C.

We put e j,X = [in♯
≺ j, ι · in j · Σ j(in

♯
≺ j)] : Σ⋆

≺ jX + Σ jΣ
⋆
≺ jX → Σ⋆X where in≺ j : Σ≺ j → Σ

and in j : Σ j → Σ are the coproduct injections, with free extensions in♯
≺ j : Σ

⋆
≺ j → Σ⋆ and

in♯
j : Σ

⋆
j → Σ⋆. Every relatively flat higher-order GSOS law (24) determines an ordinary

higher-order GSOS law of Σ over B with components

ϱX,Y =
∐

j∈J
Σ j(X × B(X,Y))

∐
j∈J ϱ

j
X,Y

−−−−−−→
∐

j∈J
B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y))

[B(X,e j,X+Y)] j∈J
−−−−−−−−−−−→ B(X, Σ⋆(X + Y)).

When we interpret a higher-order GSOS law as a set of operational rules, relative flatness
means that the operations of the language can be ranked in a way that every term
f(−, · · · ,−) with f of rank j evolves into a term that uses only operations of strictly lower
rank, except possibly its head symbol which may have the same rank j.

Example 31. xTCL is relatively flat: put J = {0 ≺ 1}, let Σ0 contain application, and let
Σ1 contain all other operation symbols. This is immediate from the rules in Figure 1.

Definition 32. Suppose that each Σ j preserves strong epimorphisms. A predicate lifting
of (24) is a relatively flat 0-pointed higher-order GSOS law (ϱ j) j∈J of Σ =

∐
j Σ j over B

where for every P ↣ X and Q ↣ Y the Pred(C)-morphism ϱ
j
P,Q is carried by ϱ

j
X,Y .

60 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Remark 33. (1) The condition on Σ j ensures Σ j
⋆
= Σ⋆

j (Proposition 7), so that the first

component of ϱ j
P,Q has type Σ j(X × B(X,Y)) → B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y)).

(2) Liftings are unique if they exist: since ϱ
j
P,Q is a Pred(C)-morphism, it is determined

by its first component ϱ j
X,Y . Moreover, the (di)naturality of ϱ j follows from that of ϱ j.

(3) For the canonical lifting B, a lifting (ϱ j) j∈J of (ϱ j) j∈J always exists [25, App. D].

The following theorem establishes a sound up-to technique for logical predicates.
It states that for operational models of relatively flat laws, the proof goal (23) can be
established by checking a substantially relaxed property.

Theorem 34 (Induction up to □). Let γ : µΣ → B(µΣ, µΣ) be the operational model
of a relatively flat 0-pointed higher-order GSOS law that admits a predicate lifting. Then
for every predicate P ↣ µΣ and every locally maximal logical refinement □γ,BP,

Σ(□γ,BP) ≤ ι⋆[P] implies Σ(□γ,BP) ≤ ι⋆[□γ,BP] (hence P = µΣ).

We stress that the theorem applies to any refinement □γ,BP and does not assume a
specific construction (e.g. that of Section 3.3). The up-to technique facilitates proofs via
logical predicates quite dramatically. For illustration, we revisit strong normalization:

Example 35. We give an alternative proof of strong normalization of xTCL (cf. Exam-
ple 15) via induction up to □. Hence it suffices to prove

Σ(□⇓) ≤ ι⋆[⇓],

which states that a term is terminating if all of its subterms are in the logical predicate
□⇓. This is clear for terms that are not applications, since they immediately terminate
(cf. Figure 1). Now consider an application p q such that □τ1_τ2⇓(p) and □τ1⇓(q). Since

□⇓ is a logical predicate contained in ⇓, this entails that p
q
=⇒ p′ for a (unique) term p′,

and that □⇓τ2
p′, hence ⇓τ2 p′. Since p q ⇒ p′, it follows that ⇓τ2 p q.

Analogous reasoning shows that xTCL is strongly normalizing under the call-
by-value and the maximally nondeterministic evaluation strategy (Remark 5). In the
latter case, strong normalization means that every term must eventually terminate,
independently of the order of evaluation.

The reader should compare the above compact argument to the laborious original
proof given in Example 15. Our up-to technique can be seen to precisely isolate the
non-trivial core of the proof, while providing its generic parts for free. For a further
application – type safety of the simply typed λ-calculus – see Section 4.2.

4.2 λ-Laws

We proceed to explain how our theory of logical predicates applies to languages with
variables and binders. We highlight the core ideas and technical challenges in the case of
the λ-calculus, and briefly sketch their categorical generalization; a full exposition can

Logical Predicates in Higher-Order Mathematical Operational Semantics 61

be found in [25, App. E]. Let STLC be the simply typed call-by-name λ-calculus with
the set Ty of types given by (2) and operational rules

t −→ t′

t s → t′ s (λx : τ1. t) s → t[s/x]
(25)

where s, t, t′ range over λ-terms of appropriate type, and [−/−] denotes capture-avoiding
substitution. To model STLC in higher-order abstract GSOS, we follow ideas by
Fiore [18]. Our base category C is the presheaf category (SetF/Ty)Ty where F denotes
the category of finite cardinals and functions, and the set Ty is regarded as a discrete
category. An object Γ : n → Ty of F/Ty is a typed context, associating to each variable
x ∈ n a type; we put |Γ| := n . A presheaf X ∈ (SetF/Ty)Ty associates to each context Γ
and each type τ a set Xτ(Γ) whose elements we think of as terms of type τ in context Γ.

The syntax of STLC is captured by the functor Σ : (SetF/Ty)Ty → (SetF/Ty)Ty where

ΣunitX = Vunit + K1 +
∐

τ∈Ty
Xτ_unit × Xτ,

Στ1_τ2 X = Vτ1_τ2 + δ
τ1
τ2

X +
∐

τ∈Ty
Xτ_τ1_τ2 × Xτ.

(26)

Here K1 ∈ SetF/Ty is the constant presheaf on 1, V is given by Vτ(Γ) = {x ∈ |Γ| | Γ(x) =
τ}, and δ by (δτ1

τ2 X)(Γ) = Xτ2 (Γ + τ̌1) with (−) + τ̌1 denoting context extension by a
variable of type τ1. Informally, K1, V and δ represent the constant e : unit, variables, and
λ-abstraction, respectively. The initial algebra for Σ is the presheaf Λ of λ-terms, i.e.
Λτ(Γ) is the set of λ-terms (modulo α-equivalence) of type τ in context Γ [18].

The behaviour bifunctor Bλ : ((SetF/Ty)Ty)op × (SetF/Ty)Ty → (SetF/Ty)Ty for STLC
has two separate components: it is given by a product

Bλ(X,Y) = ⟨⟨X,Y⟩⟩ × B(X,Y) (27)

where ⟨⟨X,Y⟩⟩τ(Γ) = SetF/Ty
(∏

x∈|Γ|
XΓ(x),Yτ

)
,

B(X,Y) = (K1 + Y + D(X,Y)),

Dunit(X,Y) = K1 and Dτ1_τ2 (X,Y) = Y
Xτ1
τ2 ,

and Y
Xτ1
τ2 is an exponential object in SetF/Ty. The bifunctor ⟨⟨−,−⟩⟩ models an abstract

substitution structure; for instance, every λ-term t ∈ Λτ(Γ) induces a natural transforma-
tion

∏
x∈|Γ| ΛΓ(x) → Λτ in ⟨⟨Λ, Λ⟩⟩τ(Γ) mapping a tuple (t1, . . . , t|Γ|) to the term obtained

by simultaneous substitution of the terms ti for the variables of t. The summands of the
bifunctor B abstract from the possible operational behaviour of λ-terms: a term may
explicitly terminate, reduce, get stuck (e.g. if it is a variable), or act as a function.

The operational rules (25) of STLC can be encoded into a V-pointed higher-order
GSOS law of Σ over Bλ, similar to the untyped λ-calculus treated in earlier work [24].
The operational model ⟨ϕ, γ⟩ : Λ → ⟨⟨Λ, Λ⟩⟩×B(Λ, Λ) is the coalgebra whose components
ϕ, γ describe the substitution structure and the operational behaviour of λ-terms.

At this point, a key technical issue can be observed: the canonical predicate lifting
⟨⟨−,−⟩⟩ is not contractive. Indeed, given P ↣ X, Q ↣ Y , the predicate ⟨⟨P, Q⟩⟩τ consists
of all natural transformations

∏
x∈|Γ| XΓ(x) → Yτ that restrict to

∏
x∈|Γ| PΓ(x) → Qτ, and

62 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

this expression depends on PΓ(x) where the type Γ(x) may be of higher complexity than τ.
In particular, we conclude that Bλ is not contractive. In contrast, the canonical lifting
B is contractive and hence □γ,BP exists for every P ↣ Λ (Definition 24). However,
it is well-known that logical predicates do not do the trick for inductive proofs in the
λ-calculus, see e.g. [57, p. 9] and [49, p. 150]; rather, one needs to prove the open
extension of the logical predicate, which is the larger predicate

□· γ,BP = ϕ⋆[⟨⟨□γ,BP,□γ,BP⟩⟩].

The standard proof method is then to show □· γ,BP = Λ directly by structural induction.
However, this can be greatly simplified by the following up-to-principle, which works
with the original predicate □γ,BP and forms a counterpart of Theorem 34 for the λ-
calculus:

Theorem 36 (Induction up to □·). Let P ↣ Λ be a predicate. Then

Σ(□γ,B) ≤ ι⋆[P] implies Σ(□· γ,BP) ≤ ι⋆[□· γ,BP] (hence P = Λ).

Remark 37. Concretely, the theorem states that to prove P = Λ, it suffices to prove that
(1) variables satisfy P, (2) the unit expression e : unit satisfies P, (3) for all application
terms p q such that □τ1_τ2 P(Γ)(p) and □τ1 P(Γ)(q), we have Pτ2 (Γ)(p q), and (4) for all
λ-abstractions λx : τ1. t such that t ∈ □τ2 P(Γ, x), we have Pτ1_τ2 (Γ)(λx : τ1. t).

Example 38. We prove type safety for STLC via induction up to □· . Thus consider the
predicate Safe ↣ Λ that is constantly true on open terms and given by

t ∈ Safeτ(∅) ⇐⇒
(
∀e. t ⇒ e =⇒ (e is not an application) ∨ ∃r. e → r

)
,

on closed terms. We only need to check the conditions (1)–(4) of Remark 37. Con-
ditions (1), (2), (4) are clear since variables are open terms and the term e : unit and
λ-abstractions do not reduce. The only interesting clause is (3) for the empty context.
Thus let p q be a closed application term with p ∈ □Safeτ1_τ2 (∅) and q ∈ □Safeτ1 (∅);
we need to show p q ∈ Safeτ2 (∅). We proceed by case distinction on p q ⇒ e:
(a) p ⇒ p′ and e = p′ q. Then p′ ∈ □Safeτ1_τ2 (∅) by invariance, in particular p′ is
safe, so p′ is either not an application or reduces. In the former case, p′ is necessarily a
λ-abstraction since it is closed and not of type unit. Thus, in both cases, e reduces.
(b) p ⇒ λx.p′ and p′[q/x] ⇒ e. Since □Safe is a logical predicate, from p ∈

□Safeτ1_τ2 (∅) and q ∈ □τ1 Safe(∅) we can deduce p′[q/x] ∈ □τ2 Safe(∅), whence
e ∈ □τ2 Safe(∅). In particular, e is safe, which implies that e is either not an application
or reduces.

As an exercise, we invite the reader to prove strong normalization of STLC via
induction up to □· . The reader should compare these short and simple proofs with more
traditional ones, see e.g. [57].

All the above results and observations for STLC can be generalized and developed
at the level of general higher-order abstract GSOS laws. To this end, we first abstract the
behaviour functor (27) to a functor of the form B(X,Y) = (X � Y) × B′(X,Y), where

Logical Predicates in Higher-Order Mathematical Operational Semantics 63

(−) � (−) is the internal hom-functor of a suitable closed monoidal structure on the
base category C. In the case of STLC, this structure is given by Fiore’s substitution
tensor [18]. Second, we observe that the higher-order GSOS law of STLC is an instance
of a special kind of law that we coin relatively flat λ-laws. The induction-up-to-□·
technique of Theorem 36 then can be shown to hold for operational models of relatively
flat λ-laws. More details can be found in [25, App. E].

5 Strong Normalization for Deterministic Systems, Abstractly

The high level of generality in which the theory of logical predicates is developed above
enables reasoning uniformly about whole families of languages and behaviours. In this
section, we narrow our focus to deterministic systems and establish a general strong
normalization criterion, which can be checked in concrete instances by mere inspection
of the operational rules corresponding to higher-order abstract GSOS laws.

Throughout this section, we fix a 0-pointed higher-order GSOS law ϱ of a signature
endofunctor Σ : C → C over a behaviour bifunctor B : Cop × C → C, where

B(X,Y) = Y + D(X,Y) for some D : Cop × C → C.

For instance, the type functor (3) for xTCL is of that form. The operational model
γ : µΣ → µΣ +D(µΣ, µΣ) has an n-step extension γ(n) : µΣ → µΣ +D(µΣ, µΣ), for each
n ∈ N, where γ(0) is the left coproduct injection and γ(n+1) is the composite

µΣ
γ
−→ µΣ + D(µΣ, µΣ)

γ(n)+id
−−−−−→ µΣ + D(µΣ, µΣ) + D(µΣ, µΣ)

id+∇
−−−→ µΣ + D(µΣ, µΣ).

We regard D(µΣ, µΣ) as a predicate on B(µΣ, µΣ) via the right coproduct injection,
which is monic by extensivity of C, and define the following predicates on µΣ:

⇓n = (γ(n))⋆[D(µΣ, µΣ)] and ⇓=
∨

n
⇓n .

In xTCL, these are the predicates of strong normalization or strong normalization after
at most n steps, resp. Accordingly, we define strong normalization abstractly as follows:

Definition 39. The higher-order GSOS law ϱ is strongly normalizing if ⇓= µΣ.

We next identify two natural conditions on the law ϱ that together ensure strong
normalization. The first roughly asserts that for a term t = f(x1, . . . , xn) whose variables xi

are non-progressing, the term t is either non-progressing or it progresses to a variable.

Definition 40. The higher-order GSOS law ϱ is simple if its components ϱX,Y restrict to
morphisms ϱ0

X,Y as in the diagram below, where η is the unit of the free monad Σ⋆:

Σ(X × D(X,Y)) X + Y + D(X, Σ⋆(X + Y))

Σ(X × (Y + D(X,Y)) Σ⋆(X + Y) + D(X, Σ⋆(X + Y))

ϱ0
X,Y

Σ(id×inr) ηX+Y+id

ϱX,Y

64 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

The second condition asserts that the rules represented by the higher-order GSOS
law remain sound when strong transitions are replaced by weak ones. In the following,
the graph of a morphism f : A → B is the image gra(f) ↣ A× B of ⟨id, f ⟩ : A → A× B.

Definition 41. The higher-order GSOS law ϱ respects weak transitions if for every
n ∈ N, the graph of the composite below is contained in

∨
k gra(γ(k) · ι).

Σ(µΣ)
Σ⟨id,γ(n)⟩
−−−−−−→ Σ(µΣ × B(µΣ, µΣ))

ϱµΣ,µΣ
−−−−→ B(µΣ, Σ⋆(µΣ + µΣ))

B(id,ι̂·Σ⋆∇)
−−−−−−−−→ B(µΣ, µΣ)

Note that the higher-order GSOS law for xTCL is simple and respects weak transitions.
Thus, strong normalization of xTCL is an instance of the following strong normalization
theorem for higher-order abstract GSOS. Concerning its conditions, an ω-directed union
is a colimit of an ω-chain X0 ↣ X1 ↣ X2 ↣ · · · of monics. We say that monos in C are
ω-smooth if any such colimit has monic injections, and moreover for every compatible
cocone of monos, the mediating morphism is monic. This property holds in every locally
finitely presentable category [3, Prop. 1.62], e.g. sets, posets, or presheaves.

Theorem 42 (Strong normalization). Suppose that the following conditions hold:
(1) On top of Assumptions 6, C is countably extensive, and monos are ω-smooth.
(2) Σ preserves ω-directed unions, and D preserves monos in the second component.
(3) ϱ is relatively flat, simple, and respects weak transitions.
(4) ⇓ has a locally maximal logical refinement w.r.t. γ and the canonical lifting B.
Then the higher-order GSOS law ϱ is strongly normalizing.

Recall that condition (4) holds if B is contractive (Theorem 25). The proof uses the
induction-up-to-□ technique and a careful categorical abstraction of Example 35.

6 Conclusion and Future Work

Our work presents the initial steps towards a unifying, efficient theory of logical relations
for higher-order languages based on higher-order abstract GSOS. This theory can be
broadened in various directions. One obvious direction would be to extend our theory
from predicates to relations. Binary logical relations are often utilized as sound (and
sometimes complete) relations w.r.t. contextual equivalence. Additional generalizations
are suggested by the large amount of existing work on logical relations. One important
direction is to generalize the type system to cover, e.g., recursive types, parametric
polymorphism, or dependent types. Supporting recursive types will presumably require
an adaptation of the method of step-indexing [17] to our abstract setting. Another
point of interest is to apply and extend our framework to effectful (e.g. probabilistic)
settings [40,54], including e.g. an effectful version of the criterion of Section 5.

As indicated in Remark 29, large parts of our development in Section 3 can be
reformulated in fibrational terms. This has the potential merit of enabling abstract
reasoning about higher-order programs in metric and differential settings as done in
previous work on fine-grain call-by-value [13,14]. In future work, we aim to develop such
a generalization, and to explore the connection between our weak transition semantics
and the general evaluation semantics used in op. cit.

Logical Predicates in Higher-Order Mathematical Operational Semantics 65

References

1. Abramsky, S.: The lazy λ-calculus. In: Research topics in Functional Programming, pp.
65–117. Addison Wesley (1990)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley (1990),
republished in: Reprints in Theory and Applications of Categories 17 (2006), pp. 1-507,
http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html

3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical
Society Lecture Note Series, Cambridge University Press (1994). https://doi.org/10.
1017/CBO9780511600579

4. Aguirre, A., Birkedal, L.: Step-indexed logical relations for countable nondeterminism and
probabilistic choice. In: 50th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2023). Proc. ACM Program. Lang., vol. 7. ACM (2023). https://doi.
org/10.1145/3571195

5. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified types. In:
15th European Symposium on Programming (ESOP 2006). LNCS, vol. 3924, pp. 69–83.
Springer (2006). https://doi.org/10.1007/11693024_6

6. Altenkirch, T., Kaposi, A.: Normalisation by evaluation for dependent types. In: 1st Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD 2016).
LIPIcs, vol. 52, pp. 6:1–6:16. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.FSCD.2016.6

7. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foundational proof-
carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001). https://doi.
org/10.1145/504709.504712

8. Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness. In: 14th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2009). p. 97–108.
ACM (2009). https://doi.org/10.1145/1596550.1596567

9. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recursive metric-
space equations. Theoretical Computer Science 411(47), 4102–4122 (2010). https://doi.
org/10.1016/j.tcs.2010.07.010

10. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A. (ed.) 18th
International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS 2015). LNCS, vol. 9034, pp. 279–294. Springer (2015). https://doi.org/10.
1007/978-3-662-46678-0_18

11. Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory, Ency-
clopedia of Mathematics and Its Applications, vol. 1. Cambridge University Press (1994).
https://doi.org/10.1017/CBO9780511525858

12. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories.
Journal of Pure and Applied Algebra 84(2), 145–158 (Feb 1993). https://doi.org/10.
1016/0022-4049(93)90035-R

13. Dagnino, F., Gavazzo, F.: A fibrational tale of operational logical relations. In: 7th International
Conference on Formal Structures for Computation and Deduction (FSCD 2022). LIPIcs,
vol. 228, pp. 3:1–3:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022). https:
//doi.org/10.4230/LIPIcs.FSCD.2022.3

14. Dagnino, F., Gavazzo, F.: A Fibrational Tale of Operational Logical Relations: Pure, Effectful
and Differential. CoRR (2023). https://doi.org/10.48550/arXiv.2303.03271

15. Dal Lago, U., Gavazzo, F.: Differential logical relations, part ii increments and derivatives.
Theor. Comput. Sci. 895(C), 34–47 (2021). https://doi.org/10.1016/j.tcs.2021.09.
027

66 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.48550/arXiv.2303.03271
https://doi.org/10.48550/arXiv.2303.03271
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027

16. Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads, relators,
and Howe’s method. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2017). pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.
2017.8005117

17. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. In: 24th Annual
IEEE Symposium on Logic In Computer Science (LICS 2009). pp. 71–80. IEEE Computer
Society (2009). https://doi.org/10.1109/LICS.2009.34

18. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. Math. Struct. Comput. Sci. 32(8), 1028–1065 (2022). https://doi.org/10.1017/
S0960129522000263

19. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: 14th Annual
IEEE Symposium on Logic in Computer Science (LICS 1999). pp. 193–202. IEEE Computer
Society (1999). https://doi.org/10.1109/LICS.1999.782615

20. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: 16th Annual IEEE Symposium
on Logic in Computer Science (LICS 2001). pp. 93–104. IEEE Computer Society (2001).
https://doi.org/10.1109/LICS.2001.932486

21. Georges, A.L., Guéneau, A., Van Strydonck, T., Timany, A., Trieu, A., Devriese, D., Birkedal,
L.: Cerise: Program verification on a capability machine in the presence of untrusted code. J.
ACM (2023). https://doi.org/10.1145/3623510

22. Giarrusso, P.G., Stefanesco, L., Timany, A., Birkedal, L., Krebbers, R.: Scala step-by-step:
Soundness for dot with step-indexed logical relations in iris. In: 25th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2020). Proc. ACM Program.
Lang., vol. 4. ACM (2020). https://doi.org/10.1145/3408996

23. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types, vol. 7. Cambridge University Press
(1989)

24. Goncharov, S., Milius, S., Schröder, L., Tsampas, S., Urbat, H.: Towards a higher-order
mathematical operational semantics. In: 50th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2023). Proc. ACM Program. Lang., vol. 7. ACM (2023).
https://doi.org/10.1145/3571215

25. Goncharov, S., Santamaria, A., Schröder, L., Tsampas, S., Urbat, H.: Logical predicates in
higher-order mathematical operational semantics (2024), https://arxiv.org/abs/2401.
05872

26. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theor. Comput. Sci.
228(1-2), 5–47 (1999). https://doi.org/10.1016/S0304-3975(98)00353-3

27. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types.
Math. Struct. Comput. Sci. 18(6), 1169–1217 (2008). https://doi.org/10.1017/
S0960129508007172

28. Hermida, C., Reddy, U.S., Robinson, E.P.: Logical relations and parametricity - A Reynolds
programme for category theory and programming languages. Electron. Notes Theor. Comput.
Sci. 303, 149–180 (2014). https://doi.org/10.1016/j.entcs.2014.02.008

29. Hermida, C.A.: Fibrations, logical predicates and indeterminates. Ph.D. thesis, University of
Edinburgh (1993), https://era.ed.ac.uk/handle/1842/14057

30. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge
University Press, 2 edn. (2008). https://doi.org/10.1017/CBO9780511809835

31. Howe, D.J.: Equality in lazy computation systems. In: 4th Annual Symposium on Logic
in Computer Science (LICS 1989). pp. 198–203. IEEE Computer Society (1989). https:
//doi.org/10.1109/LICS.1989.39174

32. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Inf.
Comput. 124(2), 103–112 (1996). https://doi.org/10.1006/inco.1996.0008

Logical Predicates in Higher-Order Mathematical Operational Semantics 67

https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3571215
https://doi.org/10.1145/3571215
https://arxiv.org/abs/2401.05872
https://arxiv.org/abs/2401.05872
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.1016/j.entcs.2014.02.008
https://era.ed.ac.uk/handle/1842/14057
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008

33. Hur, C.K., Dreyer, D.: A Kripke Logical Relation between ML and Assembly. In: 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2023). p. 133–146. ACM (2011). https://doi.org/10.1145/1926385.1926402

34. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The Marriage of Bisimulations and Kripke
Logical Relations. In: 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012). SIGPLAN Not., vol. 47, p. 59–72. ACM (2012).
https://doi.org/10.1145/2103621.2103666

35. Jacobs, B.: Categorical Logic and Type Theory. No. 141 in Studies in Logic and the Founda-
tions of Mathematics, North Holland (1999)

36. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation,
Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge University Press
(2016). https://doi.org/10.1017/CBO9781316823187

37. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for algebraic effects.
In: 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010). pp. 209–218.
IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.29

38. Katsumata, S.: A generalisation of pre-logical predicates and its applications. Ph.D. thesis,
University of Edinburgh (2005), http://hdl.handle.net/1842/850

39. Kurz, A., Velebil, J.: Relation lifting, a survey. Journal of Logical and Algebraic Methods
in Programming 85(4), 475–499 (2016). https://doi.org/10.1016/j.jlamp.2015.08.
002

40. Lago, U.D., Gavazzo, F.: Effectful program distancing. In: 49th Annual ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2022). Proc. ACM Program.
Lang., vol. 6, pp. 1–30 (2022). https://doi.org/10.1145/3498680

41. Lago, U.D., Gavazzo, F., Yoshimizu, A.: Differential Logical Relations, Part I: The Simply-
Typed Case. In: 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019). LIPIcs, vol. 132, pp. 111:1–111:14. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.111

42. Levy, P., Power, J., Thielecke, H.: Modelling environments in call-by-value programming
languages. Inf. Comput. 185(2), 182–210 (2003)

43. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Math-
ematics, vol. 5. Springer, 2 edn. (1978), http://link.springer.com/10.1007/
978-1-4757-4721-8

44. Milner, R.: A theory of type polymorphism in programming. Journal of Computer and System
Sciences 17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

45. New, M.S., Bowman, W.J., Ahmed, A.: Fully abstract compilation via universal embedding.
In: 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).
pp. 103–116. ACM (2016). https://doi.org/10.1145/2951913.2951941

46. O’Hearn, P.W., Riecke, J.G.: Kripke logical relations and PCF. Inf. Comput. 120(1), 107–116
(1995). https://doi.org/10.1006/inco.1995.1103

47. Ong, C.H.L.: The Lazy Lambda Calculus: An Investigation into the Foundations of Functional
Programming. Ph.D. thesis, Imperial College London (1988), http://hdl.handle.net/
10044/1/47211

48. Patrignani, M., Martin, E.M., Devriese, D.: On the semantic expressiveness of recursive types.
In: 48th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2021).
Proc. ACM Program. Lang., vol. 5. ACM (2021). https://doi.org/10.1145/3434302

49. Pierce, B.C.: Types and programming languages. MIT Press (2002)
50. Pitts, A.M.: Reasoning about local variables with operationally-based logical relations. In:

11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996). pp. 152–163.
IEEE Computer Society (1996). https://doi.org/10.1109/LICS.1996.561314

51. Pitts, A.M.: Relational properties of domains. Information and Computation 127(2), 66–90
(1996). https://doi.org/10.1006/inco.1996.0052

68 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2103621.2103666
https://doi.org/10.1145/2103621.2103666
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1109/LICS.2010.29
http://hdl.handle.net/1842/850
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1145/3498680
https://doi.org/10.1145/3498680
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
http://link.springer.com/10.1007/978-1-4757-4721-8
http://link.springer.com/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1006/inco.1995.1103
https://doi.org/10.1006/inco.1995.1103
http://hdl.handle.net/10044/1/47211
http://hdl.handle.net/10044/1/47211
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1109/LICS.1996.561314
https://doi.org/10.1109/LICS.1996.561314
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.1006/inco.1996.0052

52. Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10(3), 321–359 (2000). https://doi.org/10.1017/
S0960129500003066

53. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically
create local names, or: What’s new? In: 8th International Symposium on Mathematical
Foundations of Computer Science (MFCS 1993). LNCS, vol. 711, pp. 122–141. Springer
(1993). https://doi.org/10.1007/3-540-57182-5_8

54. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In: Gordon,
A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–274.
Cambridge University Press, New York, NY, USA (1998)

55. Plotkin, G.D.: Lambda-definability and logical relations. Tech. rep., University of Edinburgh
(1973)

56. Sieber, K.: Reasoning about sequential functions via logical relations. In: Fourman, M.P.,
Johnstone, P.T., Pitts, A.M. (eds.) Applications of Categories in Computer Science: Pro-
ceedings of the London Mathematical Society Symposium, Durham 1991. p. 258–269.
London Mathematical Society Lecture Note Series, Cambridge University Press (1992).
https://doi.org/10.1017/CBO9780511525902.015

57. Skorstengaard, L.: An Introduction to Logical Relations (2019). https://doi.org/10.
48550/arXiv.1907.11133

58. Statman, R.: Logical relations and the typed lambda-calculus. Information and Control 65(2),
85–97 (1985). https://doi.org/10.1016/S0019-9958(85)80001-2

59. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2),
198–212 (1967). https://doi.org/10.2307/2271658

60. Timany, A., Stefanesco, L., Krogh-Jespersen, M., Birkedal, L.: A logical relation for monadic
encapsulation of state: Proving contextual equivalences in the presence of runst. In: 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). Proc.
ACM Program. Lang., vol. 2. ACM (2017). https://doi.org/10.1145/3158152

61. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: 12th Annual
IEEE Symposium on Logic in Computer Science (LICS 1997). pp. 280–291 (1997). https:
//doi.org/10.1109/LICS.1997.614955

62. Urbat, H., Tsampas, S., Goncharov, S., Milius, S., Schröder, L.: Weak similarity in higher-
order mathematical operational semantics. In: 38th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2023). IEEE Computer Society Press (2023). https://doi.
org/10.1109/LICS56636.2023.10175706

63. Wand, M., Culpepper, R., Giannakopoulos, T., Cobb, A.: Contextual equivalence for a proba-
bilistic language with continuous random variables and recursion. In: 23rd ACM SIGPLAN
International Conference on Functional Programming (ICFP 2018). Proc. ACM Program.
Lang., vol. 2. ACM (2018). https://doi.org/10.1145/3236782

Logical Predicates in Higher-Order Mathematical Operational Semantics 69

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1007/3-540-57182-5_8
https://doi.org/10.1007/3-540-57182-5_8
https://doi.org/10.1017/CBO9780511525902.015
https://doi.org/10.1017/CBO9780511525902.015
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.2307/2271658
https://doi.org/10.2307/2271658
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1145/3236782
https://doi.org/10.1145/3236782
http://creativecommons.org/licenses/by/4.0/

	Logical Predicates in Higher-OrderMathematical Operational Semantics
	Introduction
	Preliminaries
	Category Theory
	Higher-Order Abstract GSOS

	Coalgebraic Logical Predicates
	Predicate Lifting
	Logical Predicates via Lifted Bifunctors
	Constructing Logical Predicates

	Logical Predicates and Higher-Order Abstract GSOS
	Relatively Flat Higher-Order GSOS Laws
	Lambda-Laws

	Strong Normalization for Deterministic Systems, Abstractly
	Conclusion and Future Work

