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1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. Z3-Noodler is a fork of Z3 that replaces its string theory solver
with a custom solver implementing the recently introduced stabilization-based
algorithm for solving word equations with regular constraints. An extensive ex-
perimental evaluation shows that Z3-Noodler is a fully-fledged solver that can
compete with state-of-the-art solvers, surpassing them by far on many bench-
marks. Moreover, it is often complementary to other solvers, making it a suitable
choice as a candidate to a solver portfolio.

1 Introduction

Recently, many tools for solving string constraints have been developed, motivated
mainly by techniques for finding security vulnerabilities such as SQL injection or cross-
site scripting (XSS) in web applications [34,35,36]. String solving has also found its
applications in, e.g., analysis of access user policies in Amazon Web Services [26,8,39]
or smart contracts [7]. Solvers for string constraints are usually implemented as string
theory solvers inside SMT solvers, such as cvc5 [9] or Z3 [31], allowing combination
with other theories, most commonly the theory of integers for string lengths. Other
well known string solvers include Z3str3RE [13,12], Z3-Trau [1], Z3str4 [30], OS-
TRICH [19], and others.

In this paper, we present Z3-Noodler 1.0.0 [47], a fork of Z3 4.12.2 where the
string theory solver is replaced with the stabilization-based procedure for solving string
(dis)equations with regular and length constraints [14,20]. The procedure makes heavy
use of nondeterministic finite automata (NFAs) and operations over them, for which we
use the efficient Mata library for NFAs [23,29].

The presented version implements multiple improvements over a previous Z3-
Noodler prototype from [20]. Firstly, it extends the support for string predicates from
the SMT-LIB string theory standard [11] by (1) applying smarter and more specific
axiom saturation and (2) adding support for their solving inside the decision procedure
(e.g., for the ¬contains predicate). It also implements various optimizations (e.g., for
regular constraints handling) and other decision procedures, e.g., the Nielsen transfor-
mation [32] for quadratic equations and a procedure for regular language (dis)equations;
moreover, we added heuristics for choosing the best decision procedure to use.

We compared Z3-Noodler with other string solvers on standard SMT-LIB bench-
marks [10,42,43]. The results indicate that Z3-Noodler is competitive, superior espe-
cially on benchmarks containing mostly regular constraints and word (dis)equations, and
that the improvements since [20] had a large impact on the number of solved instances
as well as its overall performance.
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2 Architecture

Z3-Noodler replaces the string theory solver in the DPLL(T)-based SMT solver Z3 [31]
(version 4.12.2) with our string solver Noodler [14], which is based on the stabilization
algorithm (cf. Section 3). DPLL(T)-based solvers in general combine a SAT solver
providing satisfying assignments to the Boolean skeleton of a formula with multiple
theory solvers for checking conjunctions of theory literals.

Z3-Noodler still uses the infrastructure of Z3, most importantly the parser, string
theory rewriter and the linear integer arithmetic (LIA) solver. The Z3 parser takes
formulae in the SMT-LIB format [10], where Z3-Noodler can handle nearly all pred-
icates/functions (such as substr, len, at, replace, regular membership, word equa-
tions, etc.) in the string theory as defined by SMT-LIB [11].

Even though we do use the string theory rewriter of Z3, we disabled those rewritings
that do not benefit our core string solver. For instance, we removed rules that rewrite
regular membership constraints to other types of constraints since solving regular con-
straints and word equations using our stabilization-based approach is efficient.
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Fig. 1: Architecture of Z3-Noodler

The interaction of the Noodler solver with
Z3 is shown in Fig. 1 and works as follows. Upon
receiving a satisfying Boolean assignment from
the SAT solver ( 1 ), we first remove irrelevant
assignments (using Z3’s relevancy propagation),
which allows us to work with smaller instances
and return more general theory lemmas. A the-
ory assignment obtained from the Boolean as-
signment consists of string (dis)equations, regu-
lar constraints, and, possibly, predicates that were
not axiom-saturated before (cf. Section 3).

The core Noodler string decision procedure then reduces the conjunction of string
literals to a LIA constraint over string lengths, and returns it to Z3 as a theory lemma ( 2 ),
to be solved together with the rest of the input arithmetic constraints by Z3’s internal
LIA solver. Noodler implements a couple of decision procedures (discussed in Sec-
tion 3), heavily employing the Mata automata library (version 0.109.0) [29] ( 3 ). As
an optimization of the theory lemma generation, when the string constraint reduces into
a disjunction of LIA length constraints, we check the satisfiability of individual dis-
juncts (generated lazily on demand) separately in order to get a positive answer as soon
as possible. For testing the disjuncts, the current solver context is cloned and queried
about satisfiability of the LIA constraint conjoined with the disjunct ( 4 ).

3 String Theory Core

In this section, we provide details about Z3-Noodler’s string theory implementation,
including initial axiom saturation, proprocessing, the core procedure, and limitations.

Axiom Saturation. In order to best utilize the power of Z3’s internal LIA solver during the
generation of a satisfiable assignment, we saturate the input formula with length-aware
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theory axioms and axioms for string predicates (this happens during Z3’s processing
of the input formula, before the main SAT solver starts generating assignments). We
can then avoid checking SAT assignments that trivially violate length conditions. Most
importantly, we add length axioms len(𝑡1) ≥ 0, len(𝑡1.𝑡2) = len(𝑡1) + len(𝑡2) where
𝑡1, 𝑡2 are arbitrary string terms, and len(𝑡1) = len(𝑡2) for the word equation 𝑡1 = 𝑡2.

Moreover, for string functions/predicates, Noodler saturates the original formula
with an equivalent formula composed of word (dis)equations and length/regular con-
straints, which are more suitable for our core procedure (e.g., for ¬contains(𝑠, "abc")
in the input formula, we add the regular constraint 𝑠 ∉ Σ∗abcΣ∗). We use differ-
ent saturation rules for instances of predicates with concrete values. For instance, for
substr(𝑠, 4, 1), we add just the term at(𝑠, 4). On the other hand, for substr(𝑠, 𝑡𝑖 , 𝑡 𝑗 ),
where 𝑠 is a string term and 𝑡𝑖 , 𝑡 𝑗 are general integer terms (possibly containing vari-
ables), we need to add a more general formula talking about the prefix and suffix of 𝑠
of given lengths. The original predicate occurrence is then removed from received
assignments by Noodler (Z3 does not allow to remove parts of the original formula).

Decision Procedures. Z3-Noodler’s string theory core contains several complementary
decision procedures. The main one is the stabilization-based algorithm for solving word
equations with regular constraints introduced in [14] and later extended with efficient
handling of length constraints and disequations [20]. The stabilization-based algorithm
starts, for every string variable, with an NFA encoding regular constraints on the variable
and iteratively refines the NFA according to the word equations until the stability
condition is achieved. The stability condition holds when, for every word equation,
the language of the left-hand side (obtained as the language of the concatenation of
NFAs for variables and string literals) equals the language of the right-hand side. When
stability is achieved, length constraints of the solutions are generated and passed to the
LIA solver. The algorithm is complete for the chain-free [5] combinations of equations,
regular and length constraints, together with unrestricted disequations, making it the
largest known decidable fragment of these types of constraints.

The stabilization-based decision procedure starts by inductively converting the initial
regular constraints into NFAs. During the construction, we utilize eager simulation-based
reduction [16,17] with on-demand determinization and minimization.

For an efficient handling of quadratic equations (systems of equations with at most
two occurrences of each variable) with lengths, Noodler implements a decision pro-
cedure based on the Nielsen transformation [32]. The algorithm constructs a graph
corresponding to the system and reasons about it to determine if the input formula is
satisfiable or not [38,22]. If the system contains length variables, we also create a counter
automaton corresponding to the Nielsen graph (in a similar way as in [28]). In the subse-
quent step, we contract edges, saturating the set of self-loops and, finally, we iteratively
generate flat counter sub-automata (a flat counter automaton only allows cycles that
are self-loops), which are later transformed into LIA formulae describing lengths of all
possible solutions.

In order to solve (dis)equations of regular expressions, we reduce the problem to
reasoning about the corresponding NFAs (similarly as for regular constraints handling).
In particular, we use efficient NFA equivalence and universality checking from Mata,
which implements advanced antichain-based algorithms [46,6].
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Preprocessing. Each decision procedure employs a sequence of preprocessing rules
transforming the string constraint to a more suitable form. Our portfolio of rules includes
transformations reducing the number of equations by a conversion to regular constraints,
propagating epsilons and variables over equations, underapproximation rules, and rules
reducing the number of disequations (cf. [20]). On top of that, Z3-Noodler employs
information about length-equivalent variables allowing to infer simpler constraints (e.g.,
for 𝑥𝑦 = 𝑧𝑤 with len(𝑥) = len(𝑧), we can infer 𝑦 = 𝑤). Z3-Noodler also checks for
simple unsatisfiable patterns for early termination. A sequence of preprocessing rules is
composed for each of the decision procedures differently, maximizing their strengths.

Supported String Predicates and Limitations. Z3-Noodler currently supports handling
of basic string predicates replace, substr, at, indexof, prefix, suffix, contains,
and a limited support for ¬contains. From the set of extended constraints, the core
solver currently does not support the replace all function (and variants of replacement
based on regular expressions) and to/from int conversions. The decision procedures
used in Z3-Noodler make it complete for the chain-free fragment with unbounded
disequations and regular constraints [20], and quadratic equations. Outside this fragment,
our theory core is sound but incomplete.

4 Experiments

Tools and environment. We compared Z3-Noodler with the following state-of-the-art
tools: cvc5 [9] (version 1.0.8), Z3 [31] (version 4.12.2), Z3str3RE [13,12], Z3str4 [30],
OSTRICH [19]3, and Z3-Noodlerpr (version 0.1.0 used in [20]). We did not compare
with Z3-Trau [2] as it is no longer under active development and gives incorrect results
on newer benchmarks. The experiments were executed on a workstation with an Intel
Xeon Silver 4314 CPU @ 2.4 GHz with 128 GiB of RAM running Debian GNU/Linux.
The timeout was set to 120 s, memory limit was set to 8 GiB.

Benchmarks. The benchmarks come from the SMT-LIB [10] repository, specifically
categories QF S [42] and QF SLIA [43]. These benchmarks were also used in SMT-
COMP’23 [41], in which Z3-Noodler participated (version 0.2.0). As Z3-Noodler
does not support to/from int conversions and replace all-like predicates, we ex-
cluded formulae whose satisfiability checking needs their support. Based on the occur-
rences of different kinds of constraints, we divide the benchmarks into three groups:

Regex This category contains formulae with dominating regular membership and
length constraints. It consists of AutomatArk [13], Denghang, StringFuzz [15],
and Sygus-qgen benchmark sets. We excluded 1,568 formulae from StringFuzz
that require support of the to int predicate.

Equations The formulae in this category consist mostly of word equations with length
constraints and a small amount of other predicates. It contains Kaluza [40,27], Ke-
pler [25], Norn [3,4], Slent [44], Slog [45], Webapp, and Woorpje [24] benchmark
sets. We excluded 414 formulae from Webapp that require support of replace all,
replace re, and replace re all predicates.

3 Latest commit 70d01e2d2, run with -portfolio=strings option.
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Table 1: Results of experiments on all benchmark sets. For each tool and benchmark set (as well
as whole groups under Σ), we give the number of unsolved instances. Results for tools with the
highest number of solved instances are in bold. Numbers with ∗ contain also incorrect results.

Regex Equations Predicates-small

Aut Den StrFuzz Syg Σ Kal Kep Norn Slent Slog Web Woo Σ StrInt Leet StrSm Σ PyEx
Included 15,995 999 10,050 343 27,387 19,432 587 1,027 1,128 1,976 267 809 25,226 11,669 2,652 1,670 15,991 23,845
Unsupported 0 0 1,568 0 1,568 0 0 0 0 0 414 0 414 5,299 0 210 5,509 0

Z3-Noodler 62 0 0 0 62 259 4 0 5 0 0 243 511 4 4 55 63 4,424
cvc5 94 18 1037 0 1149 0 240 85 22 0 40 54 441 0 0 4 4 34
Z3 113 118 340 0 571 164 313 124 74 71 61 25 832 4 0 32 36 1,071
Z3str4 60 4 27 0 91 174 254 73 73 16 62 78 730 5 4 37 46 570
OSTRICH 55 15 229 0 299 288 387 1 130 7 65 53 931 37 26 ∗106 ∗169 12,290
Z3str3RE 66 27 ∗143 1 ∗237 ∗144 311 133 87 55 ∗104 ∗118 ∗952 64 192 ∗179 ∗435 17,764
Z3-Noodlerpr 86 1 ∗1,014 0 ∗1,101 508 575 0 6 0 ∗3 256 ∗1,348 40 29 ∗493 ∗562 ∗13,362

Predicates-small Although Z3-Noodler focuses mainly on word equations with length
and regular constraints, the evaluation includes also a group consisting of smaller
formulae that use string predicates such as substr, at, contains, etc. It is formed
from FullStrInt, LeetCode, and StrSmallRw [33] benchmark sets. We removed 5,509
formulae containing the to/from int predicates from FullStrInt and StrSmallRw.

We also consider the PyEx [37] benchmark, which we do not put into any of these
groups, as it contains large formulae with complex predicates (substr, contains,
etc.). We note that we omit the small Transducer+ [18] benchmark because it contains
exclusively formulae with replace all.

Table 2: Average run times (in sec-
onds) of solved instances and their
standard deviations.

Reg Eq Pred
avg std avg std avg std

Z3-Noodler 0.11 1.35 0.11 2.13 0.11 2.16
cvc5 1.17 8.51 0.11 2.15 0.03 0.15
Z3 1.92 9.71 0.18 2.83 0.04 0.42
Z3str4 0.35 2.00 0.25 3.40 0.02 0.31
OSTRICH 4.29 8.67 4.28 9.28 12.71 15.08
Z3str3RE 0.31 3.28 0.13 2.72 0.01 0.08
Z3-Noodlerpr 0.27 2.86 0.12 2.93 0.09 1.69

Results. We show the number of unsolved instances
for each benchmark and tool (as well as whole
groups) in Table 1. Some tools gave incorrect re-
sults (determined by comparing to the output of cvc5
and Z3) for some benchmarks. Usually, this was less
than 10 instances, except for Z3str3RE on String-
Fuzz and StrSmallRw (50 and 12 incorrect results re-
spectively) and Z3-Noodlerpr on StrSmallRw (218
incorrect results). Table 2 then shows the average
run times and their standard deviations for solved
instances for each category and tool.

The results show that Z3-Noodler outperforms other tools on the Regex group (in
particular on Denghang, StringFuzz, and Sygus-qgen) both in the number of solved
instances and the average run time. Only on AutomatArk it cannot solve the most
formulae (but it solves only 7 less than the winner OSTRICH, while being much faster).

On the Equations group, Z3-Noodler also outperforms other tools on most of the
benchmarks. In particular on Kepler, Norn, Slent, Slog, and Webapp. On Kaluza, it is
outperformed by other tools, but it still solves the vast majority of formulae. Z3-Noodler
has worse performance on Woorpje, which seems to be a synthetic benchmark generated
to showcase the strength of a specialized algorithm [24] (this benchmark is the reason
for Z3-Noodler taking the second place in the whole group). With 0.11 s, Z3-Noodler
and cvc5 have the lowest average run time.
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Fig. 2: Comparison of Z3-Noodler with cvc5, Z3, and the virtual best solver (VBS).
Times are in seconds, axes are logarithmic. Dashed lines represent timeouts (120 s).
Colours distinguish groups: •Regex, •Equations, and •Predicates-small.

The winner of Predicates-small is cvc5. In particular, on FullStrInt and LeetCode
the difference with Z3-Noodler is equally 4 instances and on StrSmallRw the difference
is 51 cases. The average time of Z3-Noodler is also a bit higher, with 0.11 s for Z3-
Noodler compared to the 0.03 s for cvc5. Similarly, Z3-Noodler is outperformed by
cvc5, Z3, and Z3str4 on PyEx. Indeed, we have not optimized Z3-Noodler for formulae
with large numbers of predicates yet. The results of Z3-Noodler could, however, be
further improved by proper axiom saturation for predicates or lazy predicate evaluation.

Table 3: Evaluating solver contribution to
a portfolio. Times are in seconds.

Regex Equations
Unsolved Time Unsolved Time

VBS+ 1 427 19 1,304
VBS+- Z3-Noodler 1 2,914 131 6,830
VBS+- cvc5 1 549 145 1,401
VBS+- Z3 1 430 29 1,579
VBS+- Z3str4 1 473 19 1,416
VBS+- OSTRICH 1 427 21 1,270
VBS+- Z3str3RE 1 510 20 1,307
cvc5 + Z3 + Z3-Noodler 1 608 22 1,471
cvc5 + Z3 278 27,916 303 2,805

In Fig. 2 we show scatter plots compar-
ing running time of Z3-Noodler with cvc5,
Z3, and virtual best solver (VBS; a solver
that takes the best result from all tools other
than Z3-Noodler) on all three benchmark
groups. The plots show that Z3-Noodler
outperforms the competitors on a vast num-
ber of instances, in many cases being comple-
mentary to them. To validate this claim, we
also checked how different solvers contribute
to a portfolio. That is, we took the VBS in-
cluding Z3-Noodler (VBS+) and then checked how well the portfolio works without
each of the solvers. Table 3 shows the results on the Regex and Equations groups (we
omit Predicates-small, where Z3-Noodler does not help the portfolio). The results
show that on the two groups, Z3-Noodler is the most valuable solver in the portfolio.
We also include results on the small portfolio of Z3 and cvc5 (with and without Z3-
Noodler) showing that, on the two groups, using just these three solvers is almost as
good as using the whole portfolio of all solvers.

Comparing with the older version Z3-Noodlerpr from [20], we can see that there
is a significant improvement in most benchmarks, most significantly in AutomatArk,
StringFuzz, Kepler, StrSmallRw, and Kaluza. We note that adding more complicated
algorithm selection strategies significantly improved the overall performance of Z3-
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Noodler, but, on the other hand, decreased the performance on Kaluza (cf. [20]). Better
results in AutomatArk and StringFuzz stem from the improvements in Mata and from
heuristics tailored for regular expressions handling. Including Nielsen’s algorithm [32]
has the largest impact on the Kepler benchmark. The improvement on predicate-intensive
benchmarks is caused by optimizations in axiom saturation for predicates. The older
version also had multiple bugs that have been fixed in the current version.
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