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Abstract. Generating proofs of unsatisfiability is a valuable capability
of most SAT solvers, and is an active area of research for SMT solvers.
This paper introduces the first method to efficiently generate proofs of
unsatisfiability specifically for an important subset of SMT: SAT Mod-
ulo Monotonic Theories (SMMT), which includes many useful finite-
domain theories (e.g., bit vectors and many graph-theoretic properties)
and is used in production at Amazon Web Services. Our method uses
propositional definitions of the theory predicates, from which it generates
compact Horn approximations of the definitions, which lead to efficient
DRAT proofs, leveraging the large investment the SAT community has
made in DRAT. In experiments on practical SMMT problems, our proof
generation overhead is minimal (7.41% geometric mean slowdown, 28.8%
worst-case), and we can generate and check proofs for many problems
that were previously intractable.

An extended version of this paper, which includes appendices with proofs and
additional results, is available at https: // doi. org/ 10. 48550/ arXiv. 2401.
10703

1 Introduction

This paper introduces the first method to efficiently generate and check proofs
of unsatisfiability for SAT Modulo Monotonic Theories (SMMT), an important
fragment of general SMT. The motivation for this work rests on these premises:

– Proofs of UNSAT are valuable, for propositional SAT as well as SMT. Ob-
viously, an independently checkable proof increases trust, which is impor-
tant because an incorrect UNSAT result can result in certifying correctness
of an incorrect system. Additionally, proofs are useful for computing ab-
stractions [30,17,25] via interpolation in many application domains including
model checking [30] and software analysis [29,23].
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– SMMT is a worthy fragment of SMT as a research target. SMMT [9] is a
technique for efficiently supporting finite, monotonic theories in SMT solvers.
E.g., reachability in a graph is monotonic in the sense that adding edges to
the graph only increases reachability, and an example SMMT query would
be whether there exists a configuration of edges such that node a can reach
node b, but node c can’t reach node d. (More formal background on SMMT is
in Sec. 2.2.) The most used SMMT theories are graph reachability and max-
flow, along with bit-vector addition and comparison. Applications include
circuit escape routing [11], CTL synthesis [28], virtual data center alloca-
tion [12], and cloud network security and debugging [2,8], with the last two
applications being deployed in production by Amazon Web Services (AWS).
Indeed, our research was specifically driven by industrial demand.

– DRAT is a desirable proof format. (Here, we include related formats like
DRUP [27], GRIT [19], and LRAT [18]. DRAT is explained in Sec. 2.1.)
For an independent assurance of correctness, the proof checker is the criti-
cal, trusted component, and hence must be as trustworthy as possible. For
(propositional) SAT, the community has coalesced around the DRAT proof
format [37], for which there exist independent, efficient proof checkers [37],
mechanically verified proof checkers [38], and even combinations that are
fast as well as mechanically proven [18]. The ability to emit DRAT proof
certificates has been required for solvers in the annual SAT Competition
since 2014.
Unfortunately, DRAT is propositional, so general SMT solvers need addi-
tional mechanisms to handle theory reasoning [6]. For example, Z3 [32] out-
puts natural-deduction-style proofs [31], which can be reconstructed inside
the interactive theorem prover Isabelle/HOL [14,15]. Similarly, veriT [16]
produces resolution proof traces with theory lemmas, and supports proof
reconstruction in both Coq [1] and Isabelle [21,5,4]. As a more general ap-
proach, CVC4 [7] produces proofs in the LFSC format [36], which is a meta-
logic that allows describing theory-specific proof rules for different SMT the-
ories. Nevertheless, given the virtues of DRAT, SMT solvers have started
to harness it for the propositional reasoning, e.g., CVC4 supports DRAT
proofs for bit-blasting of the bit-vector theory, which are then translated
into LFSC [34], and Otoni et al. [33] propose a DRAT-based proof certifi-
cate format for propositional reasoning that they extend with theory-specific
certificates. However, in both cases, the final proof certificate is not purely
DRAT, and any theory lemmas must be checked by theory-specific certificate
checkers.

– For typical finite-domain theories, defining theory predicates propositionally
is relatively straightforward. The skills to design and implement theory-
specific proof systems are specialized and not widely taught. In contrast, if we
treat a theory predicate as simply a Boolean function, then anyone with ba-
sic digital design skills can build a circuit to compute the predicate (possibly
using readily available commercial tools) and then apply the Tseitin trans-
form to convert the circuit to CNF. (This is known as “bit-blasting”, but we
will see later that conventional bit-blasting is too inefficient for SMMT.)

4 N. Feng et al.
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From a practical, user-level perspective, the contribution of this paper is
the first efficient proof-generating method for SMMT. Our method scales to
industrial-size instances and generates pure DRAT proofs.

From a theoretical perspective, the following contributions underlie our
method:

– We introduce the notion of one-sided propositional definitions for refutation
proof. Having different definitions for a predicate vs. its complement allows
for more compact and efficient constructions.

– We show that SMMT theories expressed in Horn theory enable linear-time
(in the size of the Horn definition) theory lemma checking via reverse unit
propagation (RUP), and hence DRAT.

– We propose an on-the-fly transformation that uses hints from the SMMT
solver to over-approximate any CNF encoding of a monotonic theory pred-
icate into a linear-size Horn upper-bound, and prove that the Horn upper-
bound is sufficient for checking theory lemmas in any given proof via RUP.

– We present efficient, practical propositional definitions for the main mono-
tonic theories used in practice: bit-vector summation and comparison, and
reachability and max-flow on symbolic graphs.

(As an additional minor contribution, we adapt the BackwardCheck procedure
from DRAT-Trim [27] for use with SMT, and evaluate its effectiveness in our
proof checker.)

We implemented our method in the MonoSAT SMMT solver [10]. For evalua-
tion, we use two sets of benchmarks derived from practical, industrial problems:
multilayer escape routing [11], and cloud network reachability [2].4 Our results
show minimal runtime overhead on the solver (geometric mean slowdown 7.4%,
worst-case 28.8% in our experiments), and we generate and check proofs for
many problem instances that are otherwise intractable.

2 Background

2.1 Propositional SAT and DRAT

We assume the reader is familiar with standard propositional satisfiability on
CNF. Some notational conventions in our paper are: we use lowercase letters
for literals and uppercase letters for clauses (or other sets of literals); for a
literal x, we denote the variable of x by var(x); we will interchangeably treat an
assignment either as a mapping of variables to truth values ⊤ (true) or ⊥ (false),
or as a set of non-conflicting (i.e., does not contain both x and its complement x̄)
literals, with positive (negative) literals for variables assigned ⊤ (⊥); assignments
can be total (assigns truth values to every variable) or partial (some variables
unassigned); and given a formula F and assignment M , we use the vertical bar
F |M to denote reducing the formula by the assignment, i.e., discarding falsified

4 Available at https://github.com/NickF0211/MonoProof.
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literals from clauses and satisfied clauses from the formula. (An empty clause
denotes ⊥; an empty formula, ⊤.)

This paper focuses on proofs of unsatisfiability. In proving a formula F UN-
SAT, a clause C is redundant if F and F ∧C are equisatisfiable [26]. A proof of
unsatisfiability is simply a sequence of redundant clauses culminating in ⊥, but
where the redundancy of each clause can be easily checked. However, checking
redundancy is coNP-hard. A clause that is implied by F , which we denote by
F |= C, is guaranteed redundant, and we can check implication by checking the
unsatisfiability of F ∧ C, but this is still coNP-complete. Hence, proofs use re-
stricted proof rules that guarantee redundancy. For example, the first automated
proofs of UNSAT used resolution to generate implied clauses, until implying ⊥
by resolving a literal l with its complement l̄ [20,39]. In practice, however, reso-
lution proofs grow too large on industrial-scale problems.

DRAT [37] is a much more compact and efficient system for proving unsatis-
fiability. It is based on reverse unit propagation (RUP), which we explain here.5

A unit clause is a clause containing one literal. If L is the set of literals appearing
in the unit clauses of a formula F , the unit clause rule computes F |L, and the
repeated application of the unit clause rule until a fixpoint is called unit prop-
agation (aka Boolean constraint propagation). Given a clause C, its negation C
is a set of unit clauses, and we denote by F ⊢1 C if F ∧ C derives a conflict
through unit propagation. Notice that F ⊢1 C implies F |= C, but is computa-
tionally easy to check. The key insight [24] behind RUP is that modern CDCL
SAT solvers make progress by deriving learned clauses, whose redundancy is,
by construction, checkable via unit propagation. Proof generation, therefore, is
essentially just logging the sequence of learned clauses leading to ⊥, and proof
checking is efficiently checking ⊢1 of the relevant learned clauses.

2.2 SAT Modular Monotonic Theories (SMMT)

We define a Boolean positive monotonic predicate as follows:

Definition 1 (Positive Monotonic Predicate). A predicate p : {0, 1}n →
{0, 1} is positively monotonic with respect to the input ai iff

p(a1, . . . , ai−1, 0, ai+1, . . .) =⇒ p(a1, . . . , ai−1, 1, ai+1, . . .)

The predicate p is a positive monotonic predicate iff p is positively monotonic
with respect to every input.

Negative monotonic predicates are defined analogously. If a predicate p is pos-
itively monotonic w.r.t. some inputs A+ and negatively monotonic w.r.t. the
rest of inputs A−, it is always possible to rewrite the predicate as a positive
monotonic predicate p′ over input A+ and {a | a ∈ A−}. For ease of exposition,

5 RUP is all we use in this paper. RAT is a superset of RUP, by essentially doing
one step of resolution as a “lookahead” before checking RUP of the resolvents. The
“D” in DRAT stands for “deletion”, meaning the proof format also records clause
deletions.

6 N. Feng et al.
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and without loss of generality, we will describe our theoretical results assuming
positive monotonic predicates only (except where noted otherwise).

Given a monotonic predicate p over input A, we will use boldface p as the
predicate atom for p, i.e., the predicate atom is a Boolean variable in the CNF
encoding of the theory, indicating whether p(A) is true or not. The theory of p
is the set of valid implications in the form of MA ⇒ p where MA is a partial
assignment over A.

The following are the most used monotonic theories:

Graph Reachability: Given a graph G = (V,E), where V and E are sets of
vertices and edges, the graph reachability theory contains the reachability
predicates reachv

u on the input variables e1, e2 . . . em ∈ E, where u, v ∈ V .
The predicate holds iff node u can reach v in the graph G by using only
the subset of edges whose corresponding variable ei is true. The predicate
is positively monotonic because enabling more edges will not make reach-
able nodes unreachable, and disabling edge will not make unreachable nodes
reachable.

Bit-Vector Summation and Comparison: Given two bit-vectors (BV) a⃗

and b⃗, the theory of BV comparison contains the predicate a⃗ ≥ b⃗, whose
inputs are the bits of a⃗ and b⃗. The predicate holds iff the value (interpreted

as an integer) of a⃗ is greater or equal to the value of b⃗. The predicate is
positively monotonic for the variables of a⃗ and negatively monotonic for
the variables of b⃗, because changing any 0 to a 1 in a⃗ makes it bigger, and
changing any 1 to 0 in b⃗ makes it smaller. Similarly, given two sets of BVs
A⃗ and B⃗, the theory of comparison between sums contains the predicate∑

A⃗ ≥
∑

B⃗ whose inputs are the boolean variables from all BVs in A⃗ and

B⃗. The predicate holds iff the sum of the BVs in A⃗ is greater or equal to
the sum of the BVs in B⃗, and is positively monotonic in A⃗ and negatively
monotonic in B⃗.

S-T Max Flow Given a graph G = (V,E), for every edge e ∈ E, let its capacity
be represented by the BV ⃗cape. For two vertices s, t ∈ V , and a BV z⃗, the
max-flow theory contains the predicates MF t

s ≥ z⃗ over the input variables
e1, e2 . . . en ∈ E and ⃗cape1 , ⃗cape2 . . . ⃗capen . The predicate holds iff the max-
imum flow from the source s to the target t is greater or equal to z⃗, using
only the enabled edges (as in the reachability theory) with their specified
capacities.

The SMMT Framework [10] describes how to extend a SAT or SMT solver
with Boolean monotonic theories. The framework has been implemented in the
SMT solver MonoSAT, which has been deployed in production by Amazon Web
Services to reason about a wide range of network properties [2,8]. The framework
performs theory propagation and clause learning for SMMT theories as follows:
(In this description, we use P for the set of positive monotonic predicates, and
S for the set of Boolean variables that are arguments to the predicates.)

Theory Propagation: Given a partial assignment M , let Ms be the partial
assignment over S. The SMMT framework forms two complete assignments



of Ms: one with all unassigned s atoms assigned to false (M−
s ), one with

all unassigned s atoms assigned to true (M+
s ). Since M−

s and M+
s are each

complete assignments of S, they can be used to determine the value of P
atoms. Since every p ∈ P is positively monotonic, (1) if M−

s ⇒ p, then
Ms ⇒ p, and (2) if M+

s ⇒ ¬p, then Ms ⇒ ¬p. The framework uses M−
s

and M+
s as the under- and over-approximation for theory propagation over

P atoms. Moreover, the framework attaches Ms ⇒ p or Ms ⇒ ¬p as the
reason clause for the theory propagation.

Clause Learning: For some predicates, a witness can be efficiently generated
during theory propagation, as a sufficient condition to imply the predicate p.
For example, in graph reachability, suppose M−

s ⇒ reachu,v,G for a given
under-approximation M−

s . Standard reachability algorithms can efficiently
find a set of edges M ′

s ⊆ Ms that forms a path from u to v. When such
a witness is available, instead of learning Ms ⇒ p, the framework would
use the path witness to learn the stronger clause M ′

s ⇒ p. Witness-based
clause learning is theory specific (and implementation specific); if a witness
is not available or cannot be efficiently generated in practice for a particular
predicate, the framework will learn the weaker clause Ms ⇒ p.

3 Overview of Our Method

Most leading SMT solvers, including MonoSAT, use the DPLL(T) frame-
work [22], in which a CDCL propositional SAT solver coordinates one or more
theory-specific solvers. A DPLL(T) solver behaves similarly to a CDCL proposi-
tional SAT solver — making decisions, performing unit propagation, analyzing
conflicts, learning conflict clauses — except that the theory solvers will also in-
troduce new clauses (i.e., theory lemmas) into the clause database, which were
derived via theory reasoning, and whose correctness relies on the semantics of
the underlying SMT theory. These theory lemmas cannot (in general) be de-
rived from the initial clause database, and so cannot be verified using DRAT.
Therefore, the problem of producing a proof of UNSAT in SMT reduces to the
problem of proving the theory lemmas.

A direct approach would be to have the SMT solver emit a partial DRAT
proof certificate, in which each theory lemma is treated as an axiom. This par-
tial proof is DRAT-checkable, but each theory lemma becomes a new proof
obligation. The theory lemmas could subsequently be verified using external
(non-DRAT), trusted, theory-specific proof-checking procedures. This is the ap-
proach recently proposed by Otoni et al. [33].

We take such an approach as a starting point, but instead of theory-specific
proof procedures, we use propositional definitions of the theory semantics to add
clauses sufficient to prove (by RUP) the theory lemmas. The resulting proof is
purely DRAT, checkable via standard DRAT checkers, with no theory-specific
proof rules. Fig. 1 explains our approach in more detail; Sec. 4 dives into how we
derive the added clauses; and Sec. 5 gives sample propositional theory definitions.

8 N. Feng et al.
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Fig. 1. Overview of Our Proof Generation and Checking Method. Inputs (the problem
instance file and the propositional definitions of theory predicates) are colored blue;
new and modified components are colored orange. Starting from the top-left is the
SMMT problem instance, which is solved by MonoSAT. We extended MonoSAT to
emit a DRAT-style proof certificate, consisting of learned (via propositional or theory
reasoning) clauses, similar to what is proposed in [33]. The proof certificate is op-
tionally pre-processed by drat-trim-theory, in which we modified the BackwardCheck
procedure [27] to perform a backward traversal from the final ⊥, outputting a subset
of lemmas sufficient (combined with the original clause database) to derive ⊥. This is
extra work (since a full BackwardCheck is later performed by unmodified drat-trim for
the final proof verification at the top-right of the figure), but allows us to avoid verifying
some theory lemmas that are not relevant to the final proof. The resulting core lemmas
are split between the propositional learned clauses, which go straight (right) to drat-
trim, and the theory learned clauses, which are our proof obligations. The heart of our
method is the instantiation-based Horn approximation (bottom-center, described in
Sec. 4). In this step, we use the proof obligations as hints to transform the pre-defined,
propositional theory definitions (bottom-left, examples in Sec. 5) into proof-specific
Horn definitions. The resulting proof-specific definitions together with the CNF from
the input instance can efficiently verify UNSAT using unmodified drat-trim [37].

4 Instantiation-Based Horn Approximation

This section describes how we derive a set of clauses sufficient to make theory
lemmas DRAT-checkable. Section 4.1 introduces one-sided propositional defini-
tions and motivates the goal of a compact, Horn-clause-based definition. Sec-
tion 4.2 gives a translation from an arbitrary propositional definition of a mono-
tonic predicate to a monotonic definition, as an intermediate step toward con-
structing the final proof-specific, Horn definition in Section 4.3.

4.1 One-Sided Propositional Definitions and Horn Clauses

Definition 2 (Propositional Definition). Let p be the positive predicate
atom of predicate p over Boolean arguments A. A propositional definition of
p, denoted as Σp, is a CNF formula over variables V ⊇ (var(p) ∪A) such that
for every truth assignment M to the variables in A, (1) Σp|M is satisfiable and



Fig. 2. Directed Graph for Running Example in Sec. 4. In the symbolic graph (left),
the reachability predicate reacht

s is a function of the edge inputs a, . . . , h.

(2) Σp |= (M ⇒ p) if and only if p(M) is ⊤. The propositional definition of p̄
is defined analogously.

For example, the Tseitin-encoding of a logic circuit that computes p(M) satisfies
this definition. However, note that a propositional definition for p can be one-
sided: it is not required that Σp |= (M ⇒ p̄) when p(M) is ⊥. That case
is handled by a separate propositional definition for p̄. We will see that this
one-sidedness gives some freedom to admit more compact definitions.

Given a propositional definition Σp, any theory lemma MA ⇒ p is a logical
consequence of Σp, but this might not be RUP checkable. One could prove
Σp |= (MA ⇒ p) by calling a proof-generating SAT solver on Σp ∧MA ⇒ p,
i.e., bit-blasting the specific lemma, but we will see experimentally (in Sec. 6)
that this works poorly. However, if the propositional definition is limited to Horn
theory (i.e., each clause has at most one positive literal), then every SMMT
theory lemma can be proven by unit propagation:

Theorem 1. Let p be a positive monotonic predicate over input A, and let Σh
p

be a propositional definition for the positive atom p. If Σh
p is set of Horn clauses,

then for any theory lemma MA ⇒ p where MA is a set of positive atoms from
A, Σh

p |= (MA ⇒ p) if and only if Σh
p ⊢1 (MA ⇒ p).

Proof. Suppose Σh
p |= (MA ⇒ p), then Σh

p ∧ (MA ∧ p̄) is unsatisfiable. Since

MA ∧ p̄ is equivalent to a set of unit clauses, Σh
p ∧ (MA ∧ p̄) still contains only

Horn clauses, so satisfiability can be determined by unit propagation.

Example 1. Let reacht
s be the reachability predicate for the directed graph

shown in Fig. 2 (left). The definition schema for graph reachability in Sec. 5
yields the following set of Horn clauses: Σh

reacht
s
:= (1) s∨a∨v1, (2) v1∨c∨v3,

(3) v3 ∨ h ∨ t, (4) s ∨ b ∨ v2, (5) v3 ∨ e ∨ v2, (6) v2 ∨ d ∨ v4, (7) v4 ∨ f ∨ v3,
(8) v4 ∨ g ∨ t, (9) t ∨ reacht

s, (10) s, where v1, . . . , v5, s, and t are auxiliary
variables. Any theory lemma of the form MA ⇒ p, e.g., a∨c∨h∨reacht

s, can be
proven from Σh

reacht
s
via unit propagation. Also, note that one-sidedness allows

a simpler definition, despite the cycle in the graph, e.g., consider assignment
M = {a,b, c,d, e, f ,g,h}. Then, reacht

s = ⊥, but Σh
reacht

s
̸|= (M ⇒ reacht

s).

Horn theory has limited expressiveness, but it is always sufficient to encode
a propositional definition for any SMMT theory: Given a monotonic predicate

10 N. Feng et al.



atom p, we can always encode a Horn propositional definition Σh
p as the con-

junction of all valid theory lemmas from the theory of p. This is because every
theory lemma is restricted to the form (MA ⇒ p), where MA is a set of positive
atoms (due to monotonicity). Hence, Σh

p is a set of Horn clauses. However, such
a näıve encoding blows up exponentially. Instead, we will seek a compact Horn
definition Σh

p that approximates a non-Horn propositional definition Σp:

Definition 3 (Horn Upper-Bound). Let Σp be a propositional definition of
p. A set of Horn clauses Σh↑

p is a Horn upper-bound if Σp |= Σh↑
p .

For the strongest proving power, we want the tightest Horn upper-bound
possible. Unfortunately, the least Horn upper-bound of a non-Horn theory can
still contain exponentially many Horn clauses [35]. Fortunately, we don’t actually
need a Horn upper-bound on the exact theory definition, but only of enough of
the definition to prove the fixed set of theory lemmas that constitute the proof
obligations. This motivates the next definition.

Definition 4 (Proof-Specific Horn Definition). Given an exact definition
Σp and a set of theory lemmas O := {C1, . . . Cn} from the theory of p, a proof-
specific Horn definition of p is a Horn upper-bound Σh↑

p of Σp such that Σh↑
p ⊢1

C for every C ∈ O.

Our goal in the next two subsections is how to derive such compact, proof-specific
Horn definitions.

Example 2. Continuing Ex. 1, given a proof obligation O with two theory
lemmas: {a∨c∨h∨reacht

s, b∨d∨g∨reacht
s}, the subset of Horn clauses with

IDs (1), (2), (3), (4), (6), (8), (9) and (10) is a proof-specific Horn definition for
reacht

s, which can be visualized in Fig. 2 (middle).

Given a proof obligation O, we can make all theory lemmas in O DRAT
checkable if we have exact propositional definitions for the theories and if we
can dynamically transform them into compact, proof-specific Horn definitions
at the time of proof checking. We simply add these additional clauses to the
input of the DRAT-proof-checker.

4.2 Monotonic Definitions

The derivation of compact, proof-specific Horn definitions from arbitrary propo-
sitional definitions is a two-step process: we first show that every propositional
definition for a monotonic predicate atom can be converted into a monotonic
definition of linear size (this section), and then use theory lemmas in the proof
obligations to create the Horn approximation of the definition (Sec. 4.3).

Definition 5 (Monotonic Definition). Let a monotonic predicate p over in-
put A be given. A CNF formula Σ+

p is a monotonic definition of the positive
predicate atom p if Σ+

p is a propositional definition of p, and it satisfies the fol-
lowing syntax restrictions: (1) Σ+

p does not contain positive atoms from A, (2)
Σ+

p does not contain p̄, and (3) p appears only in Horn clauses. The monotonic
definition for p̄ is defined analogously.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 11
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We now define the procedure, MonoT, for transforming a propositional def-
inition into a linear-size monotonic definition:

Definition 6 (Monotonic Transformation). Let a monotonic predicate p
over input A and a propositional definition Σp for the positive predicate atom p
be given. MonoT(p, Σp) is the result of the following transformations on Σp:
(1) replace every occurrence of an input atom (a for a ∈ A) in Σp with a new
atom a′ ( a is replaced with a′), (2) replace every occurrence of p and p with p′

and p′ respectively, and (3) add the following Horn clauses: a ⇒ a′ for every
a ∈ A, and p′ ⇒ p.

Theorem 2 (Correctness of Monotonic Transformation). Given a mono-
tonic predicate p over input A and the monotonic predicate atom p, if we have
any propositional definition Σp with n clauses, then MonoT(p, Σp) results in
a monotonic definition Σ+

p with at most n+ |A|+ 1 clauses.

The proof of Theorem 2 is in the extended version of this paper. The cor-
rectness relies on the fact that the predicate p is indeed monotonic, and that our
propositional definitions need only be one-sided. If the monotonic definition is
already in Horn theory, it can be used directly verify theory lemmas via RUP;
otherwise, we proceed to Horn approximation, described next.

4.3 Instantiation-Based, Proof-Specific Horn Definition

We present the transformation from monotonic definitions into proof-specific
Horn definitions. The transformation exploits the duality between predicates’
positive and negative definitions.

Lemma 1 (Duality). Let p be a monotonic predicate over Boolean arguments
A. Suppose Σp and Σp̄ are positive and negative propositional definitions, re-
spectively. For every assignment M to the variables in A:

1. Σp |= (M ⇒ p) if and only if Σp̄ ∧M∧ p is satisfiable.
2. Σp̄ |= (M ⇒ p̄) if and only if Σp ∧M∧ p̄ is satisfiable.

The proof of Lemma 1 is in the extended version of this paper. The duality
of the positive (Σp) and negative (Σp̄) definitions allows us to over-approximate
positive (negative) definitions by instantiating the negative (positive) definitions.

Example 3. Returning to Ex. 1 and Fig. 2, consider the assignment M =
{a,b, c,d, e, f ,g,h}. Since s cannot reach t under this assignment, any proposi-
tional definition Σreacht

s
must imply M ⇒ reacht

s. Dually, Σh
reacht

s
∧M ∧reacht

s

is satisfiable, e.g., {s,v1,v2,v3,v4, t}.

Lemma 2 (Instantiation-Based Upper-Bound). Let a predicate p over in-
put A and a positive definition Σp be given. For any partial assignment M ′ over
var(Σp) \ (var(p) ∪A), Σp|M ′∪p̄ ⇒ p is an over-approximation of Σp.

6

6 Note that Σp|M′ is encoded in CNF, so to compactly (i.e., linear-size) encode
Σp|M′ ⇒ p in CNF, we introduce a new literal li for each clause Ci ∈ Σp|M′ ,
create clauses cij ∨ li for each literal cij ∈ Ci, and add clause l1 ∨ l2 ∨ . . . ∨ ln ∨ p.
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The proof of Lemma 2 (in the extended paper) relies on the duality in
Lemma 1. Lemma 2 enables upper-bound construction and paves the way for
constructing an instantiation-based Horn upper-bound of a monotonic definition.

Lemma 3 (Instantiation-Based Horn Upper-Bound). Given a monotonic
predicate p over input A and a positive monotonic definition Σ+

p , let X repre-
sent the set of auxiliary variables: var(Σ+

p ) \ (A ∪ var(p)). For any complete
satisfying assignment MX∪A to Σ+

p |p̄, the formula (Σ+
p |p̄∪MX

) ⇒ p̄ serves as a
Horn upper-bound for any propositional definition of p̄, where MX is a partial
assignment derived from MX∪A for the auxiliary variables X.

(Proof in the extended paper.) Note that the instantiation-based Horn upper-
bound of a negative predicate atom p̄ is constructed from a monotonic definition
of the positive predicate atom Σ+

p , and vice-versa.
For a given theory lemma, the instantiation-based Horn upper-bound con-

struction (Lemma 3) enables the verification of the theory lemma if we can find
a sufficient “witness” MX for the instantiation. We now prove that a witness
always exists for every valid theory lemma and does not exist otherwise.

Theorem 3 (Lemma-Specific Horn Upper-Bound). Let a monotonic pred-
icate p over input A, a monotonic definition Σ+

p and a lemma in the form
MA ⇒ p be given. We denote X as the set of auxiliary variables: var(Σ+

p ) \
(A ∪ var(p)). The lemma MA ⇒ p is in the theory of p if and only if there
exists an assignment MX on X such that: (1) Σ+

p |p̄∪MX∪MA
is satisfiable and

(2) (Σ+
p |p̄∪MX

⇒ p̄) ⊢1 (MA ⇒ p̄).

(Proof in the extended paper.) Theorem 3 states that a lemma-specific Horn
upper-bound for a theory lemma MA ⇒ p can be constructed by instantiat-
ing the monotonic definition using a “witness” assignment MX . 7 The witness
could be obtained by performing SAT solving on the formula Σ+

p |M+
A∪p, (where

M+
A is the extension of MA by assigning unassigned input variables in A to ⊤

(Sec. 2.2)). However, in practice, a better approach is to modify the SMMT solver
to produce the witness during the derivation of theory lemmas. In Section 5, we
provide examples of witnesses for commonly used monotonic predicates.

Note that the witness is not part of the trusted foundation for the proof.
An incorrect witness might not support verification of a theory lemma, but if
a theory lemma is verified using a specific witness MX , Theorem 3 guarantees
that the lemma is valid.

Example 4. Continuing the example, let a theory lemma L := c ∨ d ∨ reacht
s

be given. To derive a lemma-specific Horn upper-bound for Σreacht
s
, we first ob-

tain a witness MX by finding a satisfying assignment to the formula Σh
reacht

s
∧

M ∧ reacht
s, where M := {a,b, c,d, e, f ,g,h} (by assigning the unassigned

7 Instead of instantiating a complete assignment on every auxiliary variable in X, a
partial instantiation is sufficient so long as it determines the assignments on the
other variables.
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input variables in L to ⊤). Since M is a complete assignment to the edge vari-
ables, the graph is fully specified, and a suitable witness MX can be efficiently
computed using a standard graph-reachability algorithm, to compute the reach-
ability status of each vertex. The witness MX is {s,v1,v2,v3,v4, t}. Following
the construction in Theorem 3, the formula Σh

reacht
s
| reacht

s∪MX
simplifies to

two (unit) clauses: c and d (from clauses (2) and (6) in Ex. 1), which can be
visualized as the cut in Fig. 2 (right). The lemma-specific Horn upper bound
Σh

reacht
s
| reacht

s∪MX
⇒ reacht

s is, therefore, c ∧ d ⇒ reacht
s, which in this ex-

ample is already CNF, but more generally, we would introduce two literals to
encode the implication: {c∨l1, d∨l2, l1∨l2∨reacht

s}. The lemma-specific Horn
upper-bound is dual-Horn and implies the theory lemma L by unit propagation.

From the lemma-specific Horn upper-bounds, we construct the proof-specific
Horn definition by combining the lemma-specific Horn upper-bounds for all lem-
mas in the proof obligations.

In summary, to efficiently verify SMMT theory lemmas, we propose the fol-
lowing approach: (1) define the propositional definitions (in CNF) for the atoms
of theory predicates; (2) transform the definitions into monotonic definitions of-
fline; (3) during proof checking, approximate a proof-specific Horn definition (if
not already Horn) from the constructed monotonic definition using theory lem-
mas in the proof; (4) combine the proof-specific definition together and verify
the proof via RUP. The only theory-specific, trusted foundation for the proof is
the definition for the theory atoms. (The extended version of this paper contains
a figure to help visualize this workflow.)

Example 5. Summarizing, the positive propositional definition Σreacht
s
in Ex. 1

is already Horn, so is sufficient for verifying via DRAT any SMMT lemmas that
imply reacht

s. To verify lemmas that imply reacht
s, we can compute a proof-

specific definition of reacht
s from Σreacht

s
using Theorem 3.

Remark 1. The only trusted basis of our approach are the propositional defini-
tions of theory atoms. For the monotonic theories in the section 5, we considered
the definitions intuitively understandable, and therefore sufficiently trustworthy.
But to further increase confidence, propositional definitions can be validated us-
ing techniques from hardware validation/verification, e.g., simulation to sanity-
check general behavior, equivalence checking against known-good circuits, etc.

5 Example Propositional Definitions

In this section, we illustrate the monotonic definitions for the most commonly
used monotonic predicates. Due to space constraints, we present only graph
reachability here in detail, and only sketch bit-vector comparison and summa-
tion, and max-flow. Full definitions for those theories are in the extended version
of this paper.

Graph Reachability: Given a graph G = (V,E) where V and E are sets
of vertices and edges, respectively, as discussed in Sect. 2, the graph reacha-
bility theory contains the reachability predicate reachv

u for u, v ∈ V over input
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e1, e2 . . . en ∈ E. For convenience, we refer to the positive edge atom for the edge
from vertex i to vertex j as ei→j . The predicate is positively monotonic for E,
and the monotonic definition for the positive predicate atom reachv

u contains
the clauses:

1. reachi ∨ ei→j ∨ reachj for every edge eji ∈ E and the unit clause reachu

2. reachv ∨ reachv
u

The monotonic definition introduces a reachability atom reachi for every
i ∈ V and asserts the fact that u is reachable from itself. For every edge (i, j), if
the edge (i, j) is enabled (ei→j) and i is reachable (reachi), then j must also be
reachable (reachj). The predicate atom reachv

u is implied by the reachability
of v (reachv). The definition is monotonic since it only contains negative edge
atoms. Moreover, the definition is already a Horn definition and can be used
directly for proving theory lemmas in the theory of reachv

u without the need for
transformation into a proof-specific Horn definition. The size of the definition is
O(|E|).

Instead of defining the monotonic definition for the negative predicate atom
reachv

u, we construct its proof-specific definition from the monotonic definition
of the positive predicate atom reachv

u. For each theory lemma in the proof, the
witness for constructing the lemma-specific Horn upper-bound is the reachability
status (reachi) of every vertex i ∈ V , which is efficiently computed in the SMMT
solver using standard graph-reachability algorithms.

Bit-Vector Comparison (sketch): The positive definition is just the Tseitin
encoding of a typical bit-vector comparison circuit, with some simplification due
to being one-sided: For each bit position i, we introduce auxiliary variables gei
and gti, which indicate that the more-significant bits from this position have
already determined vector a⃗ to be ≥ or > b⃗, respectively. Simple clauses compute
gei−1 and gti−1 from gei and gti and the bits at position i− 1 of a⃗ and b⃗. The
negative definition is similar. These are both Horn, so can be used without
further transformation into proof-specific Horn definitions.

Bit-Vector Summation and Comparison (sketch): These are basically
Tseitin encodings of ripple-carry adders, combined with the comparison theory
above — using Def. 6 to handle the fact that the the Tseitin encodings of the
XOR gates in the adders are non-monotonic with respect to the input bit-vectors.
The resulting propositional definitions are not Horn, so we use witnesses to
construct lemma-specific Horn definitions. The witnesses come from the SMMT
solver maintaining lower and upper bounds on the possible values of the bit-
vectors, e.g., a witness for

∑
A⃗ ≥

∑
B⃗ are lower bounds for the vectors in A⃗

and upper bounds for the vectors in B⃗ such that their sums make the inequality
true. (Mutadis mutandis for the negative witness.)

Max-Flow (sketch): For the positive definition (that the max-flow exceeds
some value), we introduce auxiliary bit-vectors to capture the flow asisgned to
each edge. We use the bit-vector theories to ensure that the flows do not exceed
the edge capacities, that each node’s (except the source) outgoing flows do not
exceed the incoming flows (equality is unnecessary due to the one-sidedness), and
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that the flow to the sink exceeds the target value. For the negative definition, we
exploit the famous max-flow/min-cut duality. We introduce an auxiliary variable
incute for each edge. We use the graph reachability theory to ensure that the
edges in the cut separate the source from the sink, and the bit-vector summation
theory to ensure that the capacity of the cut does not exceed the target max-
flow value. Both the positive and negative definitions are not Horn, so require
instantiation-based upper-bounds. The witnesses are the flow values or the cuts,
and are easily computed by the SMMT solver.

6 Experimental Evaluation

To evaluate our proposed method, we implemented it as shown earlier in Fig. 1
(Sec. 3). We call our implementation MonoProof (available at https://github.
com/NickF0211/MonoProof).

The two basic questions of any proof-generating SAT/SMT solver are: (1)
how much overhead does the support for proofs add to the solving time, and
(2) how efficiently can a proof be prepared from the proof log, and verified?
For the first question, we compare the runtime of unmodified MonoSAT ver-
sus the MonoSAT that we have extended to produce proof certificates. For the
second question, we need a baseline of comparison. MonoProof is the first proof-
generating SMMT solver, so there is no obvious comparison. However, since
SMMT theories are finite-domain, and bit-blasting (i.e., adding clauses that
encode the theory predicates to the problem instance and solving via a proposi-
tional SAT solver) is a standard technique for finite-domain theories, we compare
against bit-blasting. Arguably, this comparison is unfair, since MonoSAT out-
performs bit-blasting when solving SMMT theories [9]. Thus, as an additional
baseline, we propose an obvious hybrid of SMMT and bit-blasting, which we dub
Lemma-Specific Bit-Blasting (LSBB): we run MonoProof until the core theory
lemmas have been extracted, benefitting from MonoSAT’s fast solving time, but
then instead of using our techniques from Sec. 4, we bit-blast only the core theory
lemmas.8

We ran experiments on 3GHZ AMD Epyc 7302 CPUs with 512GB of DDR4
RAM, with a timeout of 1 hour and memory limit of 64GB. For the bit-blasting
SAT solver, we use the state-of-the-art SAT solver Kissat [13]. In all cases, the
proof is verified with standard DRAT-trim [37].

6.1 Benchmarks

We wish to evaluate scalability on real, industrial problems arising in practice.
MonoProof has successfully generated and verified industrial UNSAT proofs for

8 We implemented this both via separate SAT calls per lemma; and also by providing
all lemmas in a single SAT call (with auxiliary variables to encode the resulting
DNF), to allow the solver to re-use learned clauses on different lemmas. The latter
approach generally worked better, so we report those results, but (spoiler) neither
worked well.

https://github.com/NickF0211/MonoProof
https://github.com/NickF0211/MonoProof
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a set of hard, unsatisfiable Tiros [2,8] queries collected in production use at AWS
over a multi-week period. However, these instances are proprietary and cannot
be published, making them irreproducible by others. Instead, we evaluate on two
sets of benchmarks that we can publicly release (also at https://github.com/
NickF0211/MonoProof):

Network Reachability Benchmarks. These are synthetic benchmarks that
mimic the real-world problems solved by Tiros, without disclosing any propri-
etary information. Network reachability is the problem of determining whether a
given pair of network resources (source and destination) can communicate. The
problem is challenging because network components can intercept, transform,
and optionally re-transmit packets traveling through the network (e.g., a fire-
wall or a NAT gateway). Network components come in various types, each with
their own complex behaviors and user-configurable network controls. In these
benchmarks, we abstract to two types of intermediate components: simple and
transforming. Simple components relay an incoming packet as long as its des-
tination address belongs to a certain domain, expressed in terms of a network
CIDR (Classless Interdomain Routing), e.g., 10.0.0.0/24. Transforming network
components intercept an incoming packet and rewrite the source address and
ports to match their own before re-transmitting it. The simple network compo-
nents are akin to subnets, VPCs, and peering connections; transforming network
components are a highly abstracted version of load balancers, NAT gateways,
firewalls, etc. The SMT encoding uses the theories of bit vectors and of graph
reachability. The network packets are symbolically represented using bit vectors,
and the network is modeled as a symbolic graph. Network behavior is modeled
as logical relations between packets and elements in the network graph. Unsatis-
fiability of a query corresponds to unreachability in the network: for all possible
packet headers that the source could generate, and for all possible paths connect-
ing the source to the destination, the combined effect of packet transformations
and network controls placed along the path cause the packet to be dropped from
the network before it reaches its destination.

We generated 24 instances in total, varying the size and structure of the
randomly generated network. Graph sizes ranged from 1513 to 15524 (average
5485) symbolic edges.

Escape Routing Benchmarks. Escape routing is the problem of routing all
the signals from a component with extremely densely packed I/O connections
(e.g., the solder bumps on a Ball-Grid Array (BGA)) to the periphery of the com-
ponent, where other routing techniques can be used. For a single-layer printed
circuit board (PCB), escape routing is optimally solvable via max-flow, but real
chips typically require multiple layers. The multi-layer problem is difficult be-
cause the vias (connections between layers) are wider than the wires on a layer,
disrupting what routes are possible on that layer. Bayless et al. [11] proposed a
state-of-the-art solution using SMMT: max-flow predicates determine routability
for each layer on symbolic graphs, whose edges are enabled/disabled by logical
constraints capturing the design rules for vias.

https://github.com/NickF0211/MonoProof
https://github.com/NickF0211/MonoProof


18 N. Feng et al.

Fig. 3. Cactus Plots for Solving (left) and Proof Preparation&Checking (right). Each
point is the runtime for one instance, so the plot shows the number of instances (x-
axis) that ran in less than any time bound (y-axis). BB denotes standard bit-blasting;
LSBB, lemma-specific bit-blasting; and MonoProof is our new method. The left graph
shows that MonoProof (and LSBB, which uses MonoProof’s solver) is vastly faster
than bit-blasting for solving the instances. The right graph shows that MonoProof is
also vastly faster than bit-blasting for proving the result; LSBB timed-out on all proofs.

In [11], 24 commercial BGAs were analyzed under two different via technolo-
gies and different numbers of layers. For our benchmark set, we select all con-
figurations where the provable minimum number of layers were reported. This
results in 24 unsatisfiable SMMT problems instances (routing with one fewer
layer than the minimum), which exercise the bit-vector and max-flow theories.
Graph sizes ranged from 193994 to 3084986 (average 717705) symbolic edges.

6.2 Results

Returning to the two questions for our evaluation:

1. The solver overhead of our proof certificate generation is minimal. On the
network reachability benchmarks, the geometric mean (GM) runtime overhead
was 14.10% (worst case 28.8%). On the escape routing benchmarks, the GM
runtime overhead was only 1.11% (the worst case 5.71%). (The lower overhead
is because MonoSAT spent more time learning theory lemmas vs. recording
them in the proof.) The overall GM runtime overhead across all benchmarks
was 7.41%. These overhead figures are comparable to state-of-the-art, proof-
generating SAT solvers, which is not surprising, since our proof certificates are
essentially the same as a DRAT proof certificate in SAT. This compares favorably
with the solver overhead of heavier-weight, richer, and more expressive SMT
proof certificates like LFSC [34].

2. MonoProof’s time to prepare and check a proof of unsatisfiability is markedly
faster than standard bit-blasting or lemma-specific bit-blasting. Fig. 3 summa-
rizes our results. (A full table is in the extended version of this paper.) The left
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graph shows solving times (with proof logging). Since the proof-logging over-
head is so low for both bit-blasting (Kissat generating DRAT) and MonoProof,
these results are consistent with prior work showing the superiority of the SMMT
approach for solving [9]. Note that bit-blasting (BB) solved all 24 network reach-
ability instances, but failed to solve any of the 24 escape routing instances in the
1hr timeout. Lemma-specific bit-blasting (LSBB) and MonoProof share the same
solving and proof-logging steps. The right graph shows proof-checking times (in-
cluding BackwardCheck and proof-specific Horn upper-bound construction for
MonoProof). Here, BB could proof-check only 11/24 reachability instances that
it had solved. Restricting to only the 11 instances that BB proof-checked, Mono-
Proof was at least 3.7× and geometric mean (GM) 10.2× faster. LSBB timed out
on all 48 instances. Summarizing, MonoProof solved and proved all 48 instances,
whereas BB managed only 11 instances, and LSBB failed to prove any.

The above results were with our modified BackwardCheck enabled (drat-
trim-theory in Fig. 1). Interestingly, with BackwardCheck disabled, MonoProof
ran even faster on 37/48 benchmarks (min speedup 1.03×, max 6.6×, GM 1.7×).
However, enabling BackwardCheck ran faster in 10/48 cases (min speedup 1.02×,
max 7.9×, GM 1.6×), and proof-checked one additional instance (69 sec. vs. 1hr
timeout). The modified BackwardCheck is a useful option to have available.

7 Conclusion

We have introduced the first efficient proof-generating method for SMMT. Our
approach uses propositional definitions of the theory semantics and derives com-
pact, proof-specific Horn-approximations sufficient to verify the theory lemmas
via RUP. The resulting pure DRAT proofs are checkable via well-established (and
even machine verified) tools. We give definitions for the most common SMMT
theories, and experimental results on industrial-scale problems demonstrate that
the solving overhead is minimal, and the proof preparation and checking times
are vastly faster than the alternative of bit-blasting.

The immediate line of future work is to support additional finite domain
monotonic theories, such as richer properties on pseudo-boolean reasoning. We
also aim to apply our approach to support monotonic theories beyond finite
domains. In addition, we plan to extend our proof support to emerging proof
format such as LRAT [18] and FRAT [3] that enable faster proof checking.
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