
  

On Dependent Variables in Reactive Synthesis

, Eliyahu Basa2, Supratik Chakraborty1, and Dror Fried2

Abstract. Given a Linear Temporal Logic (LTL) formula over input
and output variables, reactive synthesis requires us to design a deter-
ministic Mealy machine that gives the values of outputs at every time
step for every sequence of inputs, such that the LTL formula is satisfied.
In this paper, we investigate the notion of dependent variables in the
context of reactive synthesis. Inspired by successful pre-processing tech-
niques in Boolean functional synthesis, we define dependent variables in
reactive synthesis as output variables that are uniquely assigned, given
an assignment to all other variables and the history so far. We describe
an automata-based approach for finding a set of dependent variables. Us-
ing this, we show that dependent variables are surprisingly common in
reactive synthesis benchmarks. Next, we develop a novel synthesis frame-
work that exploits dependent variables to construct an overall synthesis
solution. By implementing this framework using the widely used library
Spot, we show that reactive synthesis that exploits dependent variables
can solve some problems beyond the reach of existing techniques. Fur-
thermore, we observe that among benchmarks with dependent variables,
if the count of non-dependent variables is low (≤ 3 in our experiments),
our method outperforms state-of-the-art tools for synthesis.
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1 Introduction

Reactive synthesis concerns the design of deterministic transducers (often Mealy
or Moore machines) that generate a sequence of outputs in response to a sequence
of inputs such that a given temporal logic specification is satisfied. Church intro-
duced the problem [12] in 1962, and there has been a rich and storied history of
work in this area over the past six decades. Recently, it was shown that a form of
pre-processing, viz. decomposing a Linear Temporal Logic (LTL) specification,
can lead to significant performance gains in downstream synthesis steps [15]. The
general idea of pre-processing a specification to simplify synthesis has also been
used very effectively in the context of Boolean functional synthesis [4,5,17,18,25].
Motivated by the success of one such pre-processing step, viz. identification of
uniquely defined outputs, in Boolean functional synthesis, we introduce the no-
tion of dependent outputs in the context of reactive synthesis in this paper. We
develop its theory and show by means of extensive experiments that dependent
outputs are common in reactive synthesis benchmarks, and can be effectively
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exploited to obtain synthesis techniques with orthogonal strengths vis-a-vis ex-
isting state-of-the-art techniques.

In the context of propositional specifications, it is not uncommon for a spec-
ification to uniquely define an output variable in terms of the input variables
and other output variables. A common example of this arises when auxiliary
variables, called Tseitin variables, are introduced to efficiently convert a specifi-
cation not in conjunctive normal form (CNF) to one that is in CNF [28]. Being
able to identify such uniquely defined variables efficiently can be very helpful,
whether it be for checking satisfiability, for model counting or synthesis. This
is because these variables do not alter the basic structure or cardinality of the
solution space of a specification regardless of whether they are projected out
or not. Hence, one can often simplify the reasoning about the specification by
ignoring (or projecting out) these variables. In fact, the remarkable practical suc-
cess of Boolean functional synthesis tools such as Manthan [18] and BFSS [4,5]
can be partly attributed to efficient techniques for identifying a large number of
uniquely defined variables. We draw inspiration from these works and embark
on an investigation into the role of uniquely defined variables, or dependent vari-
ables, in the context of reactive synthesis. To the best of our knowledge, this is
the first attempt at directly using dependent variables for reactive synthesis.

We start by first defining the notion of dependent variables in LTL specifi-
cations for reactive synthesis. Specifically, given an LTL formula φ over a set of
input variables I and output variables O, a set of variables X ⊆ O is said to be
dependent on a set of variables Y ⊆ I ∪ (O\X) in φ, if at every step of every
infinite sequence of inputs and outputs satisfying φ, the finite history of the se-
quence together with the current assignment for Y uniquely defines the current
assignment for X. The above notion of dependency generalizes the notion of
uniquely defined variables in Boolean functional synthesis, where the value of a
uniquely defined output at any time is completely determined by the values of
inputs and (possibly other) outputs at that time. We show that our generaliza-
tion of dependency in the context of reactive synthesis is useful enough to yield
a synthesis procedure with improved performance vis-a-vis competition-winning
tools, for a non-trivial number of reactive synthesis benchmarks.

We present a novel automata-based technique for identifying a subset-maximal
set of dependent variables in an LTL specification φ. Specifically, we convert φ
to a language-equivalent non-deterministic Büchi automaton (NBA) Aφ, and
then deploy practically efficient techniques to identify a subset-maximal set of
outputs X that are dependent on Y = I ∪ (O \X). We implemented our method
to determine the prevalence of dependent variables in existing reactive synthesis
benchmarks. Our finding shows that out of 1141 benchmarks taken from the
SYNTCOMP [21] competition, 300 had at least one dependent output variable
and 26 had all output variables dependent.

Once a subset-maximal set, say X, of dependent variables is identified, we
proceed with the synthesis process as follows. Referring to the NBA Aφ alluded
to above, we first transform it to an NBA A′

φ that accepts the language L′

obtained from L(φ) after removing (or projecting out) the X variables. Our
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experiments show that A′
φ is more compactly representable compared to Aφ,

when using BDD-based representations of transitions (as is done in state-of-the-
art tools like Spot [7]). Viewing A′

φ as a new (automata-based) specification
with output variables O \X, we now synthesize a transducer TY from A′ using
standard reactive synthesis techniques. This gives us a strategy fY : Σ∗

I → ΣO\X
for each non-dependent variable in O \X. Next, we use a novel technique based
on Boolean functional synthesis to directly construct a circuit that implements a
transducer TX that gives a strategy fX : Σ∗

Y → ΣX for the dependent variables.
Significantly, this circuit can be constructed in time polynomial in the size of
the (BDD-based) representation of Aφ. The transducers TY and TX are finally
merged to yield an overall transducer T that describes a strategy f : Σ∗

I → ΣO

solving the synthesis problem for φ.
We implemented our approach in a tool called DepSynt. Our tool is devel-

oped in C++ using APIs from the widely used library Spot for representing and
manipulating non-deterministic Büchi automata. We performed a comparative
analysis of our tool with winning entries of the SYNTCOMP [21] competition to
evaluate how knowledge of dependent variables helps reactive synthesis. Our ex-
perimental results show that identifying and utilizing dependent variables results
in improved synthesis performance when the count of non-dependent variables
is low. Specifically, our tool outperforms state-of-the-art and highly optimized
synthesis tools on benchmarks that have at least one dependent variable and
at most 3 non-dependent variables. This leads us to hypothesize that exploiting
dependent variables benefits synthesis when the count of non-dependent vari-
ables is below a threshold. Given the preliminary and un-optimized nature of
our implementation, we believe there is significant scope for improvement.

Related work. Reactive synthesis has been an extremely active research area for
the last several decades (see e.g. [9, 12, 15, 16, 24]). Not only is the theoretical
investigation of the problem rich, there are also several tools that are available
to solve synthesis problems in practice. These include solutions like ltlsynt [23]
based on Spot [7], Strix [22] and BoSY [14]. Our tool relies heavily on Spot and its
APIs, which we use liberally to manipulate non-deterministic Büchi automata.
Our synthesis approach is based on the standard conversion of LTL formula to
NBA, and then from NBA to deterministic parity automata (DPA) (see [8] for
an overview of the challenges of reactive synthesis).

Our work may be viewed as lifting the idea of uniquely defined variables used
in Boolean functional synthesis to the context of reactive synthesis. Viewed from
this perspective, our work is not the first to lift ideas from Boolean functional
synthesis to the reactive context. Following an approach for Boolean functional
synthesis that decomposes a specification into separate formulas on input vari-
ables and on output variables [11], the work in [6] constructed a reactive synthe-
sis tool for specific benchmarks that admit a separation of the specification into
formulas for only environment variables and formulas for only system variables.
The current work serves as an additional example in support of the hypothesis
that intuition from Boolean functional synthesis can be helpful and effective in
the reactive synthesis context.
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The remainder of the paper is structured as follows. We introduce definitions
and notations in Section 2. In Section 3 we define dependent variables for LTL
formulas, and describe an algorithm to find them. In Section 4 we describe our
automata-based synthesis framework and discuss its implementation details in
Section 5. We describe our evaluation in Section 6 and conclude in Section 7.
Missing proofs and additional experiments can be found in the full-version [2].

2 Preliminaries

Given a finite alphabet Σ, an infinite word w is a sequence w0w1w2 · · · where for
every i, the ith letter of w, denoted wi, is in Σ. The prefix w0 · · ·wi (of size i+1)
of w is denoted by w[0, i]. Note that w[0, 0] = w0. We use w[0,−1] to denote
the empty word. The set of all infinite words over Σ is denoted by Σω. We call
L ⊆ Σω a language over infinite words in ω. For our work, the alphabet Σ is
often the product of two distinct alphabets ΣX and ΣY , i.e. Σ = ΣX ×ΣY . In
such cases, for every a = (a1, a2) ∈ Σ, we abuse notation and use a.X to denote
the projection of a on ΣX , i.e. the letter a1 ∈ ΣX . Similarly, a.Y denotes the
projection of a on ΣY , i.e. the letter a2 ∈ ΣY . For an infinite word w ∈ Σω, we
use w.X to denote the infinite word in Σω

X obtained by projecting each letter in
w on ΣX i.e. w.X = w0.Xw1.X . . ..

Linear Temporal Logic. A Linear Temporal Logic (LTL) formula is constructed
with a finite set of propositional variables V , using Boolean operators such as
∨,∧, and ¬, and temporal operators such as next (X), until (U), etc. The set
V induces an alphabet ΣV = 2V of all possible assignments (true/false) to
the variables of V . The semantics of the operators and satisfiability relation are
defined as usual [20]. The language of an LTL formula φ, denoted L(φ) is the
set of all words in Σω

V that satisfy φ. For an LTL formula φ over V , we use
|V | to denote the number of variables in V , and |φ| to denote the size of the
formula, i.e., count of its subformulas. For clarity of exposition, we sometimes
abuse notation and identify the singleton variable set {z} with z. We also use Σ
for ΣV , when V is clear from the context.

Nondeterministic Büchi Automata. ANondeterministic Büchi Automaton (NBA)
is a tuple A = (Σ,Q, δ, q0, F ) where Σ is the alphabet, Q is a finite set of states,
δ : Q × Σ → 2Q is a non-deterministic transition function, q0 is the initial
state and F ⊆ Q is a set of accepting states. Automaton A can be seen as a
directed labeled graph with vertices Q and an edge (q, q′) exists with a label a
if q′ ∈ δ(q, a). We denote the set of incoming edges to q by in(q) and the set of
outgoing edges from q by out(q). A path in A is a (possibly infinite) sequence of
states ρ = (qi0 , qi1 , · · · ) in which for every j > 0, (qij , qij+1

) is an edge in A. A
run is a path that starts in q0, and is accepting if it visits a state in F infinitely
often. A word w = σi0σi1 · · · induces a run ρ = (qi0 , qi1 , · · · ) of A if qi0 = q0 and
for every j ≥ 0, qij+1 ∈ δ(qij , σij ). Since A is nondeterministic, a word can have
many runs. A word is accepting if it has an accepting run in A. The language

S. Akshay, E. Basa, S. Chakraborty, D. Fried126



L(A) is the set of all accepting words in A. Wlog, we assume that all states and
edges that are not a part of any accepting run (i.e. do not reach a cycle with an
accepting state) are removed. This can be done by a simple pre-processing pass
on the NBA. Finally, every LTL formula φ can be transformed in time exponen-
tial time in the size of φ to an NBA Aφ for which L(φ) = L(Aφ) [20,29]. When φ
is clear from the context we omit the subscript and refer to Aφ as A. We denote
by |A| the size of an automaton, i.e., number of its states and transitions.

Reactive Synthesis. A reactive LTL formula is an LTL formula φ over a set of
input variables I and output variables O, with I∩O = ∅. In reactive synthesis we
are given a reactive LTL formula φ, and the challenge is to synthesize a function,
called strategy, f : Σ∗

I → ΣO such that every word w ∈ (ΣI ×ΣO)
ω obtained by

using this strategy at every time step is in L(φ). If such a strategy exists we say
that φ is realizable. Otherwise, we say that φ is unrealizable. In what follows, we
always consider only reactive LTL formulas and hence omit the ”reactive” prefix
while referring to them. The synthesized strategy f : Σ∗

I → ΣO is typically
described (explicitly or symbolically) as a transducer T = (ΣI , ΣO, S, s0, δ, λ)
in which ΣI and ΣO are input and output alphabet respectively, S is a set of
states with an initial state s0, δ : S × ΣI → S is a deterministic transition
function, and λ : S ×ΣI → ΣO is the output function. A standard procedure in
solving reactive synthesis is to transform a given LTL formula φ to an NBA Aφ

for which L(Aφ) = L(φ). Subsequently, Aφ is transformed to a Deterministic
Parity Automata (DPA) that turns to a parity game, whose solution is described
as a transducer TAφ

. As the following theorem shows, this approach incurs a
double exponential blowup in the worst-case.

Theorem 1. 1. Reactive synthesis can be solved in O(2n·2
n

), where n is the
size of the LTL formula.

2. Given an NBA A with n states, computing transducer TA takes Ω(2n log n).

3 Dependent variables in reactive LTL

We begin by defining dependent variables for (reactive) LTL formulas and pro-
pose an algorithm for finding a maximal set of dependent variables. While there
are several notions of dependency that can be considered, we discuss one that
we have found to be useful in reactive synthesis. Specifically, we require that the
value of a dependent output variable be completely determined by the values of
inputs and other output variables and their finite history at every step of the
interaction between the reactive system and its environment. We consider de-
pendencies restricted to output variables, since having dependent input variables
would preclude some input sequences, rendering the specification unrealizable.

Definition 1 (Variable Dependency in LTL). Let φ be an LTL formula
over V with input variables I ⊆ V and output variables O = V \I. Let X,Y be
disjoint sets of variables where X ⊆ O. We say that X is dependent on Y in φ
if for every pair of words w,w′ ∈ L(φ) and i ≥ 0 if w[0, i− 1] = w′[0, i− 1] and
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wi.Y = w′
i.Y , then we have wi.X = w′

i.X. Further, we say that X is dependent
in φ if X is dependent on V \X in φ, i.e., it is dependent on all the remaining
variables.

Note that two words in L(φ) with different prefixes can have different values
for X for the same values for Y , if X is dependent on Y . Also, observe that if
X is dependent on Y in φ for some Y , then it is also dependent in φ.

As an example, consider an LTL formula φ with input variable y and output
variable x. The corresponding input and output alphabets are ΣX = {x,¬x} and
ΣY = {y,¬y} respectively. Suppose L(φ) = {w1, w2, w3} where w1 = (y, x)ω,
w2 = (¬y, x)ω and w3 = (y, x)(¬y, x)(y,¬x)ω. Then x is dependent on y in φ.
Specifically, note that w1[0, 1] ̸= w3[0, 1], and hence the dependency of x is not
violated although w1

2.y = w3
2.y and w1

2.x ̸= w3
2.x.

3.1 Maximally dependent sets of variables Given an LTL formula φ(I,O),
we say that a set X ⊆ O is a maximal dependent set in φ if X is dependent
in φ and every set of outputs that strictly contains X is not dependent in φ.
As in the propositional case [27], finding maximum or minimum dependent sets
is intractable, hence we focus on subset-maximality. Given a variable z and
set Y , checking whether z is dependent on Y , can easily be used to finding a
maximal dependent set. Indeed, we would just need to start from the empty
set and iterate over output variables, checking for each if it is dependent on
the remaining variables. We give the pseudocode for this in [2]. Note that when
all output variables are not dependent, the order in which output variables are
chosen may play a significant role in the size of the maximal set obtained. We
currently use a naive ordering (first appearance), and leave the problem of better
heuristics for getting larger maximal independent sets to future work.

3.2 Finding dependent variables via automata As explained above, the
heart of the dependency check is to verify whether a given output variable is
dependent on a set of other variables. We now develop an approach for doing
so based on the nondeterministic Büchi automaton Aφ that represents the same
language as the LTL formula φ. Our framework uses the notion of compatible
pairs of states of the automaton:

Definition 2. Let A = (Σ,Q, δ, q0, F ) be an NBA with states s, s′ in Q. Then
the pair (s, s′) is compatible in A if there are runs from q0 to s and from q0 to
s′ on the same word w ∈ Σ∗.

Recall that in our definition, only states and edges that are part of an accepting
run exist in A. Then we have the following definition.

Definition 3. Let φ be an LTL formula over V with input variables I ⊆ V and
output variables O = V \I. Let X,Y be disjoint sets of variables where X ⊆ O.
Let Aφ be an NBA that describes φ. We say that X is automata dependent on
Y in Aφ, if for every pair of compatible states s, s′ and assignments σ, σ′ for V ,
where σ.Y = σ′.Y and σ.X ̸= σ′.X, δ(s, σ) and δ(s, σ′) cannot both exist in Aφ.
We say that X is automata dependent in Aφ if X is automata dependent on Y
in Aφ and Y = V \X.
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As an example, consider NBA A1 in Figure 1, constructed from some LTL
formula with input I = {i} and outputs O = {o1, o2}. For notational simplicity,
we useΣI = {0, 1}, ΣO = {0, 1}2, and edges are labeled by values of (i, o1o2). It is
easy to see that (q0, q0), (q1, q1) are compatible pairs, but so are (q0, q1), (q1, q0)
since both q0 and q1 be reached from the initial state on reading the word
(0, 00)(0, 00) of length 2. Now consider output o1. It is not dependent on {i},
i.e., only the input, since from q0 with i = 0, we can go to different states with
different values of o1. But o1 is indeed dependent on {i, o2}. To see this consider
every pair of compatible states – in this case all pairs. Then if we fix the values
of i and o2, there is a unique value of o1 that permits state transitions to happen
from the compatible pair. For example, regardless of which state we are in, if
i = 0, o2 = 0, o1 must be 0 for a state transition to happen. On the other hand,
o2 is not dependent on either {i} or {i, o1} (as can be seen from (q0, q1) with
i = 1, o1 = 1). The following theorem relates automata-based dependency and
dependency in LTL (for proof, see [2]), allowing us to focus only on the former.

Theorem 2. Let φ be an LTL formula with set of variables V = I ∪ O, where
X ⊆ O and Y ⊆ I ∪ (O \X). Let Aφ be an NBA with L(φ) = L(Aφ). Then X
is dependent on Y in φ if and only if X is automata dependent on Y in Aφ.

q0 q1

0,11
0,00

1,11

1,10
0,11

0,00

1,11

0,00

Fig. 1. An Example NBA A1

Finding Compatible States. We find all compatible
states in an automaton in Algorithm 1 as follows.
We maintain a list of in-process compatible pairs
C that is initialized with (q0, q0) – an undoubtedly
compatible pair. At each step, until C becomes
empty, we pick a pair (si, sj) ∈ C, add it to the
compatible pair set P , and remove it from C (in
line 4). Then (in lines 5-8), we check (in line 6)
if outgoing transitions from (si, sj) lead to a new
pair (s′i, s

′
j) not already in P or C, that can be

reached on reading the same letter σ. If so, we add this pair to the in-process set
C. All pairs that we add to P,C are indeed compatible, and nothing is removed
from P . When the algorithm terminates, C is empty, which means all possible
ways (from initial state pair) to reach a compatible pair have been explored,
thus showing correctness.

Finally, we show how to check dependency using automata, by implement-
ing procedure isAutomataDependent, shown in Algorithm 2. This procedure
takes an NBA Aφ, a candidate dependent output z and a candidate dependency
set Y ⊆ V \ {z} as inputs, and tries to find a witness to z not being dependent
on Y . If no such witness exists, then z is declared as being dependent on Y .
Procedure isAutomataDependent first uses Algorithm 1 to construct a list P
of all compatible pairs in A (line 4). Then for every pair (s, s′) ∈ P , the algo-
rithm checks using procedure AreStatesColliding (lines 1-2) whether there exists
an assignment σ, σ′ for which both δ(s, σ) and δ(s′, σ′) exist, σ.Y = σ′.Y and
σ.{z} ≠ σ′.{z}. If so, z is not dependent on Y (line 7) and the algorithm returns
false. Otherwise, afterchecking all the pairs, the algorithm returns true.
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Algorithm 1 Find All Compatible States in NBA

Input NBA Aφ = (Σ,Q, δ, q0, F ) of φ.
Output Set P ⊆ Q×Q of all compatible state pairs in Aφ

1: P ← ∅; C ← {(q0, q0)}
2: while C ̸= ∅ do
3: Let (si, sj) ∈ C
4: P ← P ∪ {(si, sj)}; C ← C \ {(si, sj)}
5: for (s′i, s

′
j) ∈ out(s1)× out(s2) do

6: if (s′i, s
′
j) /∈ P ∪ C and ∃σ ∈ 2Σ s.t. s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj , σ) then

7: C ← C ∪ {(s′i, s′j)}
8: end if
9: end for
10: end while
11: return P

Algorithm 2 Check Dependency Based Automaton

Input NBA Aφ = (Σ,Q, δ, q0, F ) from φ, Candidate dependent variable z,
Candidate dependency set Y .

Output Is z dependent on Y by Definition 3

1: procedure AreStateColliding(p, q)
2: return ∃σp, σq ∈ 2Σ s.t. δ(p, σp) ̸= ∅ ∧ δ(q, σq) ̸= ∅ ∧ σp.Y = σq.Y ∧ σp.{z} ̸=

σq.{z}
3: end procedure
4: P ← FindAllCompatibleStates(Aφ)
5: for (s1, s2) ∈ P do
6: if AreStateColliding(s1, s2) then
7: return False
8: end if
9: end for
10: return True

Lemma 1. Algorithm 2 returns True if and only if z is automata-dependent on
Y in Aφ.

Using the above algorithm to perform dependency check, it is easy to compute
a maximal set of dependent variables (as explained earlier). Note that all the
above algorithms run in time polynomial (in fact, quadratic) in size of the NBA.

Corollary 1. Given NBA Aφ, a maximal dependent set of outputs can be com-
puted in time polynomial in the size of Aφ.

Note that if all output variables are dependent, then regardless of the order in
which the outputs are considered, for every finite history of inputs, there is a
unique value for each output that makes the specification true. Therefore, there
is a unique winning strategy for the specification, assuming it is realizable.
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φ 1. LTL to NBA Aφ 2. Identify Dep

3. Projdep 4. Syn-Nondep TY

5. Syn-Dep TX 6. Syn-Comb T f

Aφ, X, Y

A′
φ, Y

Aφ, X
fY

fX

Fig. 2. Synthesis using dependencies. Note that Steps 2., 3., 5, are novel, while Steps
1., 4., 6. (shaded in gray) use pre-existing techniques.

4 Exploiting Dependency in Reactive Synthesis

In this section, we explain how dependencies can be beneficially exploited in a
reactive synthesis pipeline. Our approach can be described at a high level as
shown in Figure 2. This flow-chart has the following 6 steps:

1. Given an LTL formula φ over a set of variables V with input variables I ⊆ V
and output variables O = V \I, we first construct a language-equivalent NBA
Aφ = (ΣI ∪ΣO, S, s0, δ, F ) by standard means, e.g [29].

2. Then, as described in Section 3, we find in Aφ a maximal set of output
variables X that are dependent in φ. For notational convenience, in the
remainder of the discussion, we use Y for I ∪ (O\X) and ΣY for ΣI ×ΣO\X .

3. Next, we construct an NBA A′
φ from Aφ by projecting out (or eliminating)

all X variables from labels of transitions. Thus, A′
φ has the same sets of

states and transitions as Aφ. We simply remove valuations of variables in X
from the label of every state transition in Aφ to obtain A′

φ. Note that after
this step, L(A′

φ) = {w | ∃u ∈ L(Aφ) s.t. w = u.Y } ⊆ Σω
Y .

4. Treating A′
φ as a (automata-based) specification with inputs I and outputs

O \X, we next use existing reactive synthesis techniques (e.g., [8]) to obtain
a transducer TY that describes a strategy fY : Σ∗

I → ΣO\X for L(A′
φ).

5. We also construct a transducer TX that describes a function fX : (Σ∗
Y →

ΣX) with the following property: for every word w′ ∈ L(A′
φ) there exists a

unique word w ∈ L(φ) such that w.Y = w′ and for all i, wi.X = fX(w′[0, i]).
6. Finally, we compose TX and TY to construct a transducer T that defines the

final strategy f : Σ∗
I → ΣO. Recall that transducer TY has I as inputs and

O \X as outputs, while transducer TX has I and O \X as inputs and X as
outputs. Composing TX and TY is done by simply connecting the outputs
O \X of TY to the corresponding inputs of TX .

In the above flow, we use standard techniques from the literature for Steps 1
and 4, as explained above. Hence we do not dwell on these steps in detail. Step
2 was detailed in Section 3. Step 3 is easy when we have an explicit representa-
tion of the automata, but it has interesting consequences when using symbolic
representations of automata. Step 6 is also easy to implement. Hence, in the
remainder of this section, we focus on Step 5, a key contribution of this paper.
In the next section, we will discuss how steps 2, 3 and 5 are implemented using
symbolic representations (viz. ROBDDs).
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Constructing transducer TX Let A = (ΣI ×ΣO, Q, δ, q0, F ) be the NBA Aφ

obtained in step 1 of the pipeline shown above. Since each letter in ΣO can be
thought of as a pair (σ, σ′), where σ ∈ ΣO\X and σ′ ∈ ΣX , the transition function
δ can be viewed as a map from Q× (ΣI ×ΣO\X ×ΣX) to 2Q. The transducer
TX we wish to construct is a deterministic Mealy machine described by the 6-
tuple (ΣY , ΣX ∪ {⊥}, QX , qX0 , δX , λX), where ΣY = ΣI × Σ(O\X) is the input
alphabet, ΣX is the output alphabet with ⊥ ̸∈ ΣX being a special symbol that is
output when no symbol of ΣX suffices, QX = 2Q, that is the powerset of Q is the
set of states of TX , qX0 = {q0} is the initial state, δX : QX ×ΣI ×Σ(O\X) → QX

is the state transition function, and λX : QX ×ΣI ×Σ(O\X) → ΣX is the output
function. The state transition function δX is defined by the Rabin-Scott subset
construction applied to the automaton Aφ [19]. Formally, for every U ⊆ Q,
σI ∈ ΣI and σ ∈ Σ(O\X), we define δX

(
U, (σI , σ)

)
= {q′ | q′ ∈ Q, ∃q ∈ U and

∃σ′ ∈ ΣX s.t. q′ ∈ δ
(
q, (σI , σ, σ

′)
)
}. Before defining the output function λX , we

state an important property of TX that follows from the definition of δX above.

Lemma 2. If X is automata dependent in Aφ, then every state U reachable
from qX0 in TX satisfies the property: ∀q, q′ ∈ U , (q, q′) is compatible in Aφ.

The lemma is easily proved by induction on the number of steps needed to
reach U from qX0 . Details of the proof may be found in [2]. We are now ready
to define the output function λX of TX . Let U be a state reachable from qX0
in TX and let U ′ = δX

(
U, (σI , σ)

)
, where (σI , σ) ∈ ΣY . If U ′ ̸= ∅, we can

infer that (see Proof of Lemma 2 in [2]) that there is a unique σX ∈ ΣX s.t.
U ′ = {q′ | ∃q ∈ U s.t. q′ ∈ δ

(
q, (σI , σ, σX)

)
}. We define λX

(
U, (σI , σ)

)
= σX in

this case. If, on the other hand, U ′ = ∅, we define λX
(
U, (σI , σ)

)
= ⊥.

Theorem 3. If φ is realizable, the transducer T obtained by composing TX and
TY as in step 6 of Fig. 2 solves the synthesis problem for φ.

An interesting corollary of the above result is that for realizable specifications
with all output variables dependent, we can solve the synthesis problem in time
O(2k) instead of Ω(2k log k), where k = |Aφ|. This is because the subset construc-
tion on Aφ suffices to obtain TX , while Aφ must be converted to a deterministic
parity automaton to solve the synthesis problem in general.

5 Symbolic Implementation

In this section, we describe symbolic implementations of each of the non-shaded
steps in the synthesis flow depicted in Fig. 2. Before we delve into the details, a
note on the representation of NBAs is relevant. We use the same representation
as used in Spot [7] – a state-of-the-art platform for representing and manipulating
LTL formulas and ω-automata. Specifically, the transition structure of an NBA
A is represented as a directed graph, with nodes representing states of A, and
directed edges representing state transitions. Furthermore, every edge from state
s to state s′ is labeled by a Boolean function B(s,s′) over I ∪ O. The Boolean
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function can itself be represented in several forms. We assume it is represented
as a Reduced Ordered Binary Decision Diagram (ROBDD) [10], as is done in
Spot. Each such labeled edge represents a set of state transitions from s to s′,
with one transition for each satisfying assignment of B(s,s′).

Implementing Algorithms 1 and 2 (Step 2) : Since states of the NBA Aφ

are explicitly represented as nodes of a graph, it is straightforward to imple-
ment Algorithms 1 and 2. The check in line 6 of Algorithm 1 is implemented by
checking the satisfiability of B(si,s′i)

(I,O) ∧ B(sj ,s′j)
(I,O) using ROBDD oper-

ations. Similarly, the check in line 2 of Algorithm 2 is implemented by checking
the satisfiability of

∨
(s,s′)∈out(p)×out(q) B(p,s)(I,O) ∧B(q,s′)(I

′, O′) ∧
∧

y∈Y (y ↔
y′) ∧ (z ↔ ¬z′) using ROBDD operations. In the above formula, I ′ (resp. O′)
denotes a set of fresh, primed copies of variables in I (resp. O).

Implementing transformation of Aφ to A′
φ (Step 3): To obtain A′

φ, we
simply replace the ROBDD for B(s,s′) on every edge (s, s′) of the NBA Aφ by an
ROBDD for ∃X B(s,s′). While the worst-case complexity of computing ∃X B(s,s′)

using ROBDDs is exponential in |X|, this doesn’t lead to inefficiencies in practice
because |X| is typically small. Indeed, our experiments reveal that the total
size of ROBDDs in the representation of A′

φ is invariably smaller, sometimes
significantly, compared to the total size of ROBDDs in the representation of
Aφ. Indeed, this reduction can be significant in some cases, as the following
proposition shows (see proof in [2]).

Proposition 1. There exists an NBA Aφ with a single dependent output such
that the ROBDD labeling its edge is exponentially (in number of inputs and
outputs) larger than that labeling the edge of A′

φ.

Implementing transducer TX (Step 5): We now describe how to construct a
Mealy machine corresponding to the transducer TX . As explained in the previous
section, the transition structure of the Mealy machine is obtained by applying
the subset construction to Aφ. While this requires O(2|Aφ|) time if states and
transitions are explicitly represented, we show below that a sequential circuit
implementing the Mealy machine can be constructed directly from Aφ in time
polynomial in |X| and |Aφ|. This reduction in construction complexity crucially
relies on the fact that all variables in X are dependent on I ∪ (O \X).

Let S = {s0, . . . sk−1} be the set of states of Aφ, and let in(si) denote the set
of states that have an outgoing transition to si in Aφ. To implement the desired
Mealy machine, we construct a sequential circuit with k state-holding flip-flops.
Every state U (⊆ S) of the Mealy machine is represented by the state of these k
flip-flops, i.e. by a k-dimensional Boolean vector. Specifically, the ith component
is set to 1 iff si ∈ U . For example, if S = {s0, s1, s2} and U = {s0, s2}, then
U is represented by the vector ⟨1, 0, 1⟩. Let ni and pi denote the next-state
input and present-state output of the ith flip-flop. The next-state function δX

from p′is to n′
is of the Mealy machine is implemented by a circuit, say ∆X , with

inputs {p0, . . . pk−1} ∪ I ∪ (O\X) and outputs {n0, . . . nk−1}. For i ∈ {0, . . . k−
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1}, output ni of this circuit implements the Boolean function
∨

sj ∈ in(si)

(
pj ∧

∃X B(sj ,si)

)
. To see why this works, suppose ⟨p0, . . . pk−1⟩ represents the current

state U ⊆ S of the Mealy machine. Then the above function sets ni to true iff
there is a state sj ∈ U (i.e. pj = 1) s.t. there is a transition from sj to si on some
values of outputs X and for the given values of I∪(O\X) (i.e. ∃X B(sj ,si) = 1).
This is exactly the condition for si to be present in the state U ′ ⊆ S reached
from U for the given values of I ∪ (O \ X) in the Mealy machine obtained by
subset construction.

It is known from the knowledge compilation literature (see e.g. [1,4,13]) that
every ROBDD can be compiled in linear time to a Boolean circuit in Decom-
posable Negation Normal Form (DNNF), and that every DNNF circuit admits
linear time projection of variables, yielding a resultant DNNF circuit. Hence, a
Boolean circuit for ∃X B(sj ,si) can be constructed in time linear in the size of
the ROBDD representation of B(sj ,si). This allows us to construct the circuit

∆X , implementing the next-state transition logic of our Mealy machine, in time
(and space) linear in |X| and |Aφ|.

Next, we turn to constructing a circuit ΛX that implements the output func-
tion λX of our Mealy machine. It is clear that ΛX must have inputs {p0, . . . pk−1}∪
I ∪ (O \X) and outputs X. Since X is automata dependent on I ∪ (O \X) in
Aφ, the following proposition is easily seen to hold.

Proposition 2. Let B(s,s′) be a Boolean function with support I ∪O that labels
a transition (s, s′) in Aφ. For every (σI , σ) ∈ ΣI×ΣO\X , if (σI , σ) |= ∃X B(s,s′),
then there is a unique σ′ ∈ ΣX such that (σI , σ, σ

′) |= B(s,s′).

Considering only the transition (s, s′) referred to in Proposition 2, we first discuss

how to synthesize a vector of Boolean functions, say F (s,s′) = ⟨F (s,s′)
1 , . . . F

(s,s′)
|X| ⟩,

where each component function has support I ∪ (O \X), such that F (s,s′)[I 7→
σI ][O \X 7→ σ] = σ′. Generalizing beyond the specific assignment of I ∪O, our
task effectively reduces to synthesizing an |X|-dimensional vector of Boolean
functions F (s,s′) s.t. ∀I ∪ (O \ X)

(
∃XB(s,s′) → B(s,s′)[X 7→ F (s,s′)]

)
holds.

Interestingly, this is an instance of Boolean functional synthesis – a problem
that has been extensively studied in the recent past (see e.g. [1, 3, 4, 6, 11]). In
fact, we know from [1, 26] that if B(s,s′) is represented as an ROBDD, then a

Boolean circuit for F(s,s′) can be constructed in O
(
|X|2.|B(s,s′)|

)
time, where

|B(s,s′)| denotes the size of the ROBDD for B(s,s′). For every xi ∈ X, we use this

technique to construct a Boolean circuit for F
(s,s′)
i for every edge (s, s′) in A. The

overall circuit ΛX is constructed such that the output for xi ∈ X implements

the function
∨

transition (s,s′) in A

(
ps ∧ (B(s,s′)[X 7→ F (s,s′)]) ∧ F

(s,s′)
i

)
.

Lemma 3. Let U ⊆ S be a non-empty set of pairwise compatible states of A.
For (σI , σ) ∈ ΣI × ΣO\X , if δX

(
U, (σI , σ)

)
̸= ∅, then the outputs X of ΛX

evaluate to λX
(
U, (σI , σ)

)
. In all other cases, every output of ΛX evaluates to 0.

Note that δX
(
U, (σI , σ)

)
= ∅ iff all outputs ni of the circuit ∆X evaluate to

0. This case can be easily detected by checking if
∨k−1

i=0 ni evaluates to 0. We
therefore have the following result.
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Theorem 4. The sequential circuit obtained with ∆X as next-state function and
ΛX as output function is a correct implementation of transducer TX , assuming
(a) the initial state is p0 = 1 and pj = 0 for all j ∈ {1, . . . k − 1}, and (b) the

output is interpreted as ⊥ whenever
∨k−1

i=0 ni evaluates to 0.

6 Experiments and Evaluation

We implemented the synthesis pipeline depicted in Figure 2 in a tool called
DepSynt (accessible at https://github.com/eliyaoo32/DepSynt), using sym-
bolic approach of Section 5. For Steps 1., 4., of the pipeline, i.e., construction
of Aφ and synthesis of TY , we used the tool Spot [7], a widely used library for
representing and manipulating NBAs. We then experimented with all available
reactive synthesis benchmarks from the SYNTCOMP [21] competition, a total
of 1,141 LTL specifications over 31 benchmark families.

All our experiments were run on a computer cluster, with each problem in-
stance run on an Intel Xeon Gold 6130 CPU clocking at 2.1 GHz with 2GB
memory and running Rocky Linux 8.6. Our investigation was focussed on an-
swering two main research questions:
RQ1: How prevalent are dependent outputs in reactive synthesis benchmarks?
RQ2: Under what conditions, if any, is reactive synthesis benefited by our ap-
proach, i.e., of identifying and separately processing dependent output variables?

Dependency Prevalence. To answer RQ1, we implemented the algorithm in
Section 3 and executed it with a timeout of 1 hour. Within this time, we were
able to find 300 benchmarks out of 1,141 SYNTCOMP benchmarks, that had
at least 1 dependent output variable (as per Definition 3). Out of the 1,141
benchmarks, 260 had either timeout (41 total) or out-of-memory (219 total),
out of which 227 failed because of the NBA construction (adapted from Spot),
i.e, Step 1 in our pipeline, did not terminate. We found that all the bench-
marks with at least 1 dependent variable in fact belong to one of 5 bench-
mark families, as seen in Table 1. In order to measure the prevalence of de-
pendency we evaluated (1) the number of dependent variables and (2) the
dependency ratio = Total dependent vars

Total output vars . Out of those depicted, Mux (for mul-

Benchmark Family Total Completed Found Dep Avg Dep Ratio

ltl2dpa 24 24 24 .434
mux 12 12 4 1
shift 11 4 4 1
tsl-paper 118 117 115 .46
tsl-smart-home-jarvis 189 167 153 .33

Table 1. Summary for 5 benchmark families, indicating the no. of benchmarks, where
the dependency-finding process was completed, the total count of benchmarks with
dependent variables, and the average dependency ratio among those with dependencies.

tiplexer) and shift (for shift-operator operator) were two benchmark families
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where dependency ratio was 1. In total, among all those where our dependency
checking algorithm terminated, we found 26 benchmarks with all the output
variables dependent. Of these 4 benchmarks were from Shift, 4 benchmarks
from mux, 14 benchmarks from tsl-paper, and 4 from tsl-smart-home-jarvis.

Fig. 3. Cumulative count of benchmarks
for each unique value of Total Dependent
Variables. F (x) on y-axis represents how
many benchmarks have at most x (on x-
axis) dependent variables.

Looking beyond total dependency,
among the 300 benchmarks with at
least 1 dependent variable, we found a
diverse distribution of dependent vari-
ables as shown in Figure 3 (distribu-
tion wrt dependency ratio is in [2]).

Utilizing Dependency for Reac-
tive Synthesis: Comparison with
other tools. Despite a large 1 hr
time out, we noticed that most de-
pendent variables were found within
10-12 seconds. Hence, in our tool
DepSynt, we limited the time for
dependency-check to an empirically
determined 12 seconds, and declared
unchecked variables after this time
as non-dependent. Since synthesis of
non-dependents TY (Step 5. of the
pipeline) is implemented directly us-
ing Spot APIs, the difference between our approach and Spot is minimal when
there are a large number of non-dependent variables. This motivated us to di-
vide our experimental comparison, among the 300 benchmarks where at least
one dependent variables was found, into benchmarks with at most 3 non-
dependent variables (162 benchmarks) and more than 3 non-dependent variables
(138 benchmarks). We compared DepSynt with two state-of-the-art synthesis
tools, that won in different tracks of SYNTCOMP23’ [21]: (i) Ltlsynt (based on
Spot) [7] with different configurations ACD, SD, DS, LAR, and (ii) Strix [22]
with the configuration of BFS for exploration and FPI as parity game solver (the
overall winning configuration/tool in SYNTCOMP’23). All the tools had a total
timeout of 3 hours per benchmark. As can be seen from Figure 4, indeed for the
case of ≤ 3 non-dependent variables, DepSynt outperforms the highly optimized
competition-winning tools. Even for > 3 case, as shown in Figure 5, the perfor-
mance of DepSynt is comparable to other tools, only beaten eventually by Strix.
DepSynt uniquely solved 2 specifications for which both Strix and Ltlsynt timed
out after 3600s, the benchmarks are mux32, and mux64, and solved in 2ms, and
4ms respectively.

Analyzing time taken by different parts of the pipeline. In order to better
understand where DepSynt spends its time, we plotted in Figure 6 the normalized
time distribution of DepSynt. We can see that synthesizing a strategy for depen-
dent variables is very fast (the yellow portion)- justifying its theoretical linear
complexity bound, and so is the pink region depicting searching for dependency
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(again, a poly-time algorithm), especially compared to the blue synthesizing a
strategy for the non-dependent variables, and the green which is NBA build time.
This also explains why having a high dependency ratio alone does not help our
approach, since even with a high ratio, the number of non-dependent variables
could be large, resulting in worse performance overall.

Analysis of the Projection step (Step 3.) of Pipeline. The rationale for
projecting variables from the NBA is to reduce the number of output non-
dependent variables in the synthesis of the NBA, which is the most expen-
sive phase as Figure 6 shows. To see if this indeed contributes to our bet-
ter performance, we asked if projecting the dependent variables reduces the
BDDs’ sizes, in terms of total nodes, (the BDD represents the transitions).
Figure 7 shows that the BDDs’ sizes
are reduced significantly where the to-
tal of non-dependent variables is at
most 3, in cases of total dependency,
the BDD just vanishes and is replaced
by the constant true/false. For the
case of total non-dependent is 4 or
more, the BDD size is reduced as well.

An ablation experiment with
Spot. As a final check, that depen-
dency was causing the improvements
seen, we conducted a control/ablation
experiment where in DepSynt we gave
zero-timeout to find dependency, clas-
sified all output variables as non-
dependent, and called this SpotModular. As can be seen in Figure 8, for the
case of benchmarks with at least 1 dependent and at most 3 non-dependent
variables, this clearly shows the benefit of dependency-checking. In the full ver-
sion [2], we show that for other cases we do not see this.

Summary. Overall, we answered both the research questions we started with.
Indeed there are several benchmarks with dependent variables, and using our
pipeline does give performance benefits when no. of non-dependent variables is
low. Our recipe would be to first run our poly-time check to see if there are depen-
dents and use our approach if there are not too many non-dependents; otherwise
switch to any existing method. To summarize our comparisons: wrt Strix, we
found 252 benchmarks that had dependent variables in which DepSynt took less
time than Strix. Out of which, in 126 benchmarks DepSynt took at least 1 second
less than Strix. Among these, for 10 benchmarks (shift16, LightsTotal d65ed84e,
LightsTotal 9cbf2546, LightsTotal 06e9cad4, Lights2 f3987563, Lights2 0f5381e9,
FelixSpecFixed3.core b209ff21, Lights2 b02056d6, Lights2 06e9cad4, LightsTo-
tal 2c5b09da) the time taken by DepSynt was at least 10 seconds less than that
taken by Strix. These are the examples that are easier to solve by DepSynt
than by Strix. For shift16, the difference was more than 1056 seconds in favor of
DepSynt. Interestingly, shift16 also has all output variables dependent.
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When comparing with Ltlsynt, we found 193 benchmarks that had dependent
variables in which DepSynt took less time than Ltlsynt. Among these, in 27
benchmarks DepSynt took at least 1 second less than Ltlsynt. Of these, there is
one benchmark (ModifiedLedMatrix5X) for which the time taken by DepSynt
was at least 10 seconds less than that taken by Ltlsynt. Specifically, DepSynt
took 5 seconds and Ltlsynt took 55 seconds.

7 Conclusion

In this work, we have introduced the notion of dependent variables in the con-
text of reactive synthesis. We showed that dependent variables are prevalent
in reactive synthesis benchmarks and suggested a synthesis approach that may
utilize these dependency for better synthesis. As part of future work, we wish to
explore heuristics for choosing ”good” maximal subsets of dependent variables.
We also wish to explore integration of our method in other reactive synthesis
tools such as Strix.
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Fig. 4. Cactus plot comparing DepSynt, LtlSynt, and Strix on
162 benchmarks with at most 3 non-dependent variables.

Fig. 5. Cactus plot comparing DepSynt, LtlSynt, and Strix on
138 benchmarks with more than 3 non-dependent variables.
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Fig. 6. Normalized time distribution of DepSynt sorted by total duration over bench-
marks that could be solved successfully by DepSynt. Each color represents a different
phase of DepSynt. Pink is searching for dependency, green is the NBA build, blue is
synthesis of non-dependent variables and yellow is dependent variables synthesis.

Fig. 7. This figure illustrates the total BDD sizes of the NBA edges before and after
the projection of the dependent variables from the NBA edges, the left figure is over
benchmarks with at most 3 non-dependent variables and the right figure is over bench-
marks with 4 or more non-dependent variables. The solid line presents the projected
BDD size and the dotted line presents the original BDD size. The y-axis is presented
in symmetric log-scale. Benchmarks are sorted by the projected NBA’s BDD total size.
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source, provide a link to the Creative Commons license and indicate if changes were
made.
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