
Clones, closed categories, and combinatory logic‹

Abstract. We explain how to recast the semantics of the simply-typed
λ-calculus, and its linear and ordered variants, using multi-ary struc-
tures. We define universal properties for multicategories, and use these
to derive familiar rules for products, tensors, and exponentials. Finally
we outline how to recover both the category-theoretic syntactic model
and its semantic interpretation from the multi-ary framework. We then
use these ideas to study the semantic interpretation of combinatory logic
and the simply-typed λ-calculus without products. We introduce exten-
sional SK-clones and show these are sound and complete for both com-
binatory logic with extensional weak equality and the simply-typed λ-
calculus without products. We then show such SK-clones are equivalent
to a variant of closed categories called SK-categories, so the simply-typed
λ-calculus without products is the internal language of SK-categories.

Keywords: categorical semantics · abstract clones · lambda calculus ·
combinatory logic · closed categories · cartesian closed categories

1 Introduction

Lambek’s correspondence between cartesian closed categories and the simply-
typed λ-calculus is one of the central pillars of categorical semantics. One way
of stating it categorically is to say that the syntax of typed λ-terms over a sig-
nature of base types and constants forms the free cartesian closed category (for
a readable overview, see [27,9]). The existence of this syntactic model gives com-
pleteness : if an equation holds in every model, it holds in the free one, and hence
in the syntax. The free property then gives soundness : for any interpretation
of basic types and constants in a cartesian closed category pC,Π,ñq one has a
functor J´K from the syntactic model to C, which is exactly the semantic inter-
pretation of λ-terms. The fact this functor is required to preserve cartesian closed
structure amounts to showing that the semantic interpretation is sound with re-
spect to the usual βη-laws. All this justifies calling the simply-typed λ-calculus
the internal language of cartesian closed categories.

This framework is powerful, but hides a fundamental mismatch: morphisms
A Ñ B in a category are unary—they have just one input—but terms-in-context
‹ Supported by the Air Force Office of Scientific Research under award number

FA9550-21-1-0038.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 1 0–181, 2024.
https://doi.org/10.1007/978-3-031-57231-9_8

9

Philip Saville(B)

Department of Computer Science, University of Oxford, Oxford, UK
philip.saville@cs.ox.ac.uk

http://www.philipsaville.co.uk/

www.philipsaville.co.uk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_8&domain=pdf
https://orcid.org/0000-0002-8320-0280


such as x1 : A1, . . . , xn : An $ t : B can have many inputs. The standard solu-
tion (e.g. [9,23]) is to use categorical products to model contexts, so a term t as
above corresponds to a map

śn
i“1Ai Ñ B out of the product.

Despite its evident success, this solution remains somewhat unsatisfactory,
in two ways (see also [21]). First, it forces us to conflate two different syntactic
classes, namely contexts and product types. As a result, some encoding is re-
quired to construct the syntactic model: the interpretation of x : A, y : B $ t : C
is a term in context p : A ˆ B. This adds complexity to the construction, and
results in the somewhat unintuitive fact that the semantic interpretation of a
term t in the syntactic model may not be just t itself. In turn, this complicates
the proof of completeness.

Second, we are forced to include products in our type theory if we want a
category-theoretic internal language—even though the calculus without products
likely has a stronger claim to being called ‘the’ simply-typed λ-calculus (e.g. see
Church’s original definition [8]). This raises the question: what categorical struc-
ture has the simply-typed λ-calculus without products as its internal language?

This paper. This paper has three main aims. First, to explain how removing
the mismatch between terms-in-context and morphisms outlined above clari-
fies the semantic interpretation of simply-typed λ-calculi. To achieve this, one
needs to move from the unary setting of categories to a multi-ary setting, in
which we have multimaps A1, . . . , An Ñ B. These ideas are not new, but are
under-appreciated, and I hope this will provide self-contained introduction for
a wider audience. Second, to initiate a multi-ary investigation of the semantics
of (cartesian) combinatory logic, in the style of Hyland’s investigation of similar
ideas for the untyped λ-calculus ([18,19]). Finally, to use these results to define
a categorical semantics for the simply-typed λ-calculus without products.

Outline. In Sections 2 to 6, we explain how the multi-ary perspective yields a
slick way to derive the unary semantic interpretation and syntactic model, to-
gether with soundness and completeness results (Section 4.2). We also show how
important type-theoretic constructions such as products and exponentials can
be derived from the semantics. This framework accommodates different choices
of structural rules, such as whether the language is ordered, linear, or cartesian.

The idea of using multi-ary constructions goes back to Lambek ([25,26]),
and has recently been exploited to great effect in a very general setting by
Shulman [40]. Particular cases can also be found in the works of Hyland ([18,19]),
Hyland & de Paiva [20] and Blanco & Zeilberger [7]. A reader familiar with
these approaches will likely be unsurprised by the technical development below.
However, we believe these ideas deserve to be more widely known, so spend time
making them explicit in a concrete setting.

In Section 7 we introduce a multi-ary model of (cartesian) combinatory logic,
called SK-clones, and prove that the sub-category of extensional SK-clones is
equivalent to the category of closed clones modelling simply-typed λ-calculus
without products. This provides a categorical statement of the classical corre-
spondence between λ-calculus and extensional combinatory logic (e.g. [5,15]).
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Finally, in Section 8 we introduce a version of Eilenberg & Kelly’s closed
categories ([11,10]), called SK-categories, and show that the category of SK-
categories is equivalent to the category of extensional SK-clones, and so to the
category of closed clones. Hence, SK-categories are a categorical model for the
simply-typed λ-calculus without products. SK-categories are a cartesian version
of the prounital-closed categories of Uustalu, Veltri & Zeilberger ([43,44]), which
in turn are closely related to an (incomplete) suggestion of Shulman’s [39].

Jacobs has also isolated a structure that is sound and complete for simply-
typed λ-calculus without products [21]. His approach, which fits into his elegant
general framework [22], is also predicated on a careful distinction between con-
texts and products. His models are certain indexed categories, with the contexts
encoded by the indexing: this makes them feel closer to multi-ary structures. In
SK-categories, by contrast, contexts are modelled within the category itself by
using the closed structure (cf. [35, §4.4]). Moreover, unlike other work relating
closed categories to multi-ary structures, SK-categories do not force us to include
a unit object in the corresponding type theory (cf. [31]).

Technical preliminaries. For a set S we write S‹ for the set of finite sequences
over S, and use Greek letters Γ,∆, . . . to denote elements of S‹. The empty string
is denoted ˛, and the length of Γ by |Γ |. Where the length of a sequence is clear,
we write simply A‚ for A1, . . . , An. Contexts are assumed to be ordered lists.

We call multimaps of the form A Ñ B unary and a multimap ˛ Ñ B nullary.
We define a signature S to be a set |S| of basic sorts with sets SpΓ ;Bq

of constants c : Γ Ñ B for each
`

Γ,B
˘

P |S|‹ ˆ |S|. A homomorphism of
signatures f : S Ñ S 1 is a map |f | : |S| Ñ |S 1| with maps SpA1, . . . , An;Bq Ñ

S 1pfA1, . . . , fAn; fBq for each
`

pA1, . . . , Anq, B
˘

P |S|‹ ˆ |S|. We write Sig for
the category of signatures and their homomorphisms. One could also consider
versions of higher-order constants, which may use the language’s constructs. This
extension does not change the theory significantly, and would require introducing
multiple categories of signatures, so we do not seek this extra generality here (for
an outline of this more general approach, see e.g. [38, §5.3.1]).

We assume familiarity with the simply-typed λ-calculus, as in e.g. [9]. We
denote the simply-typed λ-calculus with constants and base types given by a
signature S, and both product and exponential types modulo αβη-equality, by
Λˆ,Ñ
S . We write Λˆ

S and ΛÑ
S for the fragments with just products and just expo-

nentials, respectively. Here we focus on the typed cases: the untyped versions—
both in the syntax and the multi-ary models—are recovered by fixing a single
base type ‹ such that Θp‹, . . . , ‹q “ ‹ for each type constructor Θ.

We also assume familiarity with the basics of cartesian categories, cartesian
closed categories, and monoidal categories, as in e.g. [30,27]. To avoid having
to treat the unit type as a special case, cartesian categories are assumed to
have n-ary products

ś

n for all n P N. We also work with functors preserv-
ing structure strictly : this simplifies the exposition without any great loss of
generality. Thus, MonCat, SMonCat and CartCat denote the categories of
monoidal categories, symmetric monoidal categories, and cartesian categories,
respectively, with functors preserving all the data on the nose.
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2 Multicategories and clones

We begin with an intuitive overview of the place of multi-ary structures in se-
mantics. A multi-ary structure has multimaps A1, . . . , An Ñ B with multiple
inputs and one output; unlike the morphisms in a category, multimaps corre-
spond directly to terms-in-context. As a result, it is often easier to construct a
multi-ary free model than it is to construct a unary one, and the interpretation
of a term-in-context t in the free model is given by t itself. Moreover, every
multi-ary structure gives rise to a unary one by restricting to multimaps with
one input. The multi-ary semantics therefore factors the unary one, as shown:

multi-ary structures

signatures categorical structures

free

forget

restrict to unary maps

extend

$

% (1)

One can then ‘read off’ the syntactic category, together with a guarantee that
it has the right structure, by restricting the free multi-ary structure to unary
maps. Similarly, the usual semantic interpretation in (say) a cartesian closed
category C is exactly the interpretation that arises by extending C to a multi-ary
structure. This gives an algebraic justification for encoding contexts as products:
this is how one extends a cartesian closed category to a multi-ary structure. (For
the details of these points, see Section 4.2.)

The multi-ary perspective also provides a unifying framework for type the-
ories with different structural rules. The simply-typed λ-calculus is cartesian:
it admits the structural rules of weakening, contraction, and permutation (as
in e.g. [9, Fig. 3.2]). The corresponding multi-ary structures are certain abstract
clones. Ordered type theories (e.g. [24,36]), also known as planar type theories
(e.g. [2,46]), do not admit weakening, contraction, or permutation, and corre-
spond to certain multicategories. Linear type theories (e.g. [16]), which admit
only permutation, correspond to certain symmetric multicategories (see also the
alternative ‘tangled’ option in [33]). Since abstract clones and symmetric mul-
ticategories may be seen as special cases of multicategories, we can develop a
theory of how to add structure to cartesian, linear, and ordered type theories by
analysing how to add structure to multicategories.

2.1 Multicategories, clones, and their internal languages

We now introduce multicategories and abstract clones and show how they cor-
respond to certain type theories. An even more general framework for syntax,
allowing multi-ary domains and codomains as well as both cartesian and linear
contexts, is provided by Shulman’s recent work with polycategories [40]. Clones,
and their correspondence with syntax, also play a key role in the ‘algebraic
syntax’ programme of Fiore and collaborators initiated in [13] (see e.g. [12,3,4]).

Definition 1 ([25]). A multicategory M consists of a set |M| of objects and
sets MpΓ ;Bq of multimaps for every Γ P |M|‹ and B P |M|, together with
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1. An identity multimap IdA P MpA;Aq for every A P |M|;
2. For any A1, . . . , An, B P |M| and p∆i P |M|‹qi“1,...,n, a composition map

MpA1, . . . , An;Bq ˆ
śn
i“1Mp∆i;Aiq Ñ Mp∆1, . . . ,∆n;Bq

`

t, pu1, . . . , unq
˘

ÞÑ t ˝ xu1, . . . , uny

subject to an associativity law and two unit laws (see e.g. [28, p. 35]). A mul-
ticategory functor f : M Ñ N consists of a map |f | : |M| Ñ |N| with maps
fA‚,B : MpA1, . . . , An;Bq Ñ NpfA1, . . . fAn; fBq for every A1, . . . , An, B P |M|,
such that substitution and the identity are preserved (see e.g. [28, p. 39]).

Definition 2 ([32,20]). A symmetric multicategory consists of a multicategory
M together with a symmetric group action: for each A1, . . . , An P |M| and σ P Sn
one has p´q ‚ σ : MpA1, . . . , An;Bq Ñ MpAσ1, . . . , Aσn;Bq compatible with sub-
stitution and satisfying unit and associativity laws (e.g. [28, p. 54]). A symmetric
multicategory functor is a multicategory functor which preserves the action.

We write Multicat (resp. SMulticat) for the category of (symmetric) mul-
ticategories and their functors, and write t : Γ Ñ B for t P MpΓ ;Bq.

Example 1. Every monoidal category pC,b, Iq induces a multicategory T C. The
objects are those of C, with multimaps pT CqpA1, . . . , An;Bq :“ Cp

Ân
i“1Ai, Bq

for a chosen n-ary bracketing of the tensor product. This determines functors
MonCat Ñ Multicat, and SMonCat Ñ SMulticat (see e.g. [28, p. 39]); we
denote both of these by T .

Lambek [25] essentially observed that every multicategory has an internal
language, as follows. One identifies multimaps t : A1, . . . , An Ñ B with terms
x1 : A1, . . . , xn : An $ t : B, for a fixed ordering of an infinite set of variables
tx1, x2, . . . u. The identity IdA is identified with the variable x : A, and the com-
position operation becomes a formal substitution operation on the language.
Stated in this way, the three axioms become well-known properties of substitu-
tion: the unit laws say xrus “ u and trx1, . . . , xns “ t, and the associativity law
is a linear version of the so-called Substitution Lemma (e.g. [5, Lemma 2.1.16]).

The next result shows this terminology does not differ too much from the
notion of internal language in the introduction. For a signature S and Γ :“
pxi : Aiqi“1,...,n, write OS for the ordered language generated by the two rules
on the left below, and LS for the linear language generated by all three rules:

x : A $ x : A

c P SpΓ ;Bq p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ c§pu1, . . . , unq : B

Θ, x : A, y : B,∆ $ t : C

Θ, y : B, x : A,∆ $ t : C

Substitution is defined as usual, so that the following rule is admissible:

x1 : A1, . . . , xn : An $ t : B p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ tru1{x1, . . . , un{xns : B
(2)

With this rule as composition, OS and LS define a syntactic multicategory
SynpOSq and a syntactic symmetric multicategory SynpLSq, respectively. These
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define left adjoints to the functors Multicat Ñ Sig and SMulticat Ñ Sig
sending a (symmetric) multicategory M to the signature with objects |M| and
constants

␣

MpΓ ;Bq
(

ΓP|M|‹,BP|M|
; we denote both these functors by U.

Lemma 1. SynpOSq (resp. SynpLSq) is the free multicategory (resp. symmetric
multicategory) on S.

Thus, the internal language of a symmetric multicategory is the core of
Abramsky’s linear λ-calculus [1]. To recover a cartesian language, we use (multi-
sorted) abstract clones. These differ from multicategories in that the result of
substituting pui : ∆ Ñ Aiqi“1,2 into t : A1, A2 Ñ B yields a multimap of type
∆ Ñ B, not ∆,∆ Ñ B. Abstract clones are equivalently cartesian multicate-
gories (see e.g. [18]), but this formulation is less natural syntactically: it amounts
to adding explicit duplication and deletion operations to the language.

Definition 3. An abstract clone C consists of a set |C| of sorts and sets CpΓ ;Bq

of multimaps for every Γ P |C|‹ and B P |C|, together with

1. Projection multimaps pA‚

i P CpA1, . . . , An;Aiq for every A1, . . . , An P |C|;
2. For every A1, . . . , An, B P |C| and ∆ P |C|‹, a substitution operation

CpA1, . . . , An;Bq ˆ
śn
i“1Cp∆;Aiq Ñ Cp∆;Bq

`

t, pu1, . . . , unq
˘

ÞÑ tru1, . . . , uns

subject to an associativity law and two unit laws for any t P CpA1, . . . , An;Bq,
`

ui P CpB1, . . . , Bm;Aiq
˘

i“1,...,n
and

`

vj P CpΘ;Bjq
˘

j“1,...,m
:

`

tru‚s
˘

rv‚s “ t
“

. . . , uirv‚s, . . .
‰

, pA‚

i ru1, . . . , uns “ ui , trpA‚

1 , . . . , pA‚
n s “ t

A homomorphism of clones f : C Ñ D consists of a map |f | : |C| Ñ |D| and maps
fA‚,B : CpA1, . . . , An;Bq Ñ DpfA1, . . . fAn; fBq for every A1, . . . , An, B P |C|,
such that fppA‚

i q “ p
pfAq‚

i and f
`

tru1, . . . , uns
˘

“ pftqrfu1, . . . , funs. We write
Clone for the category of clones and clone homomorphisms.

Example 2 (cf. Example 1). Any cartesian category pC,Πq determines a clone
PC with sorts the objects of C and pPCq

`

A1, . . . , An;B
˘

:“ Cp
śn
i“1Ai;Bq.

We distinguish between clones and multicategories by using r. . . s for a clone’s
substitution operation and x. . .y for a multicategory’s composition operation.
Every multicategory, and hence every clone, has an underlying category.

Definition 4. The nucleus M of a multicategory or clone M is the category
with the same objects and MpA,Bq :“ MpA;Bq. This defines functors p´q :
Multicat Ñ Cat and p´q : Clone Ñ Cat to the category of small categories.

The internal language of a clone is a cartesian version of that for multicate-
gories. Write ΛS for the language below; substitution is defined as usual.

pi “ 1, . . . , nq

x1 : A1, . . . , xn : An $ xi : Ai

c P SpΓ ;Bq p∆ $ ui : Aiqi“1,...,n

∆ $ c§pu1, . . . , unq : B

Identifying variables with projections, we get a syntactic clone SynpΛSq.
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Lemma 2. The canonical forgetful functor U : Clone Ñ Sig has a left adjoint,
and the free clone on S is SynpΛSq.

Example 3. The languages Λˆ
S , Λ

Ñ
S and Λˆ,Ñ

S each induce syntactic clones we
denote by SynpΛˆ

S q, SynpΛÑ
S q and SynpΛˆ,Ñ

S q, respectively.

3 Universal properties for multicategories

In this section we generalise the categorical notion of universal arrows (as in
e.g. [30, §3]) to give a notion of universal property for multicategories. This
will provide a uniform way to introduce new connectives to a type theory. One
could also define the required conditions directly (see [7,40]), but here we wish
to emphasise that they arise from category-theoretic ideas.

Definition 5 (cf. [17]). Let f : M Ñ N be a multicategory functor.

1. A universal arrow from f to Y P |N| is a pair pR P |M|, ρ : fR Ñ Y q

such that for every t : fA1, . . . , fAn Ñ Y there exists a unique multimap
t# : A1, . . . , An Ñ R such that ρ ˝ xfpt#qy “ t.

2. A universal arrow from X1, . . . , Xn P |N| to f is a pair pR P |M|, ρ :
X1, . . . , Xn Ñ fRq such that for every t : X1, . . . , Xn Ñ fB there exists
a unique multimap t# : R Ñ B such that fpt#q ˝ xρy “ t.

We extend this definition—and hence our notion of universal property—to
clones by using the next observation (cf. the fact a cartesian category is monoidal).

Lemma 3. There is a faithful functor M : Clone Ñ Multicat sending a clone
C to the multicategory with the same objects and hom-sets, and composition
given using substitution in C and the projections.

Definition 5 does not involve ‘global’ conditions like naturality, so is particu-
larly amenable to a type-theoretic interpretation. As in the categorical setting,
however, it can be rephrased using natural isomorphisms (cf. [30, §3.2]).

Lemma 4. Let f : M Ñ N be a multicategory functor.

1. Giving a universal arrow from f to X P |N| is equivalent to giving R P M and
an isomorphism ϕA‚

: MpA1, . . . , An;Rq
–

ÝÑ NpfA1, . . . , fAn;Y q, natural in
the sense that the left diagram below commutes for any t : A1, . . . , An Ñ B;

2. Giving a universal arrow from X1, . . . , Xn P |N| to f is equivalent to giving
R P |M| and an isomorphism ψB : MpR;Bq

–
ÝÑ NpX1, . . . , Xn; fBq, natural

in the sense that the right diagram below commutes for any u : B Ñ C.

MpB;Rq NpfB;Xq

MpA1, . . . , An;Rq NpfA1, . . . , fAn;Xq

ϕB

p´q˝xty p´q˝xfty

ϕA‚

MpR;Bq NpX1, . . . , Xn; fBq

MpR;Cq NX1, . . . , Xn; fCq

ψB

u˝x´y fpuq˝x´y

ψC

A corollary is that giving a right adjoint to a multicategory functor f : N Ñ M
in Hermida’s 2-category of multicategories [17] is equivalent to giving a mapping
g0 : |M| Ñ |N| and a universal arrow fgpXq Ñ X from f to X for each X P |N|.
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4 Product structure

We now have enough to define products for multicategories, and hence for clones.
An n-ary product is exactly a limit over the discrete category with n objects.
Rephrasing in terms of universal arrows (e.g. [30, §3]) we get that equipping a cat-
egory C with n-ary products is exactly equipping it with a universal arrow from
the diagonal functor ∆pnq : C Ñ Cˆn to pA1, . . . , Anq for every A1, . . . , An P C.

Since Multicat has finite products defined in much the same way as the
category of small categories Cat, we may make the following definition. The
prefix ‘cartesian’ is already used for multicategories, so we use ‘finite-products’.

Definition 6. An fp-multicategory is a multicategory M equipped with a univer-
sal arrow

`
śn
i“1Ai, pπ

A‚

1 , . . . , πA‚
n q

˘

from the diagonal functor ∆pnq : M Ñ Mˆn

to pA1, . . . , Anq for every n P N and A1, . . . , An P |M|.

Asking for M to have finite products is equivalent to asking for a product
object

śn
i“1Ai and unary multimaps

`

πA‚

i :
śn
i“1Ai Ñ Ai

˘

i“1,...,n
for each

A1, . . . , An P |M|, such that composition induces isomorphisms M
`

Γ ;
śn
i“1Ai

˘

–
śn
i“1 MpΓ ;Aiq. In the internal language, this amounts to the following rules:

pi “ 1, . . . , nq

p :
śn
i“1Ai $ πA‚

i ppq : Ai
,

pΓ $ ti : Aiqi“1,...,n

Γ $ xt, . . . , tny :
śn
i“1Ai

πA‚

i ppq
“

xt1, . . . , tny
‰

“ ti ,
@

πA‚

1 ppqrus, . . . , πA‚
n ppqrus

D

“ u

(3)

We can now derive the rules for & in linear λ-calculus [1]. Indeed, given
Γ, x : Ai, Θ $ t : B, from (3) we get Γ, p :

śn
i“1Ai, Θ $ trπA‚

i ppq{xs : B. This
suggests the following. Let O&

S (resp. L&
S ) be the extension of OS (resp. LS) with

Γ, xi : Ai, Θ $ t : C ∆ $ u : &ni“1Ai
Γ,∆,Θ $ let xi be pi of u in t : C

,
pΓ $ ti : Aiqi“1,...,n

Γ $ xt1, . . . , tny : &ni“1Ai

let xi be pi of xuiy
n
i“1 in t “ trui{xis , xlet xi be pi of u in xiy

n
i“1 “ u

where we write xuiy
n
i“1 for xu1, . . . , uny. This syntax defines a free property. To

see this, say a multicategory functor f (strictly) preserves finite products if it
preserves all the data on the nose, so that fp

śn
i“1Aiq “

śn
i“1fAi, fpπA‚

i q “

π
fA‚

i , and fpxt1, . . . , tnyq “ xft1, . . . , ftny. Write fpMulticat for the category
of fp-multicategories and product-preserving functors, and fpSMulticat for the
subcategory of symmetric multicategories with finite products, with functors
preserving both structures.

Lemma 5. The composite forgetful functor fpMulticat Ñ Multicat Ñ Sig
has a left adjoint, and the free fp-multicategory on S is SynpO&

S q. This extends
to symmetric structure: replace fpMulticat by fpSMulticat and O& by L&.

Returning to the cartesian setting, we define products in a clone using the
corresponding structure for multicategories and Lemma 3.
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Definition 7. A cartesian clone pC,Πq is a clone C equipped with a choice
of finite products on MC. A (strict) homomorphism of cartesian clones is a
clone homomorphism f that strictly preserves all the product structure. We write
CartClone for the category of cartesian clones and strict homomorphisms.

Writing πiptq for the multimap πA‚

i rts, the rules (3) translate directly to the
usual product rules of λ-calculus. So cartesian clones exactly capture Λˆ.

Lemma 6. The composite forgetful functor CartClone Ñ Clone Ñ Sig has a
left adjoint, and SynpΛˆ

S q is the free cartesian clone on S.

Using the characterisation of universal arrows in terms of natural isomor-
phisms we get the following refinement of Example 2.

Example 4. For any cartesian category pC,Πq the induced clone PC is cartesian,
essentially by definition; this extends to a functor P : CartCat Ñ CartClone.
Moreover, if pC,Πq is a cartesian clone, then so is its nucleus C. Hence p´q

restricts to a functor CartClone Ñ CartCat.

The two functors in this example are actually adjoints, yielding our first
version of the schema in (1). The unit is identity-on-objects and sends t :
A1, . . . , An Ñ B to trπA‚

1 , . . . , πA‚
n s :

śn
i“1Ai Ñ B.

Proposition 1. The functor p´q : CartClone Ñ CartCat fits into the fol-
lowing diagram of adjunctions:

Sig CartClone CartCat
F

U

p´q

P

%%

Moreover, U ˝ P is equal to the canonical forgetful functor CartCat Ñ Sig.
Hence, the free cartesian category on S is canonically isomorphic to SynpΛˆ

S q.

4.1 Cartesian structure from representability

In the preceding section we defined products using a multi-ary version of the
familiar universal property. There is another way to define ‘monoidal structure’
in a multicategory: Hermida’s representability [17]. From the perspective of linear
logic, the finite product structure explored above corresponds to the additive
conjunction &; Hermida’s representability will correspond to the multiplicative
conjunction b. We shall also see that, for clones, the two are equivalent.

Definition 8. A representable multicategory is a multicategory M equipped with
a universal arrow

´

TpX1, . . . , Xnq, ρX‚
: X1, . . . , Xn Ñ TpX1, . . . , Xnq

¯

from
X1, . . . , Xn to the identity idM for each X1, . . . , Xn P |M|; we write Tni“1Xi for
TpX1, . . . , Xnq. These universal arrows must be closed under composition, so

X1, . . . , Xn, Y1, . . . , Ym
xρX‚ ,ρY‚y

ÝÝÝÝÝÝÑ Tni“1Xi,T
m
j“1 Yj

ρ
ÝÑ T

`

Tni“1Xi,T
m
j“1 Yj

˘
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must also be universal. A representable multicategory functor f is a multi-
category functor that preserves all the universal arrows, so that fpTni“1Aiq “

Tni“1 fAi, fpρA‚
q “ ρfA‚

and fpt#q “ ft#. Write RepMulticat for the cat-
egory of representable multicategories, and SRepMulticat for the category of
representable multicategories whose underlying multicategories are also symmet-
ric, with functors preserving both structures.

Example 5 (cf. Example 1). The multicategory T C induced by a monoidal
category pC,b, Iq is representable. We therefore obtain functors MonCat Ñ

RepMulticat and SMonCat Ñ SRepMulticat; we denote them both T .

A representable multicategory is a multicategory equipped with rules which
are dual to those in (3) in the sense that the universal arrow goes the other
direction. Indeed, writing x1 b . . .bxn for ρA‚

, and let px1, . . . , xnq be p in t for
t#, and extending this to all terms by

u1 b . . .b un :“ px1 b . . .b xnqru1{x1, . . . , un{xns

let px1, . . . , xnq be u in t :“
`

let px1, . . . , xnq be p in t
˘

ru{ps

we obtain the following rules, where Γ :“ pxi : Aiqi“1,...,n:

p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ b
n
i“1ui :

Ân
i“1 Ai

,
Λ, Γ,Θ $ t : B ∆ $ u :

Ân
i“1 Ai

Λ,∆,Θ $ let px1, . . . , xnq be u in t : B
(4)

let px1, . . . , xnq be p in trbn
i“1xi{ps “ t , let px1, . . . , xnq be bn

i“1xi in t “ t

We write Ob
S (resp. Lb

S ) for the extension of OS (resp. LS) with these rules.
This is essentially the tensor fragment of Abramsky’s linear λ-calculus [1]. The
connection with multicategories was already made in by Hyland & de Paiva [20],
who showed this type theory arises from Lambek’s monoidal multicategories [26].

Lemma 7. The composite forgetful functor RepMulticat Ñ Multicat Ñ Sig
has a left adjoint, and the free representable multicategory on S is the syntactic
multicategory SynpOb

S q. The same holds for symmetric structure, if one replaces
RepMulticat by SRepMulticat and Ob by Lb.

Combining this lemma with Lemma 5, one sees that a multicategory equipped
with representable and finite-product structure corresponds to a linear type the-
ory with both b and &.

We can also obtain a linear version of Proposition 1. Hermida [17] showed that
the 2-category of representable multicategories is 2-equivalent to the 2-category
of monoidal categories, and Weber showed this extends to the symmetric case [45].
From these constructions one can extract functors T : RepMulticat Ñ MonCat
and Tsym : SRepMulticat Ñ SMonCat sending a (symmetric) representable
multicategory to a (symmetric) monoidal structure on its nucleus, together with
equivalences RepMulticat » MonCat and SRepMulticat » SMonCat. So
we get the following.
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Proposition 2. The functors N and Nsym fit into the following diagram of
adjunctions, where in each case the right-hand adjunction is an equivalence:

RepMulticat

Sig MonCat

%

»

F

U

N

T
%

SRepMulticat

Sig SMonCat

%

»F

U

Nsym

Tsym

%

Moreover, U ˝ T and U ˝ Tsym are both equal to the canonical forgetful func-
tor to Sig. Hence, the free monoidal (resp. symmetric monoidal) category on a
signature S is canonically isomorphic to N

`

SynpOb
S q

˘

(resp. N
`

SynpLb
S q
˘

).

We now turn to studying representability in the cartesian setting.

Definition 9. A representable clone is a clone C equipped with a choice of rep-
resentable structure on MC. A representable clone homomorphism is a clone
homomorphism which preserves the representable structure as in Definition 8.

A cartesian clone makes the projections primitive (recall (3)), but a repre-
sentable clone makes the pairing operation primitive (recall (4)). It turns out
these perspectives are equivalent. In the proof-theoretic setting such ideas are
well-studied (cf. the equivalence of G-systems and N-systems in [42, §3.3]); the
categorical statement has also been made by Pisani [34] and Shulman [40].

Proposition 3. Equipping a clone C with representable structure is equivalent
to equipping C with cartesian structure.

In Proposition 2 we gave an equivalence of categories but in Proposition 1
we only gave an adjunction. We can now upgrade the latter to an equivalence.
Indeed, p´q˝P is equal to the identity. On the other hand, if pC,Πq is a cartesian
clone then by Proposition 3 and Lemma 4 we have a multi-natural isomorphism
CpA1, . . . , An;Bq – Cp

śn
i“1Ai;Bq “ PpCqpA1, . . . , An;Bq.

Corollary 1 ([34]). The functors P and p´q of Proposition 1 define an adjoint
equivalence CartClone » CartCat.

4.2 Recovering the semantic interpretation and syntactic model

We now show how the usual semantic interpretation, syntactic model, and sound-
ness and completeness results can be derived from the multi-ary framework. Al-
though we shall not pursue the point in detail for reasons of space, essentially
the same argument holds for all the calculi considered in this paper.

Semantic interpretation and soundness. We recover the usual semantic in-
terpretation of Λˆ in a cartesian category by Lemma 6 and Example 4 as follows.
Let U : CartCat Ñ Sig be the functor sending a cartesian category pC,Πq to
the signature with objects those of C and constants

␣

Cp
śn
i“1Ai, Bq

(

A1,...,An,BPC .
An interpretation s : S Ñ UC of basic types and constants in C is exactly an
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interpretation s : S Ñ UpPCq in the induced cartesian clone. The unique ex-
tension sJ´K : SynpΛˆ

S q Ñ PC sends a term x1 : A1, . . . , xn : An $ t : B to
a multimap sJx1 : A1, . . . , xn : AnK Ñ sJBK in PC, which is exactly a map
śn
i“1 sJAiK Ñ sJBK in C. It is not hard to show this coincides with the usual,

inductively defined semantic interpretation. Unlike with the unary approach, we
do not need to prove soundness with respect to βη as a separate lemma: this
holds immediately from the fact sJ´K is a cartesian clone homomorphism.

Moreover, for any objects A1, . . . , An in a cartesian clone one can construct a
‘multi-isomorphism’ pA1, . . . , Anq –

śn
i“1Ai (see [38, Lemma 4.2.16]). Hence, in

a cartesian simple type theory with products, contexts must coincide with product
types. Together with the preceding, this provides a mathematical explanation for
the identification of contexts and product types in the interpretation of Λˆ,Ñ.

Syntactic model. We extract the construction from Proposition 1. For a sig-
nature S the cartesian category SynpΛˆ

S q has objects the types of Λˆ
S and mor-

phisms A Ñ B given by αβη-equivalence classes of terms x : A $ t : B for a
fixed variable x. Composition is substitution and the identity on A is the vari-
able x : A. The projections are x :

śn
i“1Ai $ πA‚

i pxq : Ai and the pairing of
the maps px : C $ ti : Aiqi“1,2 is x : C $ xt1, t2y : A1 ˆ A2. The usual proofs
that this is indeed cartesian (see e.g. [9, Chapter 3]) have been replaced by the
simple observation of Example 4.

Completeness. Once again, the proof is largely category-theoretic. Note first
that the functor p´q : CartClone Ñ CartCat is faithful. One can prove this
directly using Proposition 3 or infer it from Corollary 1 and the fact any equiva-
lence is fully faithful. In any case, it follows by standard results (e.g. [37, Lemma
4.5.13]) that the unit η1 of the adjunction p´q % P is monic. Just as in Cat,
any monomorphism of clones is injective on objects and injective on multimaps.
It suffices, therefore, to find a semantic interpretation ιJ´K which is equal to a
component of η1. This is accomplished by the next lemma.

Lemma 8. Let C D E
F%

U

F 1

%

U1

be adjunctions with units η : idC ñ UF

and η1 : idD ñ U1F 1. Then for any C P C, the unit η1FC : FC Ñ U1F 1FC is the
unique map h such that the following diagram commutes:

UFC UU1F 1FC

C UFC

Uh

ηC

ηC

Uη1
FC

In the setting of Proposition 1 this lemma implies that the component η1FS :

SynpΛˆ
S q Ñ P

`

SynpΛˆ
S qq of the unit for the adjunction p´q % P is exactly the

unique cartesian clone homomorphism ιJ´K extending the obvious interpretation
ι :“ S ãÑ SynpΛˆ

S q of base types and constants in the free cartesian category. By
our preceding discussion, this clone homomorphism is injective on multimaps:
so if ιJtK “ ιJt1K then t “ t1 in SynpΛˆ

S q, hence t “βη t
1.
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5 Closed structure

To define closed structure, we follow Lambek’s definition and simply upgrade
the hom-set definition of exponentials to multicategories.

Definition 10 ([26]). A closed multicategory is a multicategory M equipped
with an object rA,Bs and multimap evalA,B : rA,Bs, A Ñ B for every A,B P

|M|, such that composition induces isomorphisms as shown:

MpΓ,A;Bq MpΓ ; rA,Bsq

ΛA

evalA,B˝xp´q,IdAy

– (5)

A (strict) closed multicategory functor is a multicategory functor f which pre-
serves all the data: fprA,Bsq “ rfA, fBs, fpevalA,Bq “ evalfA,fB and fpΛtq “

Λpftq. We write ClMulticat for the category of closed multicategories and their
functors, and ClSMulticat for the category of symmetric multicategories with
closed structure, and functors preserving both of these.

Example 6. If pC,b, I, r´,“sq is a closed (symmetric) monoidal category then
the induced (symmetric) multicategory T C is also closed.

Closed multicategories allow us to model exponentials without requiring a
tensor product. Writing out the rules in the internal language, we get the map
ΛA in (5) as the usual abstraction rule, and the evaluation map as the application
f : A⊸ B, x : A $ f x : B. We then see that ∆, f : A⊸ B, x : A $ urf x{ys : C
whenever ∆, y : B $ u : C, so we recover a small adaptation of Abramsky’s rules
for exponentials. Write O⊸

S (resp. L⊸
S ) for the extension of OS (resp. LS) with

the following rules and the βη-laws familiar from ΛÑ:
∆, y : B $ u : C Θ $ t : A⊸ B Γ $ v : A

∆,Θ, Γ $ urt v{ys : C
,

Γ, x : A $ t : B

Γ $ λx . t : A⊸ B

Lemma 9 ([20]). The composite forgetful functor ClMulticat Ñ Multicat Ñ

Sig has a left adjoint, and the free closed multicategory on S is the syntactic
multicategory SynpO⊸

S q. The same holds for symmetric structure, if one replaces
ClMulticat by ClSMulticat and O⊸ by L⊸.

For the cartesian case, we follow the same procedure as in Section 4.

Definition 11. A closed clone is a clone C equipped with a closed structure on
MC. We write ClClone for the category of closed clones and clone homomor-
phisms preserving the closed structure as in Definition 10.

Example 7. If pC,Π,ñq is a cartesian closed category, the clone PC is closed.

Definition 11 recovers the usual βη-laws for exponentials in ΛÑ, complete
with the weakenings that are usually implicit. Writing f x for eval, we get the
following equations in the internal language when Γ :“ pxi : Aiqi“1,...,n:

pf xq
“

pλx . tqrx1{x1, . . . , xn{xns{f, x{x
‰

“ t , λx . pf xq
“

trx1{x1, . . . , xn{xns{f
‰

“ t

Lemma 10. The composite forgetful functor ClClone Ñ Clone Ñ Sig has a
left adjoint, and the free closed clone on S is the syntactic clone SynpΛÑ

S q.
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6 Cartesian closed structure

The development above makes defining cartesian closed structure straightfor-
ward. For reasons of space we restrict ourselves to the cartesian case, but similar
remarks apply to the linear and ordered cases.

Definition 12. A cartesian closed clone is a clone equipped with both closed
structure and cartesian structure. We write CCClone for the category of carte-
sian closed clones and homomorphisms that strictly preserve both structures.

By Lemmas 6 and 10, we already have a free property .

Lemma 11. The composite forgetful functor CCClone Ñ Clone Ñ Sig has a
left adjoint, and SynpΛˆ,Ñ

S q is the free cartesian closed clone on S.

The nucleus of any cartesian closed clone pC,Π,ñq is also cartesian closed:

CpAˆB,Cq “ CpAˆB;Cq – CpA,B;Cq – CpA;B ñ Cq “ CpA,B ñ Cq

Similarly, by Examples 4 and 7, for any cartesian closed category pC,Π,ñq the
induced category PC is cartesian closed. Proposition 1 then restricts as follows.

Proposition 4. The functor p´q : CCClone Ñ CCCat fits into the following
diagram, in which the right-hand adjunction is an equivalence:

Sig CCClone CCCat
F

U

p´q

P
»

%%

Moreover, U˝P is equal to the canonical forgetful functor CCCat Ñ Sig. Hence,
the free cartesian closed category on S is canonically isomorphic to SynpΛˆ,Ñ

S q.

As in Section 4.2, the preceding two results are enough to recover the sound
semantic interpretation of Λˆ,Ñ, and the usual syntactic model.

7 Cartesian combinatory logic and SK-clones

In this section we begin a multi-ary investigation of cartesian combinatory logic,
and give a categorical statement of the classical correspondence between combi-
natory logic and ΛÑ (for which see e.g. [15,6]). In Section 8 we shall use this to
define SK-categories and show they are sound and complete for ΛÑ.

We briefly recapitulate the rules of typed combinatory logic CLS over a sig-
nature S; for a fuller account see e.g. [6]. Types are as in ΛÑ. Terms are given by
the grammar t, u ::“ x

ˇ

ˇ c P SpΓ ;Bq
ˇ

ˇ pt uq
ˇ

ˇS
ˇ

ˇK: we have variables, constants and
an application operation as in ΛÑ and, for any context Γ and types A,B and
C, two combinators Γ $ SΓA,B,C :

`

A ñ pB ñ Cq
˘

ñ
`

pA ñ Cq ñ pA ñ Cq
˘

and Γ $ KΓA,B : A ñ pB ñ Aq. Substitution is as in ΛÑ, where the combinators
Z P tS,Ku satisfy Zru1{x1, . . . , un{xns “ Z so that ZΓ is the weakening of Z˛.
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The correlate of β-equality is weak equality “w, which is the smallest congru-
ence containing Sx y z “ px zq py zq and Kx y “ x. The correlate of βη-equality
is extensional weak equality “wext, which extends “w with the rule

t x1 ¨ ¨ ¨ xn “ t1 x1 ¨ ¨ ¨ xn x1, . . . , xn not free in t or t1
ext

t “ t1
(6)

We write CLw for combinatory logic with weak equality and CLwext for com-
binatory logic with extensional weak equality. The usual encoding of CLw in ΛÑ

sends S and K to λf . λg . λx . pf xq pg xq and λx . λy . x, respectively.
The next definition may be obtained by seeing that CLw can be presented

as an algebraic theory, and that clones are equivalent to algebraic theories
(e.g. [29,41]). We implicitly bracket application to the left, so t ¨u ¨ v :“ pt ¨uq ¨ v.
We also write p´q

∆;Θ for the weakening map CpΓ ;Bq Ñ Cp∆,Γ,Θ;Bq sending
t to t

“

p∆,Γ,Θ
|∆|`1 , . . . , p

∆,Γ,Θ
|∆|`|Γ |

,
‰

; when Γ is empty we write just p´q
∆.

Definition 13. An SK-clone is a clone C equipped with a mapping r´,“s :
|C| ˆ |C| Ñ |C|, nullary multimaps SA,B,C P C

`

˛;
“

rA, rB,Css, rrA,Bs, rA,Css
‰˘

and KA,B P C
`

˛; rA, rB,Ass
˘

for every A,B,C P |C|, and a binary application
operation p´ ¨ “q : CpΓ ; rA,Bsq ˆ CpΓ ;Aq Ñ CpΓ ;Bq for every Γ P |C|‹ and
B P |C|, such that the following axioms hold whenever they are well-typed:

pt ¨uqrv1, . . . , vns “ trv1, . . . , vns ¨urv1, . . . , vns , pKA,BqA,B ¨ p1 ¨ p2 “ p1

pSA,B,CqrA,rB,Css,rA,Bs,A ¨ p1 ¨ p2 ¨ p3 “ pp1 ¨ p3q ¨pp2 ¨ p3q

A homomorphism of SK-clones is a clone homomorphism that preserves applica-
tion, S and K: fpSA,B,Cq “ SfA,fB,fC , fpKA,Bq “ KfA,fB and fpt ¨uq “ ft ¨ fu.
We write SKClone for the category of SK-clones and their homomorphisms.

Lemma 12. The composite forgetful functor SKClone Ñ Clone Ñ Sig has a
left adjoint, and the free SK-clone on S is the syntactic clone SynpCLwS q.

A core feature of the syntax of combinatory logic, which is at the heart of
the correspondence between the terms of CLwext and ΛÑ, is the admissibility
of bracket extension algorithms (see e.g. [5, §7.1]). To express this in the typed
setting, we use the following notation. For a binary operation r´,“s on a set S
we define r´;“s : S‹ ˆ S Ñ S inductively as follows:

r˛;Bs :“ B , rA;Bs :“ rA,Bs , rΓ,A;Bs :“ rΓ ; rA,Bss

With this notation, bracket abstraction amounts to saying that if Γ :“ pxi :
Aiqi“1,...,n and Γ $ t : B in CLw, there exists a closed term ˛ $ tc : rΓ ;Bs

such that ptcq
Γ
x1 . . . xn “w t. The extensionality axiom (6) then says that tc is

unique: in other words, t ÞÑ tΓ x1 . . . xn is an isomorphism.
We now translate this into clone-theoretic terms. For any SK-clone C we

obtain the operation t ÞÑ tΓ x1 . . . xn as the composite below:

iΓ ;B :“
´

Cp˛; rΓ ;Bsq
wΓ

ÝÝÑ CpΓ ; rΓ ;Bsq
p´q ¨ pΓ1 ¨...pΓ|Γ |

ÝÝÝÝÝÝÝÝÝÑ CpΓ ;Bq

¯

(7)
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For Γ :“ ˛ this is just the identity. The admissibility of bracket abstraction
in the syntax of CLw is then captured by the next lemma. Typically bracket
abstraction algorithms restrict to closed constants, because an open constant
may have no corresponding closed term. We restrict in the same way. Call a
signature S nullary if SpΓ ;Aq “ H whenever Γ ‰ ˛, and write Sig0 ãÑ Sig for
the full subcategory of nullary signatures.

Lemma 13. Let S be a nullary signature. Then for any Γ P |SynpCLwS q|‹ and
B P |SynpCLwS q| there exists a map p´q

c such that iΓ ;B ˝ p´q
c

“ idSynpCLw
S q.

Because bracket abstraction is defined by induction on the syntax, we cannot
straightforwardly define it in an arbitrary SK-clone. We can, however, consider
the sub-category of SK-clones (= semantic models of CLw) which admit bracket
abstraction in the sense that each iΓ ;B has a retraction. The extensional models
are then those for which this retract p´q

c also satisfies uniqueness.

Definition 14. An SK-clone C is extensional if for every Γ P |C|‹ and B P |C|

the map iΓ ;B defined in (7) is invertible. We write SKCloneext for the full
subcategory of SKClone consisting of just the extensional SK-clones.

Lemma 14. The composite forgetful functor SKCloneext Ñ Clone Ñ Sig0

has a left adjoint, and the free extensional SK-clone on a nullary signature S is
the syntactic clone SynpCLwext

S q.

7.1 Extensional SK-clones are closed clones

In this section we outline why SKCloneext is equivalent to ClClone, thereby
giving a category-theoretic equivalence not just between the syntax of CLwext

and ΛÑ but also between their models. The proof uses extensionality or the η-
law to pass from arbitrary multimaps to nullary ones, from which one can build
a strict closed clone. We shall rely heavily on the following simple observation.

Lemma 15. Let C be a clone and X :“
␣

XpΓ ;Bq
(

ΓP|C|‹,BP|C| a family of sets
together with an isomorphism

␣

νΓ ;A : CpΓ ;Aq Ñ XpΓ ;Aq
(

Γ,A
between X and

the hom-sets of C in the functor category
“

|C|‹ ˆ |C|,Set
‰

. Then X acquires a
canonical clone structure and ν becomes an isomorphism of clones.

We now introduce strict closed clones.

Definition 15. A strict closed clone is a closed clone pC,ñ, evalq such that
every ΛA : CpΓ,A;Bq Ñ CpΓ,A ñ Bq is the identity. We write ι : ClClonest ãÑ

ClClone for the full subcategory consisting of just the strict closed clones.

Any closed clone pC,ñ, evalq determines a strict closed clone SC and a
clone isomorphism λC : C Ñ SC by applying Lemma 15 to the isomorphisms
CpΓ ;Bq – Cp˛;Γ ñ Bq arising from the closed structure. This extends to a
functor S : ClClone Ñ ClClonest sending f : pC,ñ, evalq Ñ pD,ñ, evalq to
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the composite λD ˝ f ˝ λ´1
C . A short calculation shows that the isomorphisms λ

make S : ClClone ⇆ ClClonest : ι into an equivalence of categories.
We play a similar game for turning extensional SK-clones into (strict) closed

clones. Indeed, for any extensional SK-clone we have isomorphisms CpΓ ;Bq –

Cp˛; rΓ ;Bsq defining a strict closed clone LC with pLCqpΓ ;Bq :“ Cp˛; rΓ ;Bsq,
and hence a functor L : SKCloneext Ñ ClClonest in a similar fashion to S.

Finally, for any closed clone pC,ñ, evalq we get an extensional SK-clone EC
with the same underlying clone by taking application to be application in ΛÑ,
so t ¨u :“ evalA,Brt, us, and encoding the combinators as usual.

Theorem 1. There exist equivalences of categories

SKCloneext ClClonest ClClone.
L

»

E1:“E˝ι

ι

»

S

8 A categorical model of ΛÑ

In Propositions 1 and 4 we recovered a unary semantic interpretation of Λˆ and
Λˆ,Ñ from our clone-theoretic ones. But we do not have a corresponding result
for ΛÑ. In this section we fill this gap: we introduce SK-categories and show they
play the role for ΛÑ that cartesian closed categories play for Λˆ,Ñ. Our definition
is inspired by closed categories ([11,10]), which axiomatise an ‘internal’ version
of the hom-functor Cp´,“q in the form of a functor r´,“s : Cop ˆC Ñ C. Closed
categories have a unit object, corresponding to requiring a unit type (cf. [31]);
our definition avoids this (see also [39,43]).

Recall that in the presence of contravariance, dinaturality and extranaturality
are the right replacements for naturality (see e.g. [30, §IX.4]).

Definition 16. An SK-category consists of a category C and functors r´,“s :
Cop ˆ C Ñ C and U : C Ñ Set, together with

1. Maps SC,D,E : rC, rD,Ess Ñ rrC,Ds, rC,Ess dinatural in C and natural in
D and E;

2. Maps KC
D : D Ñ rC,Ds extranatural in C and natural in D;

3. Maps εC,D : U rC,Ds ˆ UC Ñ UD extranatural in C and natural in D;

This data is subject to the condition that U ˝ r´,“s “ Cp´,“q : Cop ˆ C Ñ Set
and the 7 axioms of Figure 1a. An SK-functor pF, ϕ, ψq is a functor F : C Ñ D
with natural transformations as below, such that the axioms of Figure 1b hold.

Cop ˆ C Dop ˆ C

C D
F

F op
ˆF

r´,“sr´,“s
ϕ

C D

Set

F

UU

ψ

We call pF, ϕ, ψq strict if ϕ is the identity, and write SKCat for the category of
SK-categories and strict SK-functors.
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p1q

`

U rC, rD,Ess ˆ U rC,Ds
˘

ˆ UC

`

U rC, rD,Ess ˆ UC
˘

ˆ
`

U rC,Ds
˘

ˆ UC
˘

U rrC,Ds, rC,Ess

ˆU rC,Ds ˆ UC

U rD,Es ˆ UD U rC,Es ˆ UC

UE

εˆε

ε

USˆidˆid

εˆid

ε

p2q

UD ˆ UC U rC,Ds ˆ UC

UD

UKˆid

ε
π1

p3q

1 ˆ UC U rC,Cs ˆ UC

UC

xidC yˆid

π2
ε

p4q

U rD,Es ˆ U rC,Ds U rC,Es

U rC, rD,Ess ˆ U rC,Ds U rrC,Ds, rC,Ess ˆ U rC,Ds

˝

UKˆid

USˆid

ε

p5q

rrX,As, rrX,Bs, rX,Csss

“

rX,As, rX, rB,Css
‰ “

rrX,As, rX,Bss rrX,As, rX,Css
‰

“

X, rA, rB,Css
‰ “

rX, rA,Bss , rrX,As, rX,Css
‰

“

X, rrA,Bs, rA,Css
‰ “

rX, rA,Bss , rX, rA,Css
‰

S

rid,Ss S

rS,ids

rid,Ss

S

rid,Ss

p6q

rC,Es rC, rD,Ess

rD, rC,Ess rrD,Cs, rD,Ess

rid,KDs

KD

S

rKD,ids

p7q

rC,Es rC, rD,Ess

rrC,Ds, rC,Ess

rid,KDs

KrC,Ds
S

(a) Axioms for an SK-category. In (1) the unlabelled arrow is the canonical map
xxπ1π1, π2y, xπ2π1, π2yy : pX ˆ Y q ˆ Z Ñ pX ˆ Zq ˆ pX ˆ Zq. In (3) we write xidCy for
the set map ˚ ÞÑ idC : 1 Ñ UrC,Cs.

UC
rC,Ds CpC,Dq DpFC,FDq

UDF rC,Ds UD
rFC,FDs

ψ

Uϕ

FC,D
FD F rC,Ds

rFC,FDs

FKC

ϕ
KFC

UC
rC,Ds ˆ UCC UCD

UDF rC,Ds ˆ UDFC UDFD

UD
rFC,FDs ˆ UDFC

ψˆψ

UDϕˆid εD

εC

ψ

F
“

C, rD,Es
‰

F
“

rC,Ds, rC,Es
‰

“

FC,F rD,Es
‰ “

F rC,Ds, F rC,Es
‰

“

FC, rFD,FEs
‰ “

F rC,Ds, rFC,FEs
‰

“

rFC,FDs, rFC,FEs
‰

ϕ

rid,ϕs

FS

ϕ

rid,ϕs

S rϕ,ids

(b) Axioms for an SK-functor

Fig. 1: Extra axioms for Definition 16
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We think of UC as the set of multimaps ˛ Ñ C and ε as a formal applica-
tion operation p´ ¨ “q. Axioms (1) and (2) are the weak equality laws from CL.
Axioms (3) and (4) ensure compatibility between the category structure and the
corresponding CL constructions: for example, axiom (3) implies Upfqpxq “ f ¨x,
and axiom (4) says that composition coincides with S pK´q p“q, corresponding
to the weak equality S pK fq g x “ f pg xq. Axioms (5) – (7) are coherence laws.

Every extensional SK-clone determines an SK-category. Because we follow [11]
and ask for an equality U rA,Bs “ CpA,Bq in the definition of SK-categories, but
in general an extensional SK-clone pC, r´,“s, S,K, ¨q only has an isomorphism
CpA;Bq – Cp˛; rA,Bsq, we need to strictify in the same manner as Section 7.1.
As a notational shorthand, we write I,B and B1 for the closed multimaps satis-
fying the equations below in the internal language of C (see e.g. [15,6]):

IA ¨x “ x , BBñC,AñB,A ¨x ¨ y ¨ z “ x ¨py ¨ zq , pB1qAñB,BñC,A ¨x ¨ y ¨ z “ y ¨px ¨ zq

The category NC has objects |C| and hom-sets pNCqpA,Bq :“ Cp˛; rA,Bsq

(cf. [14]). The identity on A is IA and the composite of t and t1 is B ¨ t ¨ t1. For
U we take UA :“ Cp˛;Aq with the action on maps given by application. For
r´,“s the action on objects is given by the SK-structure, with the action on
maps given by rX, ts :“ B ¨ t and rt,Xs :“ B1 ¨ t. The maps S and K are given
by the corresponding combinators, and ε is the application operation in C. This
extends to a functor N : SKCloneext Ñ SKCat.

The internal language of SK-categories is CLwext, and hence ΛÑ. We write U
for the functor which sends an SK-category pC, U, r´,“s, S,K, εq to the signature
with base types |C| and constants U rΓ,Bs.

Proposition 5. The forgetful functor U : SKCat Ñ Sig has a left adjoint, and
the free SK-category on S is N

`

SynpCLwext
S q

˘

– pN ˝ Eq
`

SynpΛÑ
S q

˘

.

Using Theorem 1, we now obtain a version of Propositions 1 and 4 for ΛÑ.

Theorem 2. The composite N ˝ ι : ClClonest Ñ SKCat is invertible; hence
we get the diagram below, in which the right-hand adjunction is an equivalence:

Sig ClClone SKCat
F

U

N˝E

Cl

»

%%

Moreover, U ˝ Cl is equal to the forgetful functor SKCat Ñ Sig, so the free
SK-category on S is canonically isomorphic to pN ˝ EqpSynpΛÑ

S qq.

Recall that a closed monoidal category is a monoidal category pD,b, Iq such
that every p´q b D has a right adjoint rD,´s, and that in a closed category C giv-
ing every rC,´s a C-enriched left adjoint is equivalent to giving closed monoidal
structure ([11,10,43]). Theorem 2 and Proposition 4 imply a cartesian version.

Corollary 2. Equipping a category C with cartesian closed structure is equiva-
lent to equipping C with SK-structure and natural isomorphisms CpI, rC,Dsq –

CpC,Dq and CpC bD,Eq – CpC, rD,Esq for every C,D,E P C.
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