
Weakest Precondition Inference for
Non-Deterministic Linear Array Programs

Abstract. Precondition inference is an important problem with many
applications. Existing precondition inference techniques for programs
with arrays have limited ability to find and prove the weakest precon-
ditions, especially when programs have non-determinism. In this paper,
we propose an approach to overcome the limitation. As the problem is
uncomputable in general, our approach targets a special class of pro-
grams called linear array programs that are commonly encountered in
practical applications and have been studied before. We also focus on a
class of quantified formulas for pre- and postconditions that suffice to
specify program properties in many applications. Our approach uses two
novel techniques called Structural Array Abduction (SAA) and Special-
ized Maximality Checking (SMC). SAA is an abduction-based technique
used to infer quantified preconditions and necessary inductive invariants.
SMC proves that an inferred precondition is the weakest by finding an
under-approximated program and solving the complement verification
problem on it using SAA. When inconclusive, it attempts to weaken the
precondition. Our approach can infer (and also prove) the weakest pre-
conditions for a range of benchmarks relatively quickly, and outperforms
competing techniques.

1 Introduction

Precondition inference is concerned with finding a set of initial states from which
all terminating executions of a given program reach states satisfying a given post-
condition. The weakest precondition refers to the largest such set of initial states.
The weakest precondition can be used as a contract on a library function’s input,
for run-time argument value checks, as a summary in compositional verification,
and in many more applications [2, 11,12,24,46,47,52,53].

Finding the weakest precondition, especially in the presence of unbounded
loops and data structures like arrays, is challenging and uncomputable in gen-
eral. To show that a precondition is valid requires reasoning about all possible
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executions of loops. Almost always this necessitates the inference of adequate in-
ductive invariants. However, automatic invariant inference is an equally difficult
problem, and in the case of array programs, the required invariants are often
quantified formulas, adding to the difficulty of reasoning about them. Moreover,
existing invariant inference techniques [22, 28, 30, 32, 41] rely on a precondition
being provided by the user. This makes it difficult to use such techniques directly
in our problem setting, where preconditions are not available to begin with.

Even if we are able to find a precondition for a given program and postcondi-
tion, proving that the precondition is the weakest presents significant technical
challenges. Specifically, we need to prove that adding any new state to the set
of initial states represented by the precondition results in an execution that
terminates in a state violating the postcondition. To find such a proof, existing
quantified precondition inference techniques assume the program to be determin-
istic, i.e., from every initial state, there is a unique program execution [49, 53].
However, it often becomes necessary to use non-deterministic features when mod-
eling programs, thereby admitting multiple possible executions starting from the
same initial state. Such non-deterministic features may be needed to model user
input, non-deterministic functions, external functions, or when programs are
abstracted. Hence, assuming that all programs are deterministic significantly re-
stricts the applicability of existing techniques for finding weakest preconditions.

We propose a novel technique for inferring weakest preconditions for a class
of terminating non-deterministic programs that manipulate arrays, with respect
to postconditions expressed in a rich language of formulas. Specifically, we target
the class of linear array programs, defined formally in Section 3. This includes
programs used in many practical applications, and the literature describes several
verification techniques for this class of programs [7, 8, 40]. However, existing
techniques for weakest precondition inference either apply to deterministic linear
array programs, or deal with non-determinism in simpler classes of programs.
Our work fills this gap, making it possible to infer weakest preconditions for
linear array programs with non-determinism.

The proposed technique works in the infer-check-weaken framework [1,27,49,
50,54]. It first infers a precondition along with adequate inductive invariants. A
maximality check follows to see whether the precondition is weakest. If the check
yields a negative answer, the precondition is weakened. This loop continues until
the weakest precondition is found. In this framework, our core contributions are
Structural Array Abduction (SAA) for inferring preconditions and associated
invariants, and Specialized Maximality Checking (SMC) for proving that the
inferred precondition is maximal (or weakest).

At a high level, SAA "guesses" candidate preconditions and inductive invari-
ants as (quantified) formulas, and checks their correctness using an SMT solver.
Since quantified formulas over arrays are challenging to reason about even with
state-of-the-art SMT solvers, the guessing has to be done carefully. SAA uses
abductive inference for this purpose. First, it constructs an abduction query to
find what property of array elements at the start of a loop iteration will result
in a desired property after the iteration. The array property thus inferred is
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then combined with a range formula [22], which is a predicate representing the
boundary between indices of the array that are processed and those that are yet
to be processed. A set of rules guide the construction of appropriate abduction
queries and range formulas.

Though SAA is effective in finding weak preconditions, it is not guaranteed
to find the weakest precondition. SMC is used to check whether a precondition is
indeed the weakest. This amounts to determining whether for every initial state
that violates the precondition, there is a terminating execution that results in
a state violating the postcondition. To accomplish this, SMC uses the insight
that every execution of a non-deterministic program is also an execution of an
under-approximation of the original program obtained by suitably restricting
the non-determinism in control flows (i.e., if statements). Specifically, the exis-
tence of inductive invariants for the complement verification problem, i.e., under-
approximated program with complemented pre-and postconditions, proves that
the inferred precondition is indeed the weakest for the given (terminating) pro-
gram and postcondition. SMC uses SAA to find an under-approximated program
and its inductive invariants. When SAA fails, SMC weakens the precondition
from a set of candidates obtained in a syntax-guided way, like in [22].

Our technique is implemented in a tool called MaxPrANQ. It takes con-
strained Horn clauses (CHCs) as input, which is a convenient way to model and
reason about programs symbolically (details in Sec 3.2). On a challenging set of
66 precondition inference tasks, our tool inferred the weakest precondition for
all 66 and automatically proved 59 of them to be the weakest. In comparison,
the state-of-the-art tool PreQSyn [49] could only solve 2/66 benchmarks, and
P-Gen [53] did not find a precondition for any of them. To further gauge the
difficulty level of reasoning about our benchmarks, we tried using two state-of-
the-art inductive invariant inference tools, FreqHorn [22] and Spacer [30],
to simply prove the correctness of the preconditions inferred by MaxPrANQ.
Neither FreqHorn nor Spacer could however complete the task for the entire
set of 66 benchmarks in the given time. This shows that even proving the cor-
rectness of the weakest preconditions was difficult for our benchmarks, let alone
inferring the preconditions automatically.

The primary contributions of our paper are:

1. SAA: a method for finding preconditions, inductive invariants, and stronger
guard conditions for non-deterministic linear array programs.

2. SMC: a method for checking if a precondition is the weakest and, when
inconclusive, weakening it.

3. MaxPrANQ: a tool for finding the weakest preconditions, with witnesses
of validity (inductive invariants) and maximality.

The rest of the paper has following sections: Sect 2 has a running example,
Sect 3 provides necessary background, Sect 4 gives an overview of our algorithm,
SAA and SMC descriptions are in Sect 5 and Sect 6, resp., Sect 7 gives evaluation
details, Sect 8 has related work, and limitations and future work are in Sect 9.
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int N = nondet (); // 𝑁 ≥ 0
int A[N], B[N], C[N];
// pre(N, A, B, C);
for (int i = 0; i < N; i++)

if (nondet ()) C[i] = i;
else A[i] = C[i];

assert(∀j. 0≤j<N =⇒ A[j]=B[j]);

(a) Program

int N = nondet ();
int A[N], B[N], C[N];
// ¬𝑝𝑟𝑒
assume(∃j. 0≤j<N ∧ (A[j] ̸=B[j] ∨ B[j] ̸=C[j]));
for (int i = 0; i < N; i++)

if (A[i] ̸=B[i]) C[i] = i; //new guard
else A[i] = C[i];

assert(∃j. 0≤j<N ∧ A[j] ̸=B[j]);//¬post

(b) Maximality Proof

Fig. 1: A non-deterministic array program and its maximality proof.

2 A Running Example

Fig. 1a shows a non-deterministic program with a postcondition that requires
a universally quantified weakest precondition. The program has three arrays: 𝐴,
𝐵, and 𝐶, each of parametric size 𝑁 . For each array index 𝑖, the program chooses
non-deterministically whether to write 𝑖 to the 𝑖-th element of 𝐶 or copy the 𝑖-th
element of 𝐶 into the corresponding index of 𝐴. The postcondition, as stated in
the assert, requires that the arrays 𝐴 and 𝐵 have the same content. Our goal is
to infer the weakest precondition (denoted by pre) over 𝐴, 𝐵, 𝐶, and 𝑁 under
which the program satisfies the postcondition.

Existing weakest precondition inference techniques [49, 53] diverge for non-
deterministic programs like the one in Fig. 1a. For instance, P-Gen [53] fails to
find a precondition, and PreQSyn [49] fails to prove that the precondition it
finds is the weakest in 200 seconds. This is because they either fail to generalise
a set of initial states to a quantified precondition or, when they do, they cannot
prove it to be the weakest for non-deterministic programs. In contrast, SAA
finds the precondition: ∀𝑗. 0≤ 𝑗 <𝑁 =⇒ (𝐴[𝑗] =𝐵[𝑗] ∧ 𝐵[𝑗] =𝐶[𝑗]) (details in
Sect 5.3), and SMC proves this to be the weakest precondition, all within a few
seconds.

To prove maximality, SMC finds an under-approximated program, as shown
in Fig. 1b. In this program, the non-determinism in the if statement is re-
stricted by a new guard: 𝐴[𝑖] ̸= 𝐵[𝑖]. Furthermore, the assume condition is the
complement of the precondition inferred by SAA earlier, and the condition in
the assert is also complemented. The existence of an adequate inductive in-
variant for this program (which in turn can be found by SAA) proves that all
its executions from every initial state violating the inferred precondition result
in states violating the given postcondition as the program is terminating. In
other words, the inferred precondition is indeed the weakest for the program
and postcondition in Fig. 1a.

3 Background

3.1 Linear Array Programs
Fig 2 shows a grammar for linear array programs over a set of integer and array
variables, V and A, respectively. In the figure, 𝑣 ̸= 𝑖 ∈ V , 𝑎 ∈ A, 𝑖 ∈ V is a fixed
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program → stmts

𝑠𝑡𝑚𝑡𝑠 → assign
⃒⃒
forloop

⃒⃒
stmts; stmts

forloop → for(𝑖 = 0; 𝑖 < 𝑢; 𝑖 = 𝑖 + 1) {𝑎𝑠𝑠𝑖𝑔𝑛}

assign → 𝑣 = 𝑡(V , A)
⃒⃒
𝑎[𝑖] = 𝑡(V , A)⃒⃒

if(:: 𝑔1(V , A) → {assign}

· · ·
:: 𝑔𝑛(V , A) → {assign})⃒⃒

assign; assign

Fig. 2: Linear Array Programs

loop counter, 𝑢 ∈ V ∪Z, 𝑡 is a linear arithmetic expression, and each 𝑔𝑖 (or guard)
is a boolean combination of linear expressions over V and A, with

⋁︀𝑛
𝑖=1 𝑔𝑖 = ⊤.

The if statement is a set of guarded assignments. When such an if statement is
executed, exactly one guard that evaluates to true in the current program state
is non-deterministically chosen and the corresponding assignment statement is
executed5. A program is non-deterministic if there are program states in which
more than one guard of an if could evaluate to true.

Let 𝑃 be a linear array program over V and A. A pre/postcondition for 𝑃 is
a formula of the form ∀𝑥.R(𝑥,V ) =⇒ Q(𝑥,V ,A) or ∃𝑥.R(𝑥,V ) ∧ Q(𝑥,V ,A),
where 𝑥 ̸∈ V is an integer variable, R is a linear predicate over 𝑥 and V that
represents a range of indices of array(s), and Q is a linear predicate over V and
elements of array(s) in A, the latter being accessed only through linear index
expressions in 𝑥. As an example, ∀𝑥. (0 ≤ 𝑥 ≤ 𝑁) =⇒ (𝐶[𝑥] ≤ 𝐵[𝑥]) qualifies
for a pre/postcondition, where 𝑁 ∈ V and 𝐶,𝐵 ∈ A. Following standard Floyd-
Hoare logic, we say a pair of conditions (𝜓, 𝜌) is a valid pre- and postcondition
pair for 𝑃 , if every execution of 𝑃 that begins in a state satisfying 𝜓 ends in a
state satisfying 𝜌.

The weakest precondition inference problem we consider is: given a linear
array program 𝑃 and a postcondition 𝜌, find the weakest precondition 𝜓 such
that (𝜓, 𝜌) forms a valid pre- and postcondition pair for 𝑃 .

Weakest precondition inference for linear array programs is undecidable in
general [49]. Therefore, we cannot hope for an algorithm that infers weakest
preconditions in all cases. Nevertheless, many practical and useful programs can
be modeled as linear array programs (see for example [7, 8, 40]). This motivates
us to design techniques for finding weakest preconditions that work well for a
large subclass of linear array programs.

3.2 Modeling Linear Array Programs as CHCs

In recent years, it is becoming popular to represent a program and its pre- and
postcondition as a system of first-order logic (FOL) formulas with uninterpreted
relations, called constrained Horn clauses (CHCs) [10, 19, 29, 33, 35–37, 43, 45].
In CHCs, the uninterpreted relations represent invariants and the goal is to find
interpretations for them. We will consider the task of precondition inference as
a CHC-solving task, with the missing precondition represented by a relation.

5 The usual if-then-else statement is easily represented as two guarded assignments.
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𝑝𝑟𝑒(𝑁,𝐴,𝐵,𝐶) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) (𝐶1)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧ 𝐶
′
= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴,𝐵,𝐶

′
) (𝐶2)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧ 𝐴
′
= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖]) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴

′
,𝐵,𝐶) (𝐶3)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]) =⇒ ⊥ (𝐶4)

Fig. 3: CHC system for the program from Fig. 1a.

Definition 1. A CHC is a formula in a FOL L (linear integer arithmetic with
arrays in this paper) over a set of relations R with one of the following forms:

𝜙(𝑥⃗0) =⇒ 𝑟0(𝑥⃗0) (1)⋀︁
0≤𝑖≤𝑘

𝑟𝑖(𝑥⃗𝑖)∧𝜙(𝑥⃗0, . . . , 𝑥⃗𝑘+1) =⇒ 𝑟𝑘+1(𝑥⃗𝑘+1) (2)

⋀︁
0≤𝑖≤𝑘

𝑟𝑖(𝑥⃗𝑖)∧𝜙(𝑥⃗0, . . . , 𝑥⃗𝑘) =⇒⊥ (3)

where, for every 𝑖, 𝑟𝑖 ∈ R 6, and 𝑥⃗𝑖 represents the vector of variables (𝑥1, . . . , 𝑥𝑎𝑟𝑖
),

where 𝑎𝑟𝑖 is the arity of 𝑟𝑖. 𝜙, called a constraint, is an L-formula in conjunctive
normal form without uninterpreted relations. CHCs of type (1) are called facts7,
of type (2) inductive, and of type (3) queries. Note that each CHC has a leading
quantification over 𝑥⃗ (e.g. ∀𝑥⃗0 . . . 𝑥⃗𝑘+1 for type (2)) that is implicit in the paper.

For a CHC 𝐶, we use the following notations: body(𝐶) (resp. head(𝐶)) de-
notes the left (resp. right) side of the implication in 𝐶, rels() denotes the relations
from R that appear in body(𝐶), or head(𝐶), and args() denotes the variables in
body(𝐶), or head(𝐶). We assume the constraint 𝜙 of a CHC 𝐶 can be partitioned
into two formulas: assign(𝐶) and guard(𝐶), denoting the assignment statement
and control-flow guard conditions (if any). A system of CHCs 𝑆 is a finite set of
CHCs. For any system 𝑆, if there is a CHC 𝐶 with |rels((body(𝐶)))| ≥ 1, then
𝑆 is non-linear, otherwise linear.

We assume the input CHC system is induced by a linear array program
with 𝑛 ≥ 0 sequential loops. In particular, it is a linear CHC system over
R = {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . , 𝑖𝑛𝑣𝑛}, where 𝑝𝑟𝑒 denotes the precondition, and each 𝑖𝑛𝑣𝑖

denotes an inductive invariant for the 𝑖-th sequential loop.

Example 1. A linear system of CHCs induced by the program from Fig 1a is
shown in Fig 3. In the system, the precondition is represented by the relation
𝑝𝑟𝑒 and the inductive invariant by 𝑖𝑛𝑣1. 𝐶1 is the initialization CHC with
𝑝𝑟𝑒. The two CHCs 𝐶2 and 𝐶3 correspond to non-deterministic writes in the
loop, while 𝐶4 is the query CHC, which has the assert condition. It is worth
noting that interpretations for 𝑝𝑟𝑒 and 𝑖𝑛𝑣1 that make each CHC valid gives a

6 𝑟𝑖’s in each form are not necessarily distinct.
7 The input CHC system will not have facts but they manifest in Algorithm 4.
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precondition and an adequate inductive invariant. For example,

𝑝𝑟𝑒 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶. ∀𝑗. 0≤𝑗<𝑁 =⇒ (𝐴[𝑗]=𝐵[𝑗] ∧𝐵[𝑗]=𝐶[𝑗])

𝑖𝑛𝑣1 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶, 𝑖. ∀𝑗. 0 ≤ 𝑗 < 𝑖 =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧
∀𝑗. 𝑖 ≤ 𝑗 < 𝑁 =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗])

A map of interpretations M for R assigns to each relation symbol 𝑟 ∈ R an
interpretation of the form 𝜆𝑥1 · · ·𝜆𝑥𝑎𝑟 . 𝜓(𝑥1, . . . , 𝑥𝑎𝑟 ), where 𝜓 is a L-formula.
We use the notation M [𝑟] to denote the interpretation for 𝑟 by M . For a formula
𝛼 and a map M for R , we write 𝛼[M /R ] to denote the formula obtained by
replacing each atomic formula of the form 𝑟(𝑡1, . . . , 𝑡𝑎𝑟 ) in 𝛼 by M [𝑟](𝑡1, . . . , 𝑡𝑎𝑟 ).

Solution to CHCs A solution to a CHC 𝐶 is a map M for R such that the formula
(body(𝐶) =⇒ head(𝐶))[M /R ] is valid; in this case, we say 𝐶 is satisfiable. M
is a solution to a system 𝑆 if it satisfies all the CHCs in 𝑆; in this case, we say
𝑆 is satisfiable.

Let 𝑆 be a system of CHCs induced by a program 𝑃 and a postcondition 𝜌.
If M is a solution to 𝑆, then (M [𝑝𝑟𝑒], 𝜌) forms a valid pre/postcondition for 𝑃 .

3.3 Abductive Inference

The core method used in SAA for inference is abduction. Given a formula (𝑟(𝑥⃗)∧
𝛼(𝑦⃗)) =⇒ 𝛽(𝑦⃗), where 𝑟 represents a relation, 𝛼 (hypothesis) and 𝛽 (conclusion)
are formulas without relations, and the variables in 𝑥⃗ are also present in 𝑦⃗, the
problem of abduction is to find an interpretation 𝜆𝑥1 · · ·𝜆𝑥𝑎𝑟 . 𝜓 to 𝑟 such that:

𝜓(𝑥⃗) ∧ 𝛼(𝑦⃗) ≠⇒ ⊥ and 𝜓(𝑥⃗) ∧ 𝛼(𝑦⃗) =⇒ 𝛽(𝑦⃗)

Example 2. Consider the abduction problem (𝑟(𝑥) ∧ 𝑦 = 42) =⇒ (𝑥− 𝑦 > 0).
The maximal solution for the problem is 𝑟 ↦→ 𝜆𝑥. 𝑥 > 42.

A given abduction problem can have multiple solutions. SAA seeks the max-
imal solution. There are techniques, like quantifier elimination, to find maximal
solutions [16], but they are limited to non-array theories. To overcome this, range
abduction [49] proposes a suitable array-to-integer abstraction, which SAA also
uses.

Non-linear CHCs have more than one relation in body , requiring an extension
of the abduction problem called multi-abduction. In multi-abduction, interpreta-
tions to multiple relations need to be inferred. SAA encounters non-linear CHCs
while searching for maximality proofs, which involve the guard and inductive in-
variant relations. To solve the multi-abduction problem, SAA uses the technique
from [1] after performing the array-to-integer abstraction from [49].

Example 3. The following is a multi-abduction problem: (𝑟1(𝐴, 𝑖) ∧ 𝑟2(𝐵, 𝑖) ∧
𝐶[𝑖] = 42) =⇒ (𝐴[𝑖]+𝐵[𝑖] > 𝐶[𝑖]). A maximal solution is 𝑟1 ↦→ 𝜆𝐴, 𝑖. 𝐴[𝑖] > 42
and 𝑟2 ↦→ 𝜆𝐵, 𝑖. 𝐵[𝑖] ≥ 0.
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Algorithm 1: WeakestPre(𝑆)
Input: 𝑆 – a system of non-deterministic CHCs over

R = {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . , 𝑖𝑛𝑣𝑛}
Output: ⟨{𝑤𝑒𝑎𝑘𝑒𝑠𝑡, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛},M [𝑝𝑟𝑒]⟩

1 ⟨𝑟𝑒𝑠,M ⟩ ← SAA(𝑆,∅);
2 while res do
3 ⟨𝐺,𝛤 ⟩ ← GetSplCHCs(𝑆,M );
4 ⟨𝑚𝑎𝑥,_⟩ ← SAA(𝐺,𝛤 );
5 if 𝑚𝑎𝑥 then return ⟨𝑤𝑒𝑎𝑘𝑒𝑠𝑡,M [𝑝𝑟𝑒]⟩ ;
6 ⟨res,M ⟩ ←Weaken(𝑆,M );
7 return ⟨𝑢𝑛𝑘𝑛𝑜𝑤𝑛,M [𝑝𝑟𝑒]⟩;

4 Inferring Weakest Preconditions

An overview of our weakest precondition inference algorithm is in Algorithm 1.
The algorithm takes as input a CHC system 𝑆 over {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . 𝑖𝑛𝑣𝑛}. It
first computes a solution M to 𝑆 using SAA (line 1). Though this solution gives
a precondition (as the solution will have interpretations to 𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . 𝑖𝑛𝑣𝑛),
it is not guaranteed to be the weakest. Hence, in a loop, the algorithm performs
maximality checking and weakening (lines 2 to 6). When the maximality check
succeeds, the solution is guaranteed to be the weakest (Theorem 1); hence the
algorithm returns the current precondition M [𝑝𝑟𝑒] (line 5). Otherwise, the algo-
rithm assumes the maximality check is inconclusive and tries to find a weakening
(line 6). The algorithm progresses and continues the same loop if a weakening is
found. When the weakening is inconclusive, the loop terminates, and the current
precondition is returned without a maximality guarantee (line 7).

SAA takes a CHC system, which is either a precondition inference task (𝑆),
or the encoding of maximality check (𝐺) with additional non-CHC constraints
(𝛤 ). It finds a solution M to the CHC system that also satisfies the additional
constraints.

Algorithm 1 proves the maximality of a precondition by encoding a CHC sys-
tem 𝐺 and non-CHC constraints 𝛤 , together called specialized CHCs (line 3). 𝐺
has the same set of CHCs as the input CHC system 𝑆 except the following: 1)
the relation 𝑝𝑟𝑒 is replaced by the formula ¬M [𝑝𝑟𝑒], 2) the postcondition is the
negation of the postcondition in 𝑆, and 3) new guard relations : 𝑔𝐶𝑖, . . . , 𝑔𝐶𝑗 are
added to body of CHCs: 𝐶𝑖, . . . 𝐶𝑗 corresponding to non-deterministic if condi-
tions. Thus, 𝐺 is a CHC system over the invariant relations of 𝑆 and new guard
relations. A solution to 𝐺 gives stronger if conditions and inductive invariants
for the complement pre- and postcondition. The non-CHC constraints in 𝛤 make
sure the disjunction of 𝑔𝐶𝑖, . . . , 𝑔𝐶𝑗 is ⊤; thus ensuring the interpretations for
them are not too strong.

When SAA fails to find a solution to 𝐺, Algorithm 1 calls Weaken. At a high
level, Weaken enumerates candidate preconditions obtained in a syntax-guided
way like [22] and then tries to find inductive invariants using SAA again.
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(∃𝑗. 0≤𝑗<𝑁 ∧ (𝐴[𝑗] ̸=𝐵[𝑗] ∨ 𝐵[𝑗] ̸=𝐶[𝑗])) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣1(𝑖, 𝑁,𝐴,𝐵,𝐶)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ 𝑔𝐶2(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ 𝑖<𝑁 ∧ 𝐶
′
= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧ 𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴,𝐵,𝐶

′
)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶)∧𝑔𝐶3(𝑖,𝑁,𝐴,𝐵,𝐶)∧𝑖<𝑁∧𝐴
′
= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖])∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴

′
,𝐵,𝐶)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∃𝑗. 0≤𝑗<𝑁∧𝐴[𝑗] ̸=𝐵[𝑗]) =⇒ ⊥
⊤ =⇒ 𝑔𝐶2(𝑖,𝑁,𝐴,𝐵,𝐶) ∨ 𝑔𝐶3(𝑖,𝑁,𝐴,𝐵,𝐶)

Fig. 4: Specialized CHCs for the CHCs from Example 1.

Example 4. Fig. 4 shows the specialized CHCs for the CHC system from Fig. 3
and the precondition from Example 1 (viz. ∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧
𝐵[𝑗] = 𝐶[𝑗])). This system has following changes: 1) In the first CHC, the
relation 𝑝𝑟𝑒 is replaced by the complement of the precondition, 2) The next
two CHCs have 𝑔𝐶2, 𝑔𝐶3 in body , 3) In the fourth CHC, the postcondition is
complemented, and 4) The last constraint is a non-CHC constraint that makes
sure 𝑔𝐶2 ∨ 𝑔𝐶3 is ⊤.

Theorem 1 (Soundness of Algorithm 18). For a system 𝑆, if Algorithm 1
terminates with “𝑤𝑒𝑎𝑘𝑒𝑠𝑡” then M [𝑝𝑟𝑒] is the weakest precondition for 𝑆.

5 Structural Array Abduction

Structural Array Abduction (SAA) solves CHCs. In Algorithm 1, SAA solves
program-induced CHCs to identify preconditions, specialized CHCs for maximal-
ity proofs, and CHCs with candidate weakened preconditions to find invariants.

5.1 Algorithm Description

SAA aims to find interpretations to 𝑝𝑟𝑒 and 𝑖𝑛𝑣 of the following form:⋀︁(︀
∀𝑥.R(𝑥,V ) =⇒ Q(𝑥,V ,A)

)︀
or

⋁︁(︀
∃𝑥.R(𝑥,V ) ∧ Q(𝑥,V ,A)

)︀
(4)

Similar to the postcondition, here, R is a linear predicate over 𝑥 and V that
represents a range of indices of array(s), and Q is a linear predicate over V and
elements of array(s) in A, the latter being accessed only through linear index
expressions in 𝑥. Such a form is sufficient to represent inductive invariants for a
large class of array programs, as observed in existing works [22,28,30,31,38].

A relatively complete guessing algorithm involves enumerating all candidate
solutions in the form of 4 and then checking them using an SMT solver. How-
ever, given the large number of candidate solutions and the inherent challenge
that quantified formulas with arrays pose for SMT solvers, SAA brings a novel
improvement. It narrows down the search by guessing likely candidate solutions
using a logical method, as presented in Algorithm 2.
8 Proofs are in [48].
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Algorithm 2: SAA (𝑆, 𝛤 )
Input: 𝑆 – set of CHCs over R ∪ R𝑔, 𝛤 – non-CHC constraints over R𝑔

Output: ({⊤,⊥} – result, M – solution to 𝑆 that also satisfies 𝛤 )

1 while ∃𝐶 ∈ 𝑆.CheckSAT(¬
(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M /R ]) do

2 if 𝐶 is not fact then
3 M ← ArrayAbduce(𝑆,𝐶,M );
4 else
5 M ←WeakenFact(𝑆,M );
6 if M is unchanged then M ← NextCandidate() ;
7 𝑟𝑒𝑠← CheckSAT(𝛤 );
8 return(𝑟𝑒𝑠,M );

Algorithm 2 begins with an initial candidate solution, e.g., ∀𝑟 ∈ R .M [𝑟] = ⊤
in our implementation, and checks whether it is a solution to all CHCs. If not, the
algorithm attempts to make the candidate a solution to the failed CHC mainly
through abduction-based strengthening (line 3), or heuristics-based weakening
if the CHC is a fact (line 5). If neither strengthening nor weakening results
in a change to the candidate, the algorithm proceeds to the next candidate in
the fixed form. When a candidate is found to be a solution, it is checked for
additional constraints in 𝛤 .

The abduction-based strengthening method is presented in Algorithm 3. It
seeks new interpretations for the relations in body of a CHC, which can be 𝑝𝑟𝑒,
𝑖𝑛𝑣, or 𝑔𝐶 , that imply the interpretation for the relation in head of the CHC.
This constitutes the abduction problem, as defined in Sec 3.3. However, existing
abduction solvers cannot be used directly as they do not support quantified
formulas with arrays. Hence, in Algorithm 3, Q and R from the fixed form ( 4)
are determined separately and then combined into a quantified formula.

To find Q, the algorithm constructs an abduction query based on the rules
provided in Table 1. In the abduction query, the hypothesis (𝛼) is the assignment
formula present in the constraint of the CHC (line 1), and the conclusion (𝛽) is
derived from the table based on the type of the CHC (line 2). Since the query
contains array terms, which are not supported by existing abduction solvers, they
are replaced by integer terms in a manner similar to the approach presented in
[49] (e.g., 𝐴[𝑖] is replaced by a new integer variable 𝑎𝑖). Subsequently, the query
is solved using an integer abduction solver to obtain a maximal solution (line 4).
When the CHC has a guard relation 𝑔𝐶 in its body , an additional abduction query
is constructed to find interpretations for the other guard relations 𝑔𝐶′ (line 6).
Finally, integer terms in the solutions of the abduction queries are mapped back
to corresponding array terms (line 7).

SAA uses the concept of range formulas as described in [22] to determine
R. In the context of linear array programs, these range formulas can take the
form of 0 ≤ j < u, 0 ≤ j < i , and i ≤ j < u9, where 𝑗 is a free variable and 𝑢

9 In [22], these are referred as Range, progressRange, and regressRange, respectively.
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Algorithm 3: ArrayAbduce(𝑆,𝐶,M )
Input: 𝑆 – set of CHCs over R ∪ R𝑔, 𝐶 – CHC in 𝑆 where rels(body(𝐶)) is

{𝑟}, or {𝑟, 𝑔𝐶}, where 𝑟 is either 𝑝𝑟𝑒 or some 𝑖𝑛𝑣 from R , and
𝑔𝐶 . . . 𝑔𝐶′ are from R𝑔 for the same control-flow condition, M –
mapping from R ∪ R𝑔 to predicates

Output: M ′ – updated M with new interpretations to 𝑟 and 𝑔𝐶 . . . 𝑔𝐶′

1 𝛼← assign(𝐶) ∧M [𝑔𝐶 ];
2 𝛽 ← Get𝛽(𝐶,M ) // cf. Tab 1;
3 Transform 𝛼 and 𝛽 to integer formulas;
4 ⟨Q,Q𝑔𝐶

⟩ ← AbdSolver(𝑟(𝑥⃗𝑟) ∧ 𝑔𝐶(𝑥⃗𝑔𝐶 ) ∧ 𝛼 =⇒ 𝛽);
5 if Q𝑔𝐶

̸= ⊥ then
6 ⟨Q𝑔𝐶′ ̸=𝐶

⟩ ← AbdSolver(
⋁︀

𝐶′ ̸=𝐶

𝑔𝐶′(𝑥⃗𝑔𝐶′ ) =⇒ ¬Q𝑔𝐶
);

7 Transform Q, Q𝑔𝐶
. . .Q𝑔𝐶′ to array formulas;

8 ⟨R, 𝑗⟩ ← GetR(𝑆,𝐶) // cf. Tab 1;
9 if universally quantified then M [𝑟]← M [𝑟] ∧ ∀𝑗.R =⇒ Q ;

10 else M [𝑟]← M [𝑟] ∨ ∃𝑗.R ∧Q ;
11 M [𝑔𝐶 ]← Q𝑔𝐶

. . .M [𝑔𝐶′ ]← Q𝑔𝐶′ ;
12 return M ;

is the upper bound of the loop (cf. Fig. 2). From these formulas, a suitable R is
selected based on the type of the CHC in Table 1.

The resulting R and Q are appropriately combined into a quantified formula
and conjoined (or disjoined in the case of existential quantification) with the
existing interpretation (lines 9 and 10). The guard relations are updated by the
non-quantified formulas Q𝑔𝐶

, . . . ,Q𝑔𝐶′ .
Table 1 provides a set of rules for determining R and 𝛽 for all types of CHCs

that Algorithm 3 may encounter. These CHCs include: 1) precond : the initial-
ization CHC with 𝑝𝑟𝑒 in body , 2) query : the CHC with postcondition, 3) intra:
CHCs representing potentially non-deterministic updates within a loop, and 4)
inter : CHCs occurring between two loops. For example, when a CHC 𝐶 falls into
the precond category, 𝛽 is the Q present in M [rels(head(𝐶))] corresponding to
the range i ≤ j < u, and formula R is 0 ≤ j < u. We give an intuition to these
rules while illustrating our technique in the following section.

When a fact CHC is unsatisfiable, SAA uses heuristic-based weakening for
the head relation (Algorithm 2, line 5). This method generates a candidate set of
Q formulas using the syntax of body of the CHC and combines it with i ≤ j < u
to get a quantified formula.

Theorem 2. If the input CHC system 𝑆 has a solution in the form of 4, then
Algorithm 2 will find it provided all the SMT checks return a result.

5.2 Distinguishing SAA With Closely-Related Techniques

SAA uses the concept of range formulas from [22] and array to integer abduction
technique from range abduction [49]. Nevertheless, there are notable differences:
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𝑝𝑟𝑒 ∈ rels(body(𝐶))

𝛽 ← Q(i ≤ j < u,M [rels(head(𝐶))]) R← 0 ≤ j < u
precond

rels(head(𝐶)) = ∅
𝛽 ← Q(0 ≤ j < u, 𝜌) R← 0 ≤ j < i

query

rels(head(𝐶)) ⊆ rels(body(𝐶))

𝛽 ← Q(0 ≤ j < i ,M [rels(head(𝐶))]) R← i ≤ j < u
intra

rels(head(𝐶)) ∩ rels(body(𝐶)) = ∅ and rels(head(𝐶)) ̸= ∅
𝛽 ← Q(i ≤ j < u,M [rels(head(𝐶))]) R← 0 ≤ j < i

inter

Table 1: Rules for all CHC types to construct formulas R and Q in Algorithm 3.

1) While [22] relies on preconditions to infer invariants, SAA is capable of
inferring invariants even in the absence of preconditions. 2) Both [22] and range
abduction can’t handle nonlinear CHCs resulting from guarded relations, which
SAA support by using multi-abduction. 3) In our experiments, we observed that
range abduction tends to generate stronger preconditions compared to SAA.
4) Range abduction performs two abduction queries for each CHC, whereas
SAA requires only one. 5) Range abduction uses the Houdini algorithm [23] for
weakening, which is not necessary for SAA.

5.3 Illustration

Consider the CHCs from Fig. 3. For these CHCs, the range formulas are: 0≤𝑗<
𝑁 , 0≤𝑗<𝑖, and 𝑖≤𝑗<𝑁 , as the upper bound 𝑢 of the loop is 𝑁 .

The algorithm begins with M [𝑝𝑟𝑒] = M [𝑖𝑛𝑣1] = ⊤. But, the query CHC
(C4) is unsatisfiable as M [𝑖𝑛𝑣1] is too weak. So, SAA tries to find a strength-
ening for 𝑖𝑛𝑣1 using abduction. Recall that the postcondition (𝜌) is ∀𝑗. 0≤ 𝑗 <
𝑁 =⇒ 𝐴[𝑗] = 𝐵[𝑗]. While 𝜌 itself can make this CHC satisfiable, it might be
too strong for other CHCs with 𝑖𝑛𝑣1. Therefore, the rule for query in the table
suggests to consider R as 0 ≤ 𝑗 < 𝑖, and 𝛽 as 𝐴[𝑗] = 𝐵[𝑗] from 𝜌, corresponding
to the range 0 ≤ 𝑗 < 𝑁 . The abduction query (𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ ⊤) =⇒
𝐴[𝑗] = 𝐵[𝑗] yields Q as 𝐴[𝑗] = 𝐵[𝑗]. Combining R and Q results in:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗]

Next, an intra CHC 𝐶2 is unsatisfiable. This is due to the absence of restric-
tions on the values of 𝐴 and 𝐵 in the range 𝑖 ≤ 𝑗 < 𝑁 within 𝑖𝑛𝑣1. One way to
fix this is to find a Q in the range 𝑖 ≤ 𝑗 < 𝑁 that implies 𝐴[𝑗] = 𝐵[𝑗]. This ap-
proach aligns with the rule for intra CHC, where 𝛽 is 𝐴[𝑗] = 𝐵[𝑗] corresponding
to the range 0 ≤ 𝑗 < 𝑖 of M [𝑖𝑛𝑣1], and R is 𝑖 ≤ 𝑗 < 𝑁 . Further, assign(𝐶2) is
𝐶 ′[𝑗] = 𝑗 (primed variables denote updated variables), resulting in the following
abduction query: (𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ 𝐶 ′[𝑗] = 𝑗) =⇒ 𝐴[𝑗] = 𝐵[𝑗]. This query
yields 𝐴[𝑗] = 𝐵[𝑗] as Q. Combining R and Q into a quantified formula, and
conjoining it with M [𝑖𝑛𝑣1] gives:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧

∀𝑗. (𝑖 ≤ 𝑗 < 𝑁) =⇒ 𝐴[𝑗] = 𝐵[𝑗]
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In the third iteration, another intra CHC 𝐶3 fails the check. Here, assign(𝐶3)
is 𝐴′[𝑗] = 𝐵[𝑗] and 𝛽 is 𝐴′[𝑗] = 𝐵[𝑗], resulting in the following abduction query:
(𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ 𝐴′[𝑗] = 𝐶[𝑗]) =⇒ 𝐴′[𝑗] = 𝐵[𝑗]. This query yields 𝐵[𝑗] =
𝐶[𝑗] as Q. Combining this with R, which is 𝑖 ≤ 𝑗 < 𝑁 , results in:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧

∀𝑗. (𝑖 ≤ 𝑗 < 𝑁) =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗])

Subsequently, a precond CHC, 𝐶1, fails the check. These CHCs have an
initialization of the counter variable (i.e., 𝑖 = 0), rendering the formula within
the range 0 ≤ 𝑗 < 𝑖 trivially ⊤. Therefore, the rule for precond CHC selects 𝛽
from the other range, i.e., 𝛽 is 𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗] from the range 𝑖 ≤ 𝑗 < 𝑁
of M [𝑖𝑛𝑣1]. This leads to the following abduction query: (𝑝𝑟𝑒(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧
⊤) =⇒ (𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗]), which yields Q as 𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗].
Further, R is 0 ≤ 𝑗 < 𝑁 , resulting in:

M [𝑝𝑟𝑒]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑁) =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗]).

The algorithm terminates as the candidate M is a solution.

6 Specialized Maximality Checking

While SAA effectively infers precondition, it may not always be the weakest.
To check for maximality, a specialized CHC system (𝐺 and 𝛤 ) is generated in
Algorithm 1 using the method GetSplCHCs, which is described in this section.
This section also covers the method to weaken a precondition.

6.1 GetSplCHCs method

The GetSplCHCs method constructs a new CHC system 𝐺 by iterating over
all the CHCs in the input system 𝑆 while performing the following:

1. Replacing 𝑝𝑟𝑒 with ¬M [𝑝𝑟𝑒] and the postcondition 𝜌 with ¬𝜌, and
2. For each relation 𝑖𝑛𝑣𝑖, if there exist two intra CHCs 𝐶 and 𝐶 ′ with guard(𝐶)∧

guard(𝐶 ′) ≠⇒ ⊥, then for each intra CHC 𝐶 of 𝑖𝑛𝑣𝑖, a new relation
𝑔𝐶(args(body(𝐶)) is added to body(𝐶).

Example 5. The CHC system from Fig. 3, has intra CHCs 𝐶2 and 𝐶3 with
guard(𝐶2) = guard(𝐶3) = 𝑖 < 𝑁 , so guard(𝐶)∧ guard(𝐶 ′) ≠⇒ ⊥. As a result,
two new relations 𝑔𝐶2 and 𝑔𝐶3 are introduced into body(𝐶2) and body(𝐶3),
leading to the CHC system shown in Fig. 4. For this system, SAA finds: 𝑔𝐶2 ↦→
𝐴[𝑖] ̸= 𝐵[𝑖] and 𝑔𝐶3 ↦→ 𝐴[𝑖] = 𝐵[𝑖], along with an invariant for 𝑖𝑛𝑣1.

A solution to 𝐺 can result in interpretations for guard relations that block
all executions (e.g., ⊥). To prevent this, the following non-CHC constraint (𝛤 )
will be introduced:
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Algorithm 4: Weaken(𝑆,M )
Input: 𝑆 – set of CHCs over R , M – mapping for R
Output: ⟨{⊤,⊥},M ⟩ – ⊤ indicates M has a weakened 𝑝𝑟𝑒 and ⊥ indicates

failure

1 𝛥← CandidatePrecond(𝑆,M );
2 for 𝛿 ∈ 𝛥 do
3 𝑆′ ← replace 𝑝𝑟𝑒 by 𝛿 in 𝑆;
4 (res,M ′)← SAA(𝑆′,∅);
5 if res then return (⊤,M ′) where M ′[𝑝𝑟𝑒] = 𝛿 ;
6 return ⟨⊥,M ⟩;

⊤ =⇒
⋁︀

1≤𝑗≤𝑚

(︀
𝑔𝐶𝑗 (args(body(𝐶𝑗)) ∧ guard(𝐶𝑗)

)︀
Theorem 3. If a CHC system 𝑆 induced by a program 𝑃 has a solution M ,
and its specialized CHCs (𝐺 and 𝛤 ) are satisfied, then M [𝑝𝑟𝑒] is the weakest
precondition of 𝑃 .

6.2 Weakening Procedure

When SAA is inconclusive on the specialized CHCs, the precondition M [𝑝𝑟𝑒]
is weakened, as shown Algorithm 4.The algorithm begins by computing a set
of potential candidate preconditions 𝛥. We assume that this set is computed in
a syntax-guided fashion like in [22] (can also be provided by the user). Only
candidate preconditions that are strictly weaker than M [𝑝𝑟𝑒] are taken into
consideration. For each such candidate 𝛿 ∈ 𝛥, SAA is invoked to infer inductive
invariants by passing the CHC system 𝑆 with the relation 𝑝𝑟𝑒 replaced by 𝛿.
This process continues till success or all the candidates have been exhausted.
Whenever the method succeeds, the precondition is weaker by construction.

7 Evaluation

Implementation Our algorithm is implemented in a tool called MaxPrANQ on
top of the HornSpec framework [50]. The tool takes as input a set of CHCs with
preconditions and invariants represented as uninterpreted relations. It returns
the weakest precondition, along with proof of validity (viz. inductive invariants)
and maximality (viz. specialized CHCs and its solution). It uses Z3 [14] to solve
SMT queries. Quantifier elimination is done by model-based projection [3, 20].

Research Questions We evaluate MaxPrANQ on the following questions:

RQ1 Can MaxPrANQ find weakest preconditions for a range of benchmarks?
RQ2 How well does MaxPrANQ perform in comparison with state-of-the-art

techniques?
RQ3 How challenging is it for existing techniques to infer invariants for our

benchmarks even with the preconditions being given?
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Benchmarks and Configuration We use 66 precondition inference tasks with
universal quantified postconditions. While we initially intended to use the pre-
condition inference benchmarks from [53], none of them had quantified post-
conditions. Hence, we derived our benchmarks from existing verification tasks
of [22] that had quantified postconditions. Specifically, we considered multiple
loop benchmarks from [22], where the first loop is an initialization loop, and the
other loops perform various array update operations. We then removed the first
loop so that a non-trivial quantified precondition would need to be synthesized.
Overall, we consider 26 multiple loop benchmarks from [22]. Since a majority
of the 26 benchmarks were deterministic, we added non-deterministic guards to
the update operations and introduced a similar update operation in the other
branch . To further test our tool, we adapted these benchmarks to 40 more
benchmarks by using common array update operations and postconditions. We
performed the experiments on a Ubuntu machine with 2.5 GHz processor and
16 GB memory. A timeout of 200 seconds was given to all the tools.

Tools for comparison We compare our tool against PreQSyn [49], an abduction-
based precondition inference tool, and P-Gen [53], a predicate abstraction based
tool. Additionally, we compare against the CHC solvers that can generate quanti-
fied inductive invariants: FreqHorn [22], a SyGuS based tool, and Spacer [30]
(Z3 v4.8.10), an extension of PDR for quantified formulas.

RQ1 MaxPrANQ found and automatically proved 59/66 weakest precondi-
tions. For the remaining 7, it found the weakest precondition, but couldn’t prove
it automatically due to failure in finding a solution to the specialized CHCs.
Overall, it solved 125 CHC systems – 66 universal and 59 existential quantifi-
cation. The time taken was less than 30 seconds on all except one benchmark.
Details are in Fig 5 and [48].

RQ2 PreQSyn found and automatically proved 2/66 weakest preconditions.
On the remaining 64, it found preconditions for 56 but could not prove; for
8, it did not find a precondition. To compare with our maximality checking,
we provided the 56 preconditions generated by PreQSyn to our SMC module.
Out of 56, SMC proved 52 to be the weakest, where 7 were weakened before
proving. We observe that PreQSyn’s maximality checking is unsuitable for
non-deterministic programs, and its preconditions are not always the weakest.

P-Gen did not find a precondition for any of the 66 benchmarks. Its output
was not a precondition on 41, and on the rest it was stuck in the refinement
loop. Our experiments conclude that P-Gen’s inference engine is unable to gen-
eralize and find quantified preconditions when postconditions are quantified.
Hence, our technique complements P-Gen’s capability of finding preconditions
for quantifier-free postconditions.

RQ3 The reader may wonder whether the benchmarks themselves are easier
to solve, given the limited availability of weakest precondition tools for non-
deterministic programs. We experimentally demonstrate that this is not the case
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by passing the CHCs with preconditions generated by MaxPrANQ to state-of-
the-art CHC solvers for arrays: FreqHorn and Spacer. Out of 66 benchmarks,
FreqHorn found inductive invariants for 56 and Spacer found 34. In compari-
son, MaxPrANQ found preconditions and invariants for all the 66 benchmarks.
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Fig. 5: The bar graphs show the # weakest proven and valid preconditions inferred by
the tools. The scatter plots show the time taken by the tools for invariant inference.

8 Related Work

The problem of precondition inference has received considerable attention [2,11,
12,24,46,47,52,53]. In particular, for programs with arrays, closely related works
include [12,49,53]. The work in [12] infers preconditions by abstract interpreta-
tion, [53] by CEGAR based predicate abstraction, and [49] by range abduction.
Compared to [12], we don’t need a predefined abstract domain. We work in a
framework similar to [53] and [49], but they target deterministic programs. Their
maximality check assumes that from a precondition only one execution reaches
the postcondition, which is not the case for non-deterministic programs. The
novelty of our SAA algorithm, compared to range abduction [49], is in how it
constructs abduction queries using a set of rules based on the structure of the
CHCs, and support for non-linear CHCs. Range abduction, on the other hand,
creates two abduction queries and employs the Houdini technique [23], which
can generate stronger preconditions, as observed in our experiments.

Precondition inference is closely related to the problem of invariant inference.
For inferring universally quantified invariants, several techniques have been pro-
posed. The main methods include predicate abstraction [32, 41], abstract inter-
pretation [28], PDR [30], and syntax guided synthesis [22]. These techniques are
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crucially dependent on given preconditions, which are missing in our setting.
Without preconditions, they generate trivial solution like ⊥.

The validity of a precondition can be established by techniques that do not
explicitly generate inductive invariants. Such techniques include array smash-
ing [5], converting to array-free nonlinear CHCs [44], over-approximating un-
known bound of loops to a smaller known bound [40], accelerating entire tran-
sition relations [6], using CHC transformation [4, 34], induction based tech-
niques [7–9] and trace logic based techniques [25]. These techniques are useful
for assertion checking and not directly for precondition inference, however.

CHCs are widely used to symbolically encode different synthesis tasks [18,
21,50,51,55]. However, none of these works handle CHCs with arrays. SAA uses
abduction that has been used for programs without arrays to infer invariants [16,
17], preconditions [15,26], and specifications [1, 50,54].

The concept of SMC resembles angelic verification [13,42], but differs in how
it is solved. Angelic verification neither guarantees maximality nor computes
inductive invariants, and uses user supplied specifications. A recent work [27]
proposes a reduction of maximality checking to finding termination proofs for
CHC systems with integers. In comparison, SMC reduces to finding inductive
invariants and guards by exploiting the fact that the programs are terminating.

9 Limitations and Future Work

Usage of Theorem Prover: The preconditions and invariants guessed by SAA
in our evaluation are in a fragment of the theory of one-dimensional arrays and
linear integer arithmetic that state-of-the-art SMT solvers support reasonably
well. However, in a general case, SAA might generate a challenging precondi-
tion/invariant for our SMT solver. In such instances, MaxPrANQ logs a failure
and switches to another precondition/invariant. To handle such cases, we plan to
complement our SMT solver by an automated theorem prover like Vampire [39].
This can also help us to handle preconditions with alternating quantification.

Non-linear CHC Support: The multi-abduction done in SAA can help in
handling non-linear CHCs, which can encode programs with recursive functions.
For this, the range analysis in SAA has to be tweaked to determine a loop
counter-like variable for recursive functions, which we target for future work.

Termination and Compositional Verification: The assumption of terminat-
ing programs helps in proving maximality by inferring invariants and stronger
guards. Relaxing this assumption would require a more complex maximality
checking. Finally, an immediate future work is to integrate this technique in an
existing verifier to scale it compositionally.
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