
CESAR: Control Envelope Synthesis via
Angelic Refinements ⋆

1 Carnegie Mellon University, Pittsburgh, USA
akabra@cs.cmu.edu

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{jonathan.laurent,platzer}@kit.edu

3 DePaul University, Chicago, USA
smitsch@depaul.edu

Abstract. This paper presents an approach for synthesizing provably
correct control envelopes for hybrid systems. Control envelopes charac-
terize families of safe controllers and are used to monitor untrusted con-
trollers at runtime. Our algorithm fills in the blanks of a hybrid system’s
sketch specifying the desired shape of the control envelope, the possible
control actions, and the system’s differential equations. In order to max-
imize the flexibility of the control envelope, the synthesized conditions
saying which control action can be chosen when should be as permissive
as possible while establishing a desired safety condition from the avail-
able assumptions, which are augmented if needed. An implicit, optimal
solution to this synthesis problem is characterized using hybrid systems
game theory, from which explicit solutions can be derived via symbolic
execution and sound, systematic game refinements. Optimality can be
recovered in the face of approximation via a dual game characterization.
The resulting algorithm, Control Envelope Synthesis via Angelic Refine-
ments (CESAR), is demonstrated in a range of safe control envelope
synthesis examples with different control challenges.

Keywords: Hybrid systems · Program synthesis · Differential game logic

1 Introduction

Hybrid systems are important models of many applications, capturing their dif-
ferential equations and control [27,41,3,33,4,28]. For overall system safety, the
correctness of the control decisions in a hybrid system is crucial. Formal verifica-
tion techniques can justify correctness properties. Such correct controllers have

⋆ This work was funded by the Federal Railroad Administration Office of Research,
Development and Technology under contract number 693JJ620C000025, a Swartz
Center Innovation Commercialization Fellowship, and an Alexander von Humboldt
Professorship.

Aditi Kabra1(B) , Jonathan Laurent1,2 , Stefan Mitsch1,3 ,
and André Platzer1,2

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 144–164, 2024.
https://doi.org/10.1007/978-3-031-57246-3_9

https://doi.org/10.1007/978-3-031-57246-3_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_9&domain=pdf
http://orcid.org/0000-0002-2252-0539
http://orcid.org/0000-0002-8477-1560
http://orcid.org/0000-0002-3194-9759
http://orcid.org/0000-0001-7238-5710
https://eapls.org/pages/artifact_badges/

been identified in a sequence of challenging case studies [34,40,12,32,19,14,22]. A
useful approach to verified control is to design and verify a safe control envelope
around possible safe control actions. Safe control envelopes are nondeterminis-
tic programs whose every execution is safe. In contrast with controllers, control
envelopes define entire families of controllers to allow control actions under as
many circumstances as possible, as long as they maintain the safety of the hybrid
system. Safe control envelopes allow the verification of abstractions of control
systems, isolating the parts relevant to the safety feature of interest, without in-
volving the full complexity of a specific control implementation. The full control
system is then monitored for adherence to the safe control envelope at run-
time [29]. The control envelope approach allows a single verification result to
apply to multiple specialized control implementations, optimized for different
objectives. It puts industrial controllers that are too complex to verify directly
within the reach of verification, because a control envelope only needs to model
the safety-critical aspects of the controller. Control envelopes also enable applica-
tions like justified speculative control [17], where machine-learning-based agents
control safety-critical systems safeguarded within a verified control envelope, or
[36], where these envelopes generate reward signals for reinforcement learning.

Control envelope design is challenging. Engineers are good at specifying the
shape of a model and listing the possible control actions by translating client
specifications, which is crucial for the fidelity of the resulting model. But identi-
fying the exact control conditions required for safety in a model is a much harder
problem that requires design insights and creativity, and is the main point of the
deep area of control theory. Most initial system designs are incorrect and need
to be fixed before verification succeeds. Fully rigorous justification of the safety
of the control conditions requires full verification of the resulting controller in
the hybrid systems model. We present a synthesis technique that addresses this
hard problem by filling in the holes of a hybrid systems model to identify a
correct-by-construction control envelope that is as permissive as possible.

Our approach is called Control Envelope Synthesis via Angelic Refinements
(CESAR). The idea is to implicitly characterize the optimal safe control envelope
via hybrid games yielding maximally permissive safe solutions in differential
game logic [33]. To derive explicit solutions used for controller monitoring at
runtime, we successively refine the games while preserving safety and, if possible,
optimality. Our experiments demonstrate that CESAR solves hybrid systems
synthesis challenges requiring different control insights.

Contributions. The primary contributions of this paper behind CESAR are:

– optimal hybrid systems control envelope synthesis via hybrid games.

– differential game logic formulas identifying optimal safe control envelopes.

– refinement techniques for safe control envelope approximation, including
bounded fixpoint unrollings via a recurrence, which exploits action perma-
nence (a hybrid analogue to idempotence).

– a primal/dual game counterpart optimality criterion.

CESAR: Control Envelope Synthesis via Angelic Refinements 145

2 Background: Differential Game Logic

We use hybrid games written in differential game logic (dGL, [33]) to represent
solutions to the synthesis problem. Hybrid games are two-player noncooperative
zero-sum sequential games with no draws that are played on a hybrid system
with differential equations. Players take turns and in their turn can choose to
act arbitrarily within the game rules. At the end of the game, one player wins,
the other one loses. The players are classically called Angel and Demon. Hybrid
systems, in contrast, have no agents, only a nondeterministic controller running
in a nondeterministic environment. The synthesis problem consists of filling in
holes in a hybrid system. Thus, expressing solutions for hybrid system synthesis
with hybrid games is one of the insights of this paper.

An example of a game is (v := 1 ∩ v :=−1) ; {x′ = v}. In this game, first
Demon chooses between setting velocity v to 1, or to -1. Then, Angel evolves
position x as x′ = v for a duration of her choice. Differential game logic uses
modalities to set win conditions for the players. For example, in the formula
[(v := 1 ∩ v := −1) ; {x′ = v}]x ̸= 0, Demon wins the game when x ̸= 0 at the
end of the game and Angel wins otherwise. The overall formula represents the
set of states from which Demon can win the game, which is x ̸= 0 because when
x < 0, Demon has the winning strategy to pick v :=−1, so no matter how long
Angel evolves x′ = v, x remains negative. Likewise, when x > 0, Demon can pick
v := 1. However, when x = 0, Angel has a winning strategy: to evolve x′ = v for
zero time, so that x remains zero regardless of Demon’s choice.

We summarize dGL’s program notation (Table 1). See [33] for full exposition.
Assignment x := θ instantly changes the value of variable x to the value of θ.
Challenge ?ψ continues the game if ψ is satisfied in the current state, otherwise
Angel loses immediately. In continuous evolution x′ = θ & ψ Angel follows the
differential equation x′ = θ for some duration of her choice, but loses immediately
on violating ψ at any time. Sequential game α;β first plays α and when it

Table 1: Hybrid game operators for two-player hybrid systems

Game Effect

x := θ assign value of term θ to variable x
?ψ Angel passes challenge if formula ψ holds in current state, else loses

immediately(
x′1 = θ1, . . . , Angel evolves xi along differential equation system x′i = θi
x′n = θn & ψ

)
for choice of duration ≥ 0, loses immediately when violating ψ

α;β sequential game, first play hybrid game α, then hybrid game β
α ∪ β Angel chooses to follow either hybrid game α or β
α∗ Angel repeats hybrid game α, choosing to stop or go after each α

αd dual game switches player roles between Angel and Demon

α ∩ β demonic choice (αd ∪ βd)d gives choice between α and β to Demon

α× demonic repetition ((αd)
∗
)d gives control of repetition to Demon

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer146

terminates without a player having lost, continues with β. Choice α∪β lets Angel
choose whether to play α or β. For repetition α∗, Angel repeats α some number
of times, choosing to continue or terminate after each round. The dual game αd

switches the roles of players. For example, in the game ?ψd, Demon passes the
challenge if the current state satisfies ψ, and otherwise loses immediately.

In games restricted to the structures listed above but without αd, all choices
are resolved by Angel alone with no adversary, and hybrid games coincide with
hybrid systems in differential dynamic logic (dL) [33]. We will use this restriction
to specify the synthesis question, the sketch that specifies the shape and safety
properties of control envelopes. But to characterize the solution that fills in the
blanks of the control envelope sketch, we use games where both Angel and Demon
play. Notation we use includes demonic choice α ∩ β, which lets Demon choose
whether to run α or β. Demonic repetition α× lets Demon choose whether to
repeat α choosing whether to stop or go at the end of every run. We define α∗≤n

and α×≤n for angelic and demonic repetitions respectively of at most n times.
In order to express properties about hybrid games, differential game logic

formulas refer to the existence of winning strategies for objectives of the games
(e.g., a controller has a winning strategy to achieve collision avoidance despite
an adversarial environment). The set of dGL formulas is generated by the follow-
ing grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expressions
in +,−, ·, / over the reals, x is a variable, α is a hybrid game):

ϕ := θ1 ∼ θ2 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ

Comparisons of arithmetic expressions, Boolean connectives, and quantifiers over
the reals are as usual. The modal formula ⟨α⟩ϕ expresses that player Angel has
a winning strategy to reach a state satisfying ϕ in hybrid game α. Modal formula
[α]ϕ expresses the same for Demon. The fragment without modalities is first-
order real arithmetic. Its fragment without quantifiers is called propositional
arithmetic PR. Details on the semantics of dGL can be found in [33]. A formula
ϕ is valid, written ⊨ ϕ, iff it is true in every state ω. States are functions assigning
a real number to each variable. For instance, ϕ→ [α]ψ is valid iff, from all initial
states satisfying ϕ, Demon has a winning strategy in game α to achieve ψ.

Control Safety Envelopes by Example. In order to separate safety critical aspects
from other system goals during control design, we abstractly describe the safe
choices of a controller with safe control envelopes that deliberately underspecify
when and how to exactly execute certain actions. They focus on describing in
which regions it is safe to take actions. For example, Model 1 designs a train
control envelope [34] that must stop by the train by the end of movement au-
thority e located somewhere ahead, as assigned by the train network scheduler.
Past e, there may be obstacles or other trains. The train’s control choices are
to accelerate or brake as it moves along the track. The goal of CESAR is to
synthesize the framed formulas in the model, that are initially blank.

Line 6 describes the safety property that is to be enforced at all times: the
train driving at position p with velocity v must not go past position e. Line 1

CESAR: Control Envelope Synthesis via Angelic Refinements 147

Model 1 The train ETCS model (slightly modified from [34]). Framed formulas
are initially blank and are automatically synthesized by our tool as indicated.

assum
∣∣ 1 A > 0 ∧B > 0 ∧ T > 0 ∧ v ≥ 0 ∧

ctrlable
∣∣ 2 e− p > v2/2B → [{

ctrl

∣∣∣∣∣ 3 ((? e− p > vT +AT 2/2 + (v +AT)2/2B ; a :=A)

4 ∪ (? true ; a :=−B)) ;

plant
∣∣ 5 (t := 0 ; {p′ = v, v′ = a, t′ = 1 & t ≤ T ∧ v ≥ 0})

safe
∣∣ 6 }∗](e− p > 0)

lists modeling assumptions : the train is capable of both acceleration (A>0) and
deceleration (B>0), the controller latency is positive (T>0) and the train cannot
move backwards as a product of braking (this last fact is also reflected by having
v ≥ 0 as a domain constraint for the plant on Line 5). These assumptions are
fundamentally about the physics of the problem being considered. In contrast,
Line 2 features a controllability assumption that can be derived from careful
analysis. Here, this synthesized assumption says that the train cannot start so
close to e that it won’t stop in time even if it starts braking immediately. Line 3
and Line 4 describe a train controller with two actions: accelerating (a := A)
and braking (a :=−B). Each action is guarded by a synthesized formula, called
an action guard that indicates when it is safe to use. Angel has control over
which action runs, and adversarially plays with the objective of violating safety
conditions. But Angel’s options are limited to only safe ones because of the
synthesized action guards, ensuring that Demon still wins and the overall formula
is valid. In this case, braking is always safe whereas acceleration can only be
allowed when the distance to end position e is sufficiently large. Finally, the
plant on Line 5 uses differential equations to describe the train’s kinematics. A
timer variable t is used to ensure that no two consecutive runs of the controller
are separated by more than time T . Thus, this controller is time-triggered.

Overview of CESAR. CESAR first identifies the optimal solution for the blank
of Line 2. Intuitively, this blank should identify a controllable invariant, which
denotes a set of states where a controller with choice between acceleration and
braking has some strategy (to be enforced by the conditions of Line 3 and Line 4)
that guarantees safe control forever. Such states can be characterized by the fol-
lowing dGL formula where Demon, as a proxy for the controller, decides whether
to accelerate or brake: [((a := A ∩ a := −B) ; plant)∗] safe where plant and safe
are from Model 1. When this formula is true, Demon, who decides when to brake
to maintain the safety contract, has a winning strategy that the controller can
mimic. When it is false, Demon, a perfect player striving to maintain safety, has
no winning strategy, so a controller has no guaranteed way to stay safe either.

This dGL formula provides an implicit characterization of the optimal con-
trollable invariant from which we derive an explicit formula in PR to fill the blank
with using symbolic execution. Symbolic execution solves a game following the

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer148

axioms of dGL to produce an equivalent PR formula (Section 3.7). However, our
dGL formula contains a loop, for which symbolic execution will not terminate
in finite time. To reason about the loop, we refine the game, modifying it so
that it is easier to symbolically execute, but still at least as hard for Demon to
win so that the controllable invariant that it generates remains sound. In this
example, the required game transformation first restricts Demon’s options to
braking. Then, it eliminates the loop using the observation that the repeated
hybrid iterations (a := −B; plant)∗ behave the same as just following the con-
tinuous dynamics of braking for unbounded time. It replaces the original game
with a := −B ; t := 0 ; {p′ = v, v′ = a & ∧ v ≥ 0}, which is loop-free and
easily symbolically executed. Symbolically executing this game to reach safety

condition safe yields controllable invariant e− p > v2

2B to fill the blank of Line 2.
Intuitively, this refinement (formalized in Section 3.4) captures situations

where the controller stays safe forever by picking a single control action (brak-
ing). It generates the optimal solution for this example because braking forever
is the dominant strategy: given any state, if braking forever does not keep the
train safe, then certainly no other strategy will. However, there are other prob-
lems where the dominant control strategy requires the controller to strategically
switch between actions, and this refinement misses some controllable invariant
states. So we introduce a new refinement: bounded game unrolling via a recur-
rence (Section 3.5). A solution generated by unrolling n times captures states
where the controller can stay safe by switching control actions up to n times.

Having synthesized the controllable invariant, CESAR fills the action guards
(Line 3 and Line 4). An action should be permissible when running it for one
iteration maintains the controllable invariant. For example, acceleration is safe

to execute exactly when [a := A; plant]e − p > v2

2B . We symbolically execute
this game to synthesize the formula that fills the guard of Line 3.

3 Approach

This section formally introduces the Control Envelope Synthesis via Angelic Re-
finements (CESAR) approach for hybrid systems control envelope synthesis.

3.1 Problem Definition

We frame the problem of control envelope synthesis in terms of filling in holes
in a problem of the following shape:

prob ≡ assum ∧ → [
(
(∪i (? i ; acti)) ; plant

)∗
] safe. (1)

Here, the control envelope consists of a nondeterministic choice between a finite
number of guarded actions. Each action acti is guarded by a condition i to be
determined in a way that ensures safety within a controllable invariant [6,18]
to be synthesized also. The plant is defined by the following template:

plant ≡ t := 0 ; {x′ = f(x), t′ = 1 & domain ∧ t ≤ T}. (2)

CESAR: Control Envelope Synthesis via Angelic Refinements 149

This ensures that the plant must yield to the controller after time T at most,
where T is assumed to be positive and constant. In addition, we make the fol-
lowing assumptions:

1. Components assum, safe and domain are propositional arithmetic formulas.
2. Timer variable t is fresh (does not occur except where shown in template).
3. Programs acti are discrete dL programs that can involve choices, assignments

and tests with propositional arithmetic. Variables assigned by acti must not
appear in safe. In addition, acti must terminate in the sense that ⊨ ⟨acti⟩ true.

4. The modeling assumptions assum are invariant in the sense that ⊨ assum→
[(∪i acti) ; plant] assum. This holds trivially for assumptions about constant
parameters such as A > 0 in Model 1 and this ensures that the controller
can always rely on them being true.

Definition 1. A solution to the synthesis problem above is defined as a pair
(I,G) where I is a formula and G maps each action index i to a formula Gi. In
addition, the following conditions must hold:

1. Safety is guaranteed: prob(I,G) ≡ prob[7→ I, i 7→ Gi] is valid and
(assum ∧ I) is a loop invariant that proves it so.

2. There is always some action: (assum ∧ I)→
∨

iGi is valid.

Condition 2 is crucial for using the resulting nondeterministic control envelope,
since it guarantees that safe actions are always available as a fallback.

3.2 An Optimal Solution

Solutions to a synthesis problem may differ in quality. Intuitively, a solution is
better than another if it allows for a strictly larger controllable invariant. In
case of equality, the solution with the more permissive control envelope wins.
Formally, given two solutions S = (I,G) and S′ = (I ′, G′), we say that S′ is
better or equal to S (written S ⊑ S′) if and only if ⊨ assum → (I → I ′) and
additionally either ⊨ assum → ¬(I ′ → I) or ⊨ (assum ∧ I) →

∧
i (Gi → G′

i).
Given two solutions S and S′, one can define a solution S ⊓ S′ = (I ∨ I ′, i 7→
(I ∧ Gi ∨ I ′ ∧ G′

i)) that is better or equal to both S and S′ (S ⊑ S ⊓ S′ and
S′ ⊑ S⊓S′). A solution S′ is called the optimal solution when it is the maximum
element in the ordering, so that for any other solution S, S ⊑ S′. The optimal
solution exists and is expressible in dGL:

I opt ≡ [((∩i acti) ; plant)∗] safe (3)

Gopt
i ≡ [acti ; plant] I

opt. (4)

Intuitively, I opt characterizes the set of all states from which an optimal con-
troller (played here by Demon) can keep the system safe forever. In turn, Gopt is
defined to allow any control action that is guaranteed to keep the system within
I opt until the next control cycle as characterized by a modal formula. Section 3.3
formally establishes the correctness and optimality of S opt ≡ (I opt, Gopt).

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer150

While it is theoretically reassuring that an optimal solution exists that is
at least as good as all others and that this optimum can be characterized in
dGL, such a solution is of limited practical usefulness since Eq. (3) cannot be
executed without solving a game at runtime. Rather, we are interested in explicit
solutions where I and G are quantifier-free real arithmetic formulas. There is no
guarantee in general that such solutions exist that are also optimal, but our goal
is to devise an algorithm to find them in the many cases where they exist or find
safe approximations otherwise.

3.3 Controllable Invariants

The fact that S opt is a solution can be characterized in logic with the notion of
a controllable invariant that, at each of its points, admits some control action
that keeps the plant in the invariant for one round. All lemmas and theorems
throughout this paper are proved in the extended preprint [21, Appendix B].

Definition 2 (Controllable Invariant). A controllable invariant is a formula
I such that ⊨ I → safe and ⊨ I →

∨
i [acti ; plant] I.

From this perspective, I opt can be seen as the largest controllable invariant.

Lemma 1. I opt is a controllable invariant and it is optimal in the sense that
⊨ I → I opt for any controllable invariant I.

Moreover, not just I opt, but every controllable invariant induces a solution.
Indeed, given a controllable invariant I, we can define G(I) ≡ (i 7→ [acti ; plant] I)
for the control guards induced by I. G(I) chooses as the guard for each action
acti the modal condition ensuring that acti, preserves I after the plant.

Lemma 2. If I is a controllable invariant, then (I,G(I)) is a solution (Def. 1).

Conversely, a controllable invariant can be derived from any solution.

Lemma 3. If (I,G) is a solution, then I ′ ≡ (assum∧ I) is a controllable invari-
ant. Moreover, we have (I,G) ⊑ (I ′,G(I ′)).

Solution comparisons w.r.t. ⊑ reduce to implications for controllable invariants.

Lemma 4. If I and I ′ are controllable invariants, then (I,G(I)) ⊑ (I ′,G(I ′)) if
and only if ⊨ assum→ (I → I ′).

Taken together, these lemmas allow us to establish the optimality of S opt.

Theorem 1. S opt is an optimal solution (i.e. a maximum w.r.t. ⊑) of Def. 1.

This shows the roadmap for the rest of the paper: finding solutions to the control
envelope synthesis problem reduces to finding controllable invariants that imply
I opt, which can be found by restricting the actions available to Demon in I opt

to guarantee safety, thereby refining the associated game.

CESAR: Control Envelope Synthesis via Angelic Refinements 151

3.4 One-Shot Fallback Refinement

The simplest refinement of I opt is obtained when fixing a single fallback action
to use in all states (if that is safe). A more general refinement considers different
fallback actions in different states, but still only plays one such action forever.

Using the dGL axioms, any loop-free dGL formula whose ODEs admit solutions
expressible in real arithmetic can be automatically reduced to an equivalent
first-order arithmetic formula (in FOLR). An equivalent propositional arithmetic
formula in PR can be computed via quantifier elimination (QE). For example:

[(v := 1 ∩ v :=−1) ; {x′ = v}]x ̸= 0

≡ [v := 1 ∩ v :=−1] [{x′ = v}]x ̸= 0 by [;]

≡ [v := 1] [{x′ = v}]x ̸= 0 ∨ [v :=−1] [{x′ = v}]x ̸= 0 by [∩]
≡ [{x′ = 1}]x ̸= 0 ∨ [{x′ = −1}]x ̸= 0 by [:=]

≡ (∀t≥0x+ t ̸= 0) ∨ (∀t≥0x− t ̸= 0) by [′],[:=]

≡ x > 0 ∨ x < 0 by QE .

Even when a formula features nonsolvable ODEs, techniques exist to compute
weakest preconditions for differential equations, with conservative approxima-
tions [38] or even exactly in some cases [35,8]. In the rest of this section and for
most of this paper, we are therefore going to assume the existence of a reduce
oracle that takes as an input a loop-free dGL formula and returns a quantifier-
free arithmetic formula that is equivalent modulo some assumptions. Section 3.7
shows how to implement and optimize reduce.

Definition 3 (Reduction Oracle). A reduction oracle is a function reduce
that takes as an input a loop-free dGL formula F and an assumption A ∈ PR. It
returns a formula R ∈ PR along with a boolean flag exact such that the formula
A→ (R→ F) is valid, and if exact is true, then A→ (R↔ F) is valid as well.

Back to our original problem, I opt is not directly reducible since it involves a
loop. However, conservative approximations can be computed by restricting the
set of strategies that the Demon player is allowed to use. One extreme case allows
Demon to only use a single action acti repeatedly as a fallback (e.g. braking in the
train example). In this case, we get a controllable invariant [(acti ; plant)

∗
] safe,

which further simplifies into [acti ; plant∞] safe with

plant∞≡ {x′ = f(x), t′ = 1 & domain}

a variant of plant that never yields control. For this last step to be valid though,
a technical assumption is needed on acti, which we call action permanence.

Definition 4 (Action Permanence). An action acti is said to be permanent
if and only if (acti ; plant ; acti) ≡ (acti ; plant), i.e., they are equivalent games.

Intuitively, an action is permanent if executing it more than once in a row
has no consequence for the system dynamics. This is true in the common case
of actions that only assign constant values to control variables that are read but
not modified by the plant, such as a :=A and a :=−B in Model 1.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer152

Lemma 5. If acti is permanent, ⊨ [(acti ; plant)
∗
] safe↔ [acti ; plant∞] safe.

Our discussion so far identifies the following approximation to our original syn-
thesis problem, where P denotes the set of all indexes of permanent actions:

I 0 ≡ [(∩i∈P acti) ; plant∞] safe,

G0
i ≡ [acti ; plant] I

0.

Here, I 0 encompasses all states from which the agent can guarantee safety in-
definitely with a single permanent action. G0 is constructed according to G(I 0)
and only allows actions that are guaranteed to keep the agent within I 0 until
the next control cycle. Note that I 0 degenerates to false in cases where there are
no permanent actions, which does not make it less of a controllable invariant.

Theorem 2. I 0 is a controllable invariant.

Moreover, in many examples of interest, I 0 and I opt are equivalent since an
optimal fallback strategy exists that only involves executing a single action.
This is the case in particular for Model 1, where

I 0 ≡ [a :=−B ; {p′ = v, v′ = a & v ≥ 0}] e− p > 0

≡ e− p > v2/2B

characterizes all states at safe braking distance to the obstacle and G0 associates
the following guard to the acceleration action:

G0
a:=A ≡ [a :=A ; {p′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ T}] e− p > v2/2B

≡ e− p > vT +AT 2/2 + (v +AT)2/2B

That is, accelerating is allowed if doing so is guaranteed to maintain sufficient
braking distance until the next control opportunity. Section 3.6 discusses auto-
matic generation of a proof that (I 0, G0) is an optimal solution for Model 1.

3.5 Bounded Fallback Unrolling Refinement

In Section 3.4, we derived a solution by computing an underapproximation of
I opt where the fallback controller (played by Demon) is only allowed to use
a one-shot strategy that picks a single action and plays it forever. Although
this approximation is always safe and, in many cases of interest, happens to be
exact, it does lead to a suboptimal solution in others. In this section, we allow
the fallback controller to switch actions a bounded number of times before it
plays one forever. There are still cases where doing so is suboptimal (imagine a
car on a circular race track that is forced to maintain constant velocity). But
this restriction is in line with the typical understanding of a fallback controller,
whose mission is not to take over a system indefinitely but rather to maneuver
it into a state where it can safely get to a full stop [32].

CESAR: Control Envelope Synthesis via Angelic Refinements 153

For all bounds n ∈ N, we define a game where the fallback controller (played
by Demon) takes at most n turns to reach the region I0 in which safety is guar-
anteed indefinitely. During each turn, it picks a permanent action and chooses a
time θ in advance for when it wishes to play its next move. Because the environ-
ment (played by Angel) has control over the duration of each control cycle, the
fallback controller cannot expect to be woken up after time θ exactly. However,
it can expect to be provided with an opportunity for its next move within the
[θ, θ + T] time window since the plant can never execute for time greater than
T . Formally, we define In as follows:

In ≡ [step×≤n ; forever] safe forever ≡ (∩i∈P acti) ; plant∞

step ≡ (θ := ∗ ; ?θ ≥ 0)d ; (∩i∈P acti) ; plantθ+T ; ?safed ; ?t ≥ θ

where plantθ+T is the same as plant, except that the domain constraint t ≤ T is
replaced by t ≤ θ + T . Equivalently, we can define In by induction as follows:

In+1 ≡ In ∨ [step] In I 0 ≡ [forever] safe, (5)

where the base case coincides with the definition of I 0 in Section 3.4. Importantly,
In is a loop-free controllable invariant and so reduce can compute an explicit
solution to the synthesis problem from In.

Theorem 3. In is a controllable invariant for all n ≥ 0.

Theorem3 establishes a nontrivial result since it overcomes the significant gap
between the fantasized game that defines In and the real game being played by
a time-triggered controller. The proof critically relies on the action permanence
assumption along with a result [21, Lemma 6] establishing that ODEs preserve
a specific form of reach-avoid property as a result of being deterministic.

Example. As an illustration, consider the example in Fig. 1 and Model 2 of a
2D robot moving in a corridor that forms an angle. The robot is only allowed
to move left or down at a constant velocity and must not crash against a wall.
Computing I 0 gives us the vertical section of the corridor, in which going down
is a safe one-step fallback. Computing I 1 forces us to distinguish two cases. If the
corridor is wider than the maximal distance travelled by the robot in a control
cycle (V T > 2R), then the upper section of the corridor is controllable (with the
exception of a dead-end that we prove to be uncontrollable in Section 3.6). On the
other hand, if the corridor is too narrow, then I 1 is equivalent to I 0. Formally,
we have I1 ≡ (y > −R ∧ |x| < R) ∨ (V T < 2R ∧ (x > −R ∧ |y| < R)).
Moreover, computing I2 gives a result that is equivalent to I1. From this, we
can conclude that I1 is equivalent to In for all n ≥ 1. Intuitively, it is optimal
with respect to any finite fallback strategy (restricted to permanent actions).

The controllable invariant unrolling In has a natural stopping criterion.

Lemma 6. If In ↔ In+1 is valid for some n ≥ 0, then In ↔ Im is valid for
all m ≥ n and In ↔ Iω is valid where Iω ≡ [step× ; forever] safe.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer154

Fig. 1: Robot navigating a corridor (Model 2). A 2D robot must navigate safely
within a corridor with a dead-end without crashing against a wall. The corridor
extends infinitely on the bottom and on the right. The robot can choose between
going left and going down with a constant speed V . The left diagram shows I0

in gray. The right diagram shows I1 under the additional assumption V T < 2R
(I1 and I0 are otherwise equivalent). A darker shade of gray is used for regions
of I1 where only one of the two available actions is safe according to G1.

Model 2 Robot navigating a corridor with framed solutions of holes.

assum
∣∣ 1 V > 0 ∧ T > 0

ctrlable
∣∣ 2 ∧ (y > −R ∧ |x| < R) ∨ (V T < 2R ∧ (x > −R ∧ |y| < R)) → [{

ctrl

∣∣∣∣ 3 ((? x > −R+ V T ; vx :=−V ; vy := 0)

4 ∪ (? y < R− V T ∨ x < R ; vx := 0 ; vy := V)) ;

plant
∣∣ 5 (t := 0 ; {x′ = vx, y

′ = vy, t
′ = 1 & t ≤ T})

safe
∣∣ 6 }∗]((x > −3R ∧ |y| < R) ∨ (y > −R ∧ |x| < R))

3.6 Proving Optimality via the Dual Game

Suppose one found a controllable invariant I using techniques from the previous
section. To prove it optimal, one must show that ⊨ assum → (I opt → I). By
contraposition and [α]P ↔ ¬⟨α⟩ ¬P ([·]), this is equivalent to proving that:

⊨ assum ∧ ¬I → ⟨((∩i acti) ; plant)∗⟩ ¬safe︸ ︷︷ ︸
¬I opt

. (6)

We define the largest uncontrollable region U opt ≡ ¬I opt as the right-hand side
of implication 6 above. Intuitively, U opt characterizes the set of all states from
which the environment (played by Angel) has a winning strategy against the
controller (played by Demon) for reaching an unsafe state. In order to prove the
optimality of I, we compute a sequence of increasingly strong approximations U
of U opt such that U → U opt is valid. We do so via an iterative process, in the
spirit of how we approximate I opt via bounded fallback unrolling (Section 3.5),
although the process can be guided by the knowledge of I this time. If at any
point we manage to prove that assum→ (I ∨ U) is valid, then I is optimal.

CESAR: Control Envelope Synthesis via Angelic Refinements 155

One natural way to compute increasingly good approximations of U opt is
via loop unrolling. The idea is to improve approximation U by adding states
from where the environment can reach U by running the control loop once,
formally, ⟨(∩i acti) ; plant⟩U . This unrolling principle can be useful. However,
it only augments U with new states that can reach U in time T at most. So
it cannot alone prove optimality in cases where violating safety from an unsafe
state takes an unbounded amount of time.

For concreteness, let us prove the optimality of I 0 in the case of Model 1.
In [34] essentially the following statement is proved when arguing for optimality:
⊨ assum ∧ ¬I0 → ⟨(a := −B ; plant)∗⟩ ¬safe. This is identical to our optimality
criterion from Eq. (6), except that Demon’s actions are restricted to braking.
Intuitively, this restriction is sound since accelerating always makes things worse
as far as safety is concerned. If the train cannot be saved with braking alone,
adding the option to accelerate will not help a bit. In this work, we propose a
method for formalizing such arguments within dGL to arbitrary systems.

Our idea for doing so is to consider a system made of two separate copies of
our model. One copy has all actions available whereas the other is only allowed
a single action (e.g. braking). Given a safety metric m (i.e. a term m such that
⊨ m ≤ 0→ ¬safe), we can then formalize the idea that “action i is always better
w.r.t safety metric m” within this joint system.

Definition 5 (Uniform Action Optimality). Consider a finite number of
discrete dL programs αi and p ≡ {x′ = f(x) & Q}. Let V = BV(p) ∪

⋃
i BV(αi)

be the set of all variables written by p or some αi. For any term θ and integer
n, write θ(n) for the term that results from θ by renaming all variables v ∈ V to
a fresh tagged version x(n). Using a similar notation for programs and formulas,
define p(1,2) ≡ {(x(1))′ = f(x(1)), (x(2))′ = f(x(2)) & Q(1) ∧ Q(2)}. We say that
action j is uniformly optimal with respect to safety metric m if and only if:

⊨ m(1) ≥ m(2) → [αj
(1) ; (∪i αi

(2)) ; p(1,2)]m(1) ≥ m(2).

bestj((αi)i, p,m) denotes that action j is uniformly optimal with respect to m
for actions αi and dynamics p.

With such a concept in hand, we can formally establish the fact that criterion
Eq. (6) can be relaxed in the existence of uniformly optimal actions.

Theorem 4. Consider a finite number of discrete dL programs αi such that
⊨ ⟨αi⟩ true for all i and p ≡ {x′ = f(x) & q ≥ 0}. Then, provided that
bestj((αi)i, p,m) and bestj((αi)i, p,−q) (no other action stops earlier because
of the domain constraint), we have:

⊨ ⟨((∩αi) ; p)
∗⟩m ≤ 0↔ ⟨(αj ; p)

∗⟩m ≤ 0 .

A general heuristic for leveraging Theorem4 to grow U automatically works as
follows. First, it considers R ≡ assum∧¬I∧¬U that characterizes states that are
not known to be controllable or uncontrollable. Then, it picks a disjunct

∧
j Rj of

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer156

the disjunctive normal form of R and computes a forward invariant region V that
intersects with it: V ≡

∧
j{Rj : assum, Rj ⊢ [(∪i acti) ; plant]Rj}. Using V as

an assumption to simplify ¬U may suggest metrics to be used with Theorem4.
For example, observing ⊨ V → (¬U → (θ1 > 0 ∧ θ2 > 0)) suggests picking
metric m ≡ min(θ1, θ2) and testing whether bestj(act, p,m) is true for some
action j. If such a uniformly optimal action exists, then U can be updated as
U ← U ∨ (V ∧⟨(actj ; plant)∗⟩m ≤ 0). The solution I 1 for the corridor (Model 2)
can be proved optimal automatically using this heuristic in combination with
loop unrolling.

3.7 Implementing the Reduction Oracle

The CESAR algorithm assumes the existence of a reduction oracle that takes as
an input a loop-free dGL formula and attempts to compute an equivalent formula
within the fragment of propositional arithmetic. When an exact solution cannot
be found, an implicant is returned instead and flagged appropriately (Def. 3).
This section discusses our implementation of such an oracle.

As discussed in Section 3.4, exact solutions can be computed systematically
when all ODEs are solvable by first using the dGL axioms to eliminate modalities
and then passing the result to a quantifier elimination algorithm for first-order
arithmetic [9,42]. Although straightforward in theory, a näıve implementation of
this idea hits two practical barriers. First, quantifier elimination is expensive and
its cost increases rapidly with formula complexity [11,44]. Second, the output
of existing QE implementations can be unnecessarily large and redundant. In
iterated calls to the reduction oracle, these problems can compound each other.

To alleviate this issue, our implementation performs eager simplification
at intermediate stages of computation, between some axiom application and
quantifier-elimination steps. This optimization significantly reduces output solu-
tion size and allows CESAR to solve a benchmark that would otherwise timeout
after 20 minutes in 26s. [21, Appendix E] further discusses the impact of eager
simplification. Still, the doubly exponential complexity of quantifier elimination
puts a limit on the complexity of problems that CESAR can currently tackle.

In the general case, when ODEs are not solvable, our reduction oracle is still
often able to produce approximate solutions using differential invariants gener-
ated automatically by existing tools [38]. Differential invariants are formulas that
stay true throughout the evolution of an ODE system. 4 To see how they apply,
consider the case of computing reduce([{x′ = f(x)}]P,A) where P is the post-
condition formula that must be true after executing the differential equation,
and A is the assumptions holding true initially. Suppose that formula D(x) is a
differential invariant such that D(x)→ P is valid. Then, a precondition sufficient
to ensure that P holds after evolution is A→ D(x). For example, to compute the
precondition for the dynamics of the parachute benchmark, our reduction ora-
cle first uses the Pegasus tool [38] to identify a Darboux polynomial, suggesting

4 dGL provides ways to reason about differential invariants without solving the corre-
sponding differential equation. For example, for an invariant of the form e = 0, the
differential invariant axiom is [{x′ = f(x)}] e = 0↔ (e = 0 ∧ [{x′ = f(x)}] e′ = 0).

CESAR: Control Envelope Synthesis via Angelic Refinements 157

an initial differential invariant D0. Once we have D0, the additional information
required to conclude post condition P is D0 → P . To get an invariant formula
that implies D0 → P , eliminate all the changing variables {x, v} in the formula
∀x ∀v (D0 → P), resulting in a formula D1. D1 is a differential invariant since it
features no variable that is updated by the ODEs. Our reduction oracle returns
D0 ∧D1, an invariant that entails postcondition P .

3.8 The CESAR Algorithm

The CESAR algorithm for synthesizing control envelopes is summarized in Al-
gorithm1. It is expressed as a generator that yields a sequence of solutions with
associated optimality guarantees. Possible guarantees include “sound” (no op-
timality guarantee, only soundness), “k-optimal” (sound and optimal w.r.t all
k-switching fallbacks with permanent actions), “ω-optimal” (sound and opti-
mal w.r.t all finite fallbacks with permanent actions) and “optimal” (sound and
equivalent to S opt). Line 11 performs the optimality test described in Section 3.6.
Finally, Line 10 performs an important soundness check for the cases where an
approximation has been made along the way of computing (In, Gn). In such
cases, I is not guaranteed to be a controllable invariant and thus Case (2) of
Def. 1 must be checked explicitly.

When given a problem with solvable ODEs and provided with a complete QE
implementation within reduce, CESAR is guaranteed to generate a solution in
finite time with an “n-optimal” guarantee at least (n being the unrolling limit).

4 Benchmarks and Evaluation

To evaluate our approach to the Control Envelope Synthesis problem, we curate a
benchmark suite with diverse optimal control strategies. As Table 2 summarizes,
some benchmarks have non-solvable dynamics, while others require a sequence
of clever control actions to reach an optimal solution. Some have state-dependent
fallbacks where the current state of the system determines which action is “safer”,
and some are drawn from the literature. We highlight a couple of benchmarks
here. See [21, Appendix D] for a discussion of the full suite and the synthesized
results, and [20] for the benchmark files and evaluation scripts.

Power Station is an example where the optimal control strategy involves
two switches, corresponding to two steps of unrolling. A power station can ei-
ther produce power or dispense it to meet a quota, but never give out more
than it has produced. Charging is the fallback action that is safe for all time
after the station has dispensed enough power. However, to cover all controllable
states, we need to switch at least two times, so that the power station has a
chance to produce energy and then dispense it, before settling back on the safe
fallback. Parachute is an example of a benchmark with non-solvable, hyperbolic
dynamics. A person jumps off a plane and can make an irreversible choice to
open their parachute. The objective is to stay within a maximum speed that is
greater than the terminal velocity when the parachute is open.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer158

Algorithm 1 CESAR: Control Envelope Synthesis via Angelic Refinements

1: Input: a synthesis problem (as defined in Section 3.1), an unrolling limit n.
2: Remark: valid is defined as valid(F, A) ≡ (first(reduce(¬F,A)) = false).
3: k ← 0
4: I, eI ← reduce([forever] safe, assum)
5: while k ≤ n do
6: eG ← true
7: for each i do
8: Gi, e← reduce([acti ; plant] I, assum)
9: eG ← eG and e

10: if (eG and eI) or valid(I →
∨

iGi, assum) then
11: if eG and optimal(I) then
12: yield ((I,G), “optimal”)
13: return
14: else if eG and eI then yield ((I,G), “k-optimal”)
15: else yield ((I,G), “sound”)

16: I ′, e← reduce(I ∨ [step] I, assum)
17: eI ← eI and e
18: if eG and eI and valid(I ′ → I, assum) then
19: yield ((I,G), “ω-optimal”)
20: return
21: I ← I ′

22: k ← k + 1

We implement CESAR in Scala, using Mathematica for simplification and
quantifier elimination, and evaluate it on the benchmarks. Simplification is an
art [25,23]. We implement additional simplifiers with the Egg library [45] and
SMT solver z3 [30]. Experiments were run on a 32GB RAM M2 MacBook Pro
machine. CESAR execution times average over 5 runs.

CESAR synthesis is automatic. The optimality tests were computed man-
ually. Table 2 summarizes the result of running CESAR. Despite a variety of
different control challenges, CESAR is able to synthesize safe and in some cases
also optimal safe control envelopes within a few minutes. As an extra step of val-
idation, synthesized solutions are checked by the hybrid system theorem prover
KeYmaera X [16]. All solutions are proved correct, with verification time as
reported in the last column of Table 2.

5 Related Work

Hybrid controller synthesis has received significant attention [26,41,7], with pop-
ular approaches using temporal logic [5,7,46], games [31,43], and CEGIS-like
guidance from counterexamples [39,1,37,10]. CESAR, however, solves the differ-
ent problem of synthesizing control envelopes that strive to represent not one
but all safe controllers of a system. Generating valid solutions is not an issue (a
trivial solution always exists that has an empty controllable set). The real chal-
lenge is optimality which imposes a higher order constraint because it reasons

CESAR: Control Envelope Synthesis via Angelic Refinements 159

Table 2: Summary of CESAR experimental results

Benchmark
Synthesis
Time (s)

Checking
Time (s)

Optimal
Needs

Unrolling

Non
Solvable
Dynamics

ETCS Train [34] 14 9 ✓
Sled 20 8 ✓
Intersection 49 44 ✓
Parachute [15] 46 8 ✓
Curvebot 26 9 ✓
Coolant 49 20 ✓ ✓
Corridor 20 8 ✓ ✓
Power Station 26 17 ✓ ✓

about the relationship between possible valid solutions, and cannot, e.g., fit in
the CEGIS quantifier alternation pattern ∃∀. So simply adapting existing con-
troller synthesis techniques does not solve symbolic control envelope synthesis.

Safety shields computed by numerical methods [2,13,24] serve a similar func-
tion to our control envelopes and can handle dynamical systems that are hard
to analyze symbolically. However, they scale poorly with dimensionality and do
not provide rigorous formal guarantees due to the need of discretizing continuous
systems. Compared to our symbolic approach, they cannot handle unbounded
state spaces (e.g. our infinite corridor) nor produce shields that are parametric
in the model’s parameters without hopelessly increasing dimensionality.

On the optimality side, a systematic but manual process was used to design
a safe European Train Control System (ETCS) and justify it as optimal with re-
spect to specific train criteria [34]. Our work provides the formal argument filling
the gap between such case-specific criteria and end-to-end optimality. CESAR
is more general and automatic.

6 Conclusion

This paper presents the CESAR algorithm for Control Envelope Synthesis via
Angelic Refinements. It is the first approach to automatically synthesize symbolic
control envelopes for hybrid systems. The synthesis problem and optimal solu-
tion are characterized in differential game logic. Through successive refinements,
the optimal solution in game logic is translated into a controllable invariant and
control conditions. The translation preserves safety. For the many cases where
refinement additionally preserves optimality, an algorithm to test optimality of
the result post translation is presented. The synthesis experiments on a bench-
mark suite of diverse control problems demonstrate CESAR’s versatility. For
future work, we plan to extend to additional control shapes, and to exploit the
synthesized safe control envelopes for reinforcement learning.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer160

References

1. Abate, A., Bessa, I., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D., Pol-
green, E.: Automated formal synthesis of provably safe digital controllers for
continuous plants. Acta Informatica 57(1-2), 223–244 (2020). doi: 10.1007/

s00236-019-00359-1

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. Proceedings of the Aaai Conference on Arti-
ficial Intelligence 32 (2018). doi: 10.1609/aaai.v32i1.11797

3. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

4. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada,
P.: Control barrier functions: Theory and applications. In: 17th European Con-
trol Conference, ECC 2019, Naples, Italy, June 25-28, 2019. pp. 3420–3431. IEEE
(2019). doi: 10.23919/ECC.2019.8796030

5. Antoniotti, M., Mishra, B.: Discrete event models+temporal logic=supervisory
controller: automatic synthesis of locomotion controllers. In: Proceedings of 1995
IEEE International Conference on Robotics and Automation. vol. 2, pp. 1441–1446
vol.2 (1995). doi: 10.1109/ROBOT.1995.525480

6. Basile, G., Marro, G.: Controlled and conditioned invariant subspaces in linear
system theory. Journal of Optimization Theory and Applications 3, 306–315 (05
1969). doi: 10.1007/BF00931370

7. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical
Systems. Springer Cham (2017)

8. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weak-
est preconditions in polynomial ODE’s. In: Tjoa, A.M., Bellatreche, L., Biffl, S.,
van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018: Theory and Practice of
Computer Science - 44th International Conference on Current Trends in Theory
and Practice of Computer Science, Krems, Austria, January 29 - February 2, 2018,
Proceedings. LNCS, vol. 10706, pp. 442–455. Springer (2018)

9. Caviness, B.F., Johnson, J.R.: Quantifier elimination and cylindrical algebraic de-
composition. Springer Science & Business Media (2012)

10. Dai, H., Landry, B., Pavone, M., Tedrake, R.: Counter-example guided synthesis
of neural network lyapunov functions for piecewise linear systems. 2020 59th IEEE
Conference on Decision and Control (CDC) pp. 1274–1281 (2020)

11. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2), 29–35 (1988)

12. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid sys-
tems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Hand-
book of Model Checking, pp. 1047–1110. Springer, Cham (2018). doi: 10.1007/
978-3-319-10575-8_30

13. Fisac, J., Akametalu, A., Zeilinger, M., Kaynama, S., Gillula, J., Tomlin, C.: A
general safety framework for learning-based control in uncertain robotic systems.
Ieee Transactions on Automatic Control 64, 2737–2752 (2019). doi: 10.1109/tac.
2018.2876389

14. Freiberger, F., Schupp, S., Hermanns, H., Ábrahám, E.: Controller verification
meets controller code: A case study. In: Proceedings of the 19th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design. p. 98–103.
MEMOCODE ’21, Association for Computing Machinery, New York, NY, USA
(2021). doi: 10.1145/3487212.3487337

CESAR: Control Envelope Synthesis via Angelic Refinements 161

https://doi.org/10.1007/s00236-019-00359-1
https://doi.org/10.1007/s00236-019-00359-1
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.1109/ROBOT.1995.525480
https://doi.org/10.1007/BF00931370
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1109/tac.2018.2876389
https://doi.org/10.1109/tac.2018.2876389
https://doi.org/10.1145/3487212.3487337

15. Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS, vol.
10499, pp. 207–224. Springer (2017). doi: 10.1007/978-3-319-66107-0_14

16. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: CADE. pp. 527–538 (2015).
doi: 10.1007/978-3-319-21401-6_36

17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18, AAAI Press (2018)

18. Ghosh, B.K.: Controlled invariant and feedback controlled invariant subspaces in
the design of a generalized dynamical system. In: 1985 24th IEEE Conference on
Decision and Control. pp. 872–873 (1985). doi: 10.1109/CDC.1985.268620

19. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Case
study: Verifying the safety of an autonomous racing car with a neural network
controller. In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control. HSCC ’20, Association for Computing Machinery, New
York, NY, USA (2020). doi: 10.1145/3365365.3382216

20. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: Control Envelope Synthesis via
Angelic Refinements (CESAR): Artifact (1 2024). doi: 10.6084/m9.figshare.

24922896.v1, https://figshare.com/articles/software/Control_Envelope_

Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896

21. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: Cesar: Control envelope synthe-
sis via angelic refinements (2023). doi: https://doi.org/10.48550/arXiv.2311.
02833, arXiv:2311.02833

22. Kabra, A., Mitsch, S., Platzer, A.: Verified train controllers for the federal rail-
road administration train kinematics model: Balancing competing brake and track
forces. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41(11), 4409–4420 (2022). doi: 10.1109/TCAD.2022.3197690

23. Knuth, D.E.: The Art of Computer Programming. Addison Wesley Longman Pub-
lishing Co., Inc., USA (1997)

24. Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next generation air-
borne collision avoidance system. Lincoln Laboratory Journal 19(1), 17–33 (2012)

25. Lara, M., López, R., Pérez, I., San-Juan, J.F.: Exploring the long-term dy-
namics of perturbed keplerian motion in high degree potential fields. Com-
munications in Nonlinear Science and Numerical Simulation 82, 105053
(2020). doi: https://doi.org/10.1016/j.cnsns.2019.105053, https://www.

sciencedirect.com/science/article/pii/S1007570419303727

26. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber-
physical systems. Annual Reviews in Control 53, 30–50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004

27. Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control:
Theory, Tools, Applications. Cambridge Univ. Press, Cambridge (2009). doi: 10.
1017/CBO9780511807930

28. Mitra, S.: Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press
(2021)

29. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1-2), 33–74 (2016). doi:
10.1007/s10703-016-0241-z

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer162

https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1109/CDC.1985.268620
https://doi.org/10.1145/3365365.3382216
https://doi.org/10.6084/m9.figshare.24922896.v1
https://doi.org/10.6084/m9.figshare.24922896.v1
https://figshare.com/articles/software/Control_Envelope_Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896
https://figshare.com/articles/software/Control_Envelope_Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896
https://doi.org/https://doi.org/10.48550/arXiv.2311.02833
https://doi.org/https://doi.org/10.48550/arXiv.2311.02833
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/https://doi.org/10.1016/j.cnsns.2019.105053
https://www.sciencedirect.com/science/article/pii/S1007570419303727
https://www.sciencedirect.com/science/article/pii/S1007570419303727
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.03.004
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.03.004
https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1007/s10703-016-0241-z

30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

31. Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Decision and
Control, 1992., Proceedings of the 31st IEEE Conference on. pp. 2947–2952 vol.3
(1992). doi: 10.1109/CDC.1992.371272

32. Pek, C., Althoff, M.: Fail-safe motion planning for online verification of autonomous
vehicles using convex optimization. IEEE Transactions on Robotics 37(3), 798–814
(2020)

33. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). doi: 10.1007/978-3-319-63588-0

34. Platzer, A., Quesel, J.: European train control system: A case study in for-
mal verification. In: Formal Methods and Software Engineering, 11th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/

978-3-642-10373-5_13

35. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. Journal of
the ACM (JACM) 67(1), 1–66 (2020)

36. Qian, M., Mitsch, S.: Reward shaping from hybrid systems models in reinforcement
learning. In: Rozier, K.Y., Chaudhuri, S. (eds.) NFM. LNCS, vol. 13903. Springer
(2023)

37. Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched
systems using counterexample guided framework. In: 2016 International Conference
on Embedded Software, EMSOFT 2016, Pittsburgh, Pennsylvania, USA, October
1-7, 2016. pp. 8:1–8:10 (2016). doi: 10.1145/2968478.2968485

38. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: Sound
continuous invariant generation. Form. Methods Syst. Des. 58(1), 5–41 (2022).
doi: 10.1007/s10703-020-00355-z, special issue for selected papers from FM’19

39. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013). doi: 10.
1007/s10009-012-0249-7

40. Squires, E., Pierpaoli, P., Egerstedt, M.: Constructive barrier certificates with ap-
plications to fixed-wing aircraft collision avoidance. In: 2018 IEEE Conference
on Control Technology and Applications (CCTA). pp. 1656–1661 (2018). doi:
10.1109/CCTA.2018.8511342

41. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Berlin (2009). doi: 10.1007/978-1-4419-0224-5

42. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness,
B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic De-
composition. pp. 24–84. Springer Vienna, Vienna (1998)

43. Tomlin, C.J., Lygeros, J., Sastry, S.: A game theoretic approach to controller design
for hybrid systems. Proc. IEEE 88(7), 949–970 (2000). doi: 10.1109/5.871303

44. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1-2), 3–27 (1988)

45. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: Egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL) (jan
2021). doi: 10.1145/3434304, https://doi.org/10.1145/3434304

46. Yang, S., Yin, X., Li, S., Zamani, M.: Secure-by-construction optimal path planning
for linear temporal logic tasks. In: 2020 59th IEEE Conference on Decision and
Control (CDC). pp. 4460–4466 (2020). doi: 10.1109/CDC42340.2020.9304153

CESAR: Control Envelope Synthesis via Angelic Refinements 163

https://doi.org/10.1109/CDC.1992.371272
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1145/2968478.2968485
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/CCTA.2018.8511342
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1109/5.871303
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1109/CDC42340.2020.9304153

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer164

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	CESAR: Control Envelope Synthesis via Angelic Refinements

