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Abstract. Formal verification of multipliers is difficult. This paper pre-
sents a custom tool, VeSCMul, designed to address this problem. VeSC-
Mul can be effectively applied to a wide range of hardware verification
challenges, including multipliers with saturation, flags, shifting, trunca-
tion, accumulation, dot product, and even floating-point multiplication.
The tool is highly automated with a user-friendly interface, and it is very
efficient; for instance, verification for designs with 64-bit operands can
finish in seconds. Notably, VeSCMul has been successfully utilized for
both commercial designs and publicly available benchmarks. Regarding
the reliability of its results, VeSCMul itself is fully verified, instilling con-
fidence in its users for soundness. It also has the option to be used with
a SAT solver for completeness and counterexample generation. Readers
of this paper will gain insights into the capabilities and limitations of
VeSCMul, as well as how to employ it for the verification of their own
designs.
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1 Introduction

Integer multipliers are crucial components in processing units. Ensuring their
correctness through formal verification is essential; however, historically, veri-
fying them has proven to be challenging [4,6,15,18]. Automated methods like
SAT solving, BDDs, and computer algebra systems have either failed to scale or
demonstrated limited applicability in this context [2,8,12,16,25]. On the other
hand, the S-C-Rewriting method has been shown to be very efficient in formally
verifying a large variety of RTL designs [21,24,25,26].

S-C-Rewriting and auxiliary programs are packaged into the VeSCMul tool
(pronounced “vesk-muhl”). VeSCMul is designed to be user-friendly and com-
prehensive for sound, fast, and automatic verification of multiplier-centric RTL
designs. It has an improved user interface tailored for non-experts, simplifying
tool usage. VeSCMul has also introduced the support for fully automatic verifi-
cation with its new adder detection program. VeSCMul has undergone extensive
testing on thousands of public benchmarks as well as proprietary industrial de-
signs at Intel Corporation. Its open-source and free-license status enables others
to use this tool for similar verification tasks.
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This paper presents VeSCMul, and it is outlined as follows. Sec. 2 walks
through a demo for VeSCMul, showing the user-interface. Sec. 3 gives an overview
of the tool flow. Sec. 4 lists some of the noteworthy features. Sec. 5 delivers exper-
imental results on both public and proprietary designs. Sec. 6 discusses related
work and concludes the paper.

2 Installation and a Demo

VeSCMul is implemented in the ACL2 theorem prover and programming lan-
guage [10], and it is fully verified. VeSCMul is open-source with the MIT license,
included as a Community Book in the ACL2 distribution on Github, which
can be found at https://github.com/acl2/acl2 under books/projects/vescmul.
Installing ACL2 and building the books will bring along VeSCMul.

A comprehensive and up-to-date documentation for VeSCMul is available as
part of ACL2’s manual, accessible at http://acl2.org/manual. This documenta-
tion is extensive, covering thousands of topics from ACL2 sources and Commu-
nity Books. Throughout this paper, various documentation topics are referenced
using the notation “:doc <topic>”.

Once ACL2 is installed and books are built, users can run a VeSCMul demo
by running the events from Listing 1.1 within an ACL2 interactive session.

Listing 1.1: Simple demo running VeSCMul on a signed 64x64-bit multiplier with
Booth radix-4 encoding, Dadda tree, and Han-Carlson adder.

(include -book "projects/vescmul/top" :dir :system)

(vescmul -parse
:name my -multiplier -example
:file "DT_SB4_HC_64_64_multgen.sv"
:topmodule "DT_SB4_HC_64_64 ")

(vescmul -verify
:name my-multiplier -example
:concl (equal RESULT

(loghead 128 (* (logext 64 IN1)
(logext 64 IN2 )))))

The first event (include-book) loads VeSCMul and required libraries, which
takes about a minute. Alternatively, an executable can be created for instant
loading (see :doc save-exec). The second event (vescmul-parse) parses the
target design, taking a few seconds. The Verilog file is available in the ACL2 git
repository under the books/projects/vescmul/demo directory. The third event
(vescmul-verify) uses VeSCMul to verify the design. :concl specifies the con-
jecture, with RESULT as the output signal name, and IN1 and IN2 as input signal
names. logext sign-extends bit-vectors (represented as integers), and loghead
zero-extends or, in other words, truncates them. The inputs are 64-bit signed
numbers, producing a 128-bit multiplication result. VeSCMul can fully verify
this design in 1-2 seconds (as tested on a Macbook M1 pro).
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3 Tool Flow

The vescmul-parse and vescmul-verify utilities are two LISP macros that
invoke various programs to parse and then verify target designs.

The vescmul-parse macro packs VL/SV/SVTV utilities to parse Verilog de-
signs and create symbolic simulation vectors. These utilities are publicly available
and come with the ACL2 installation. They have been developed and used in
industry (i.e., Centaur Technology and Intel Corporation) (see :doc sv).

The vescmul-verify macro gathers the symbolic simulation objects, detects
adder components, applies the S-C-Rewriting algorithm, and maybe utilizes SAT
solving in the end. The program flow is shown in Fig. 1. These steps are explained
as follows.

Fig. 1: Flow chart of vescmul-verify. (1) User states a conjecture with high-
level specification. (2) VeSCMul receives a sea of gates from the design. (3) The
tool identifies and rebuilds half/full-adders in this sea of gates. (4) The design
and the spec are rewritten with the S-C-Rewriting methodology. (5) If rewriting
is not conclusive, rewritten conjecture can be passed to FGL for SAT solving.

(1) Specification is provided by the user, stating a relation between input and
output signals. This is typically a combination of multiplication (*), addition (+),
subtraction (-), truncation/zero-extension (loghead), sign-extension (logext),
part selection (part-select), and possibly user-defined functions.

(2)(3) S-C-Rewriting algorithm needs to differentiate and specially rewrite
adder components (e.g., full/half-adders) in a design. In previous work [25,26],
S-C-Rewriting algorithm was used only for designs whose design hierarchy in-
formation around adders was readily available. VeSCMul has been improved to
now support flattened designs. This is achieved by an internal program that goes
through a sea of gates to identify and mark the adder components before ap-
plying the S-C-Rewriting algorithm. Tests have shown that this program works
very well for successful verification of various architectures (see Sec. 5). Should
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the program not identify some adders and the verification attempt fails because
of that, users may also pass hierarchical verification hints (see :doc vescmul).

(4) When VeSCMul applies S-C-Rewriting, the rewriter tries to rewrite both
the specification and the design to the same form (i.e., s-c-form [25]), and the two
sides are compared syntactically. For correct multiplier designs, this is usually
enough to prove the conjecture.

(5) If S-C-Rewriting cannot show the conjecture to be correct, it returns its
rewritten form. Users have the option to automatically use the FGL utility [19]
(see :doc fgl) that can bit-blast the rewritten conjecture, perform AIG trans-
formations, and invoke an external SAT solver like CaDiCaL [1]. FGL is also a
verified program. This can either generate counterexamples for false conjectures,
or help finalize the proofs in some fringe cases. For example, in x86 multiplier
designs, extra circuitry is used to calculate flags based on multiplication results,
such as the overflow flag that is set when a certain portion of the result are not
homogeneously 0s or 1s. VeSCMul by itself may not be able to process the extra
flag logic; however, it can rewrite and simplify the multiplication component,
send the rewritten expression to an external SAT solver through FGL, and final-
ize such proofs in a matter of seconds or minutes. Note that if the multiplication
component is not rewritten as intended by S-C-Rewriting, it is unlikely for a
SAT solver to scale and finish the proofs for operand sizes greater than 16-bits.

4 Notable Features and Compatible Tools

This section highlights some of the useful and noteworthy features of VeSCMul
as well as compatible tools.

Customizable specification: Users can state their own specifications to
verify various multiplier configurations such as multiply-add, dot product, and
multipliers with shifted, truncated and/or saturated outputs.

Automatic adder detection: VeSCMul includes an adder-detection pro-
gram that identifies and marks adders before employing the S-C-Rewriting algo-
rithm. This makes the overall verification procedure fully automatic for a large
variety of multiplier designs (see Sec. 5 for experiments).

End-to-end verified: The author has rigorously verified, using ACL2, that
VeSCMul’s all rewriting operations on given conjectures are sound. Users can
place high confidence in the results when a design is claimed to be correct.
Verifying such a substantial program is a complex process, demanding ACL2
expertise [20,21,22].

Exporting a clean multiplier with design hierarchy: The included
adder-detection program can be used as a stand-alone feature. Given a flat-
tened multiplier design, VeSCMul can export a functionally equivalent Verilog
module with adder components separated as half/full-adder submodules. This
feature may be particularly useful for researchers addressing the multiplier veri-
fication problem, where adder detection can be a common challenge [7,11,12,14].
For soundness, VeSCMul includes a mechanism for formal equivalence checking
between the original and exported designs.
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Integration into other verification flows: Proofs generated by VeSCMul
can be integrated into other ACL2-based verification workflows. For instance,
when verifying floating-point fused-multiply-add (FMA) operations, which often
involves decomposing the design into integer multiplication and post-multiplica-
tion parts, VeSCMul can be used for the multiplication part while SAT solving
can be employed for the rest. Existing and actively used decomposition tool flows
in ACL2 (see :doc decomposition-proofs) and VeSCMul are compatible.

Verification of sequential circuits: VeSCMul can handle sequential cir-
cuits, including pipelined designs. Additional key arguments can be provided to
vescmul-parse to verify such designs (see :doc vescmul-parse). Modules with
control logic reusing the same circuitry for various arithmetic operations (e.g.,
see :doc multiplier-verification-demo-2) are also supported.

Waveform generation: VeSCMul is compatible with another tool (see :doc
svtv-debug$) for generating waveforms in the VCD format. This capability can
be valuable for pinpointing the cause of bugs in case of counterexamples.

5 Experiments

VeSCMul has undergone extensive testing and utilization across various architec-
tures in both public benchmarks and proprietary x86 processor design projects
at Centaur Technology and Intel Corporation.

Various benchmarks are gathered for experiments using publicly available
generators [3,13,23]1. Summation trees include Dadda (dt), Wallace (wt), 4-to-
2 compressor (4:2), array (ar), redundant binary addition (rbat), balanced de-
lay (bdt), overturned stairs (os) trees. Partial products include signed/unsigned
(s/u) simple (sp), Booth radix-2 (b2), radix-4 (r4), radix-8 (r8), radix-16 (r16)
encodings. Final stage adders include block carry lookahead (bcla), carry looka-
head (cla), carry-select (csel), Ladner-Fischer (lf), carry-skip (csk), conditional
sum (cond), Brent-Kung (bk), ripple-carry (rp), Kogge-Stone (ks), Han-Carlson
(hc), J. Sklansky conditional (jsk) adders.

Table 1 contains a large number of benchmarks to compare the performance
of VeSCMul to other prominent verification tools: AMulet [8] and RevSCA2 [12]
that target n×n-bit multipliers with 2n-bit results. The newest version of AMulet
(AMulet2) timed out for the majority of the benchmarks; the owner is notified,
and AMulet1 is used in the experiments instead. The results for AMulet1 includes
the time to check for proof certificates. RevSCA2 is neither a verified program
nor does it produce certificates to check its results. These experimental results
show that VeSCMul scales much better for large multipliers.

In addition to standard input/output sizes (n × n-bit multipliers with 2n-
bit results), Table 2 includes VeSCMul’s verification results for variations such
as multiply-add (e.g., 64× 64 + 64), multipliers with asymmetric operand sizes
(e.g., 10 × 1024), shifted/truncated outputs (e.g., 64 × 64[95:32] returns the
output bit positions from 32 to 95), and dot product (e.g., 8(16× 16) + 32 is an
1 All tests are available at https://temelmertcan.github.io/mult-experiments.html, or

the peer-reviewed artifact is available at https://zenodo.org/records/10048797
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Table 1: Proof-time results with success rates for a large set of nxn-bit multipliers
Op. Size PP Benchmarks RevSCA2 [12] AMulet1 [7] VeSCMul

32x32 sp 48 0.5s (77%) 0.4s (100%) 0.5s (100%)
r2 48 0.8s (62%) 1.4s (100%) 0.7s (100%)
r4 48 1.4s (87%) 1.3s (91%) 0.6s (100%)
r8 48 241s (44%) TO (0%) 0.7s (100%)
r16 48 TO (0%) TO (0%) 1.9s (100%)

64x64 sp 54 11s (77%) 1.9s (100%) 1.7s (100%)
r2 48 17s (62%) 32s (100%) 2.6s (100%)
r4 240 19s (75%) 4.9s (88%) 2.8s (90%)
r8 48 1630s (19%) TO (0%) 2.7s (100%)
r16 48 TO (0%) TO (0%) 8s (100%)

128x128 sp 54 83s (65%) 11s (100%) 6.6s (100%)
r2 48 356s (52%) 928s (100%) 10.1s (100%)
r4 48 642s (50%) 274s (91%) 8.4s (100%)
r8 48 TO (0%) TO (0%) 11s (100%)
r16 48 TO (0%) TO (0%) 37s (100%)

256x256 sp 48 2501s (65%) 82s (100%) 27s (100%)
r4 48 TO (0%) 9529s (91%) 33s (100%)

512x512 r4 6 TO (0%) TO (0%) 138s (100%)

1024x1024 r4 6 TO (0%) TO (0%) 776s (100%)

Multiplier sizes range from 32x32 to 1024x1024, grouped wrt. partial product algorithm.
Total of 1032 different benchmarks are used and the timing results of successful proof
attempts are averaged. The tools could not verify all the benchmarks and the success
ratios are given in parentheses. VeSCMul is used only for fully automatic verification
(without a SAT solver), but it can verify the missing cases with user-provided hints.
Time-out (TO) is set to 3600 seconds (1 hour) for up to 128x128; 16200 seconds (4.5
hours) for the rest. Collected on Intel® E-2378G CPU, 32GB memory.

Table 2: Proof-time and memory allocation for various designs
Arch. Function Time, Mem Arch. Function Time, Mem

dt-ub4-bcla 64x64 2.1s, 0.3GB 4:2-ub4-cla 64x64 9.7s, 0.7GB

ar-sb4-csel 64x64 2.0s, 0.3GB rbat-sb4-lf 64x64 2.4s, 0.3GB

bdt-sb4-csk 64x64 2.4s, 0.3GB os-sb4-cond 64x64 1.8s, 0.3GB

dt-ssp-bk 64x64 1.7s, 0.3GB ar-usp-rp 64x64 1.0s, 0.2GB

4:2-ub4-ks 64x64 3.7s, 0.5GB 4:2-ub8-lf 64x64 3.4s, 0.5GB

dt-sb16-hc 64x64 8.0s, 1.9GB wt-ub16-bk 64x64 8.3s, 1.9GB

dt-ssp-bk 128x128 5.9s, 1.0GB 4:2-ub4-hc 128x128 13.3s, 1.8GB

wt-usp-lf 256x256 28s, 4.4GB dt-sb4-jsk 256x256 27s, 4.4GB

dt-sb4-jsk 512x512 130s, 19GB dt-sb4-jsk 1024x1024 725s, 83GB

dt-sb4-ks 10x1024 32s, 5.1GB dt-sb4-ks 1024x10 32s, 5.7GB

dt-sb2-bk 64x64+64 2.5s, 0.4GB wt-sb4-lf 64x64[63:0] 0.9s, 0.2GB

wt-sb4-lf 64x64[95:32] 1.8s, 0.3GB wt-sb4-lf 64x64[127:64] 2.2s, 0.4GB

wt-sb8-bk 8(16x16)+32 2.0s, 0.3GB dt-sb4-ks 4(32x64)+128 5.2s, 1.1GB
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8-point dot product with 16-bit operands accumulating onto a 32-bit number).
Comparable verification tools do not support these configurations. VeSCMul can
fully automatically verify these designs without user hints or SAT solvers.

Moreover, around 7500 different multiplier designs with diverse architectures,
operand sizes, operations, truncation, and shifting were randomly generated [23].
Overall, VeSCMul achieved a 98% success rate for fully automatic verification
without hints or SAT solvers. The remaining 2% is mostly made up of multipliers
with a special 7-to-3 compressor tree, and shifted multipliers, but they could still
be verified by VeSCMul with a user-provided design hierarchy hint.

VeSCMul has also proven successful in industrial designs, particularly for
Intel x86 instructions with various functional configurations, including multiply-
accumulate, dot product, output shifting/truncation, flag calculations based on
multiplication results, and saturation. In some cases, the assistance of a SAT
solver becomes necessary (for flags and saturation). These designs can be fully
verified rapidly and automatically, with results similar to those in the public
designs. To the best of the author’s knowledge, VeSCMul is the first tool to
achieve comparable verification tasks scalably and automatically.

Additionally, VeSCMul has played a vital role in the verification flow of
floating-point multiply and fused-multiply-add operations. Verifying these de-
signs is notably challenging, with no known fully automated verification method.
We employ decomposition techniques [5,17], where VeSCMul is used for the mul-
tiplication part, significantly reducing manual effort. Complete verification of
single and double precision operations can be completed in under an hour.

6 Related Work and Conclusion

AMulet [8], RevSCA2 [12], and DyPoSUB [14] are other state-of-the-art tools
for multiplier verification. Like VeSCMul, AMulet prioritizes soundness and can
produce proof certificates. In contrast, RevSCA2 and DyPoSUB lack such proofs
or mechanisms, and DyPoSUB has been identified as unsound [9]. Additionally,
these tools primarily focus on verifying n×n-bit multipliers with 2n-bit results.
On the other hand, VeSCMul stands out by offering scalable and automatic
verification for a broader range of multiplier-centric arithmetic circuits, and it
allows users to specify their conjectures. These target designs can encompass reg-
ular multipliers, multiply-add operations, dot products, and operations involving
shifting, truncation, accumulation, and saturation.

This paper has showcased VeSCMul for multiplier verification, which has
demonstrated favorable results in experiments involving both public and propri-
etary RTL designs. This tool is open-source and compatible with other hardware
verification tools. It has an improved user-interface tailored for ACL2 novices.
The tool itself is fully verified, so users can have a high level of confidence in its
soundness. Future work includes adding support for more input formats (cur-
rently limited to System Verilog) such as AIGER and DIMACS CNF, and further
enhancements in automation to handle corner-case designs that currently require
user hints for verification.
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