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Abstract. Parametric Timed Games (PTG) are an extension of the
model of Timed Automata. They allow for the verification and synthe-
sis of real-time systems, reactive to their environment and depending on
adjustable parameters. Given a PTG and a reachability objective, we
synthesize the values of the parameters such that the game is winning
for the controller. We adapt and implement the On-The-Fly algorithm
for parameter synthesis for PTG. Several pruning heuristics are intro-
duced, to improve termination and speed of the algorithm. We evaluate
the feasibility of parameter synthesis for PTG on two large case stud-
ies. Finally, we investigate the correctness guarantee of the algorithm:
though the problem is undecidable, our semi-algorithm produces all cor-
rect parameter valuations “in the limit”.

1 Introduction

The seminal model of Timed Automata (TA) [1] equips finite automata with
real-valued clocks, to verify real-time reactive systems. Numerous extensions of
TA have been proposed. Timed Games (TG) [18] distinguish controllable and
uncontrollable actions, to study the interaction of a controller with its envi-
ronment (e.g. the plant, an attacker, or a system-under-test). Here, we focus
on reachability objectives, which require a strategy for the controller to sched-
ule controllable actions such that — no matter which and when uncontrollable
actions are executed by the environment — a desirable state is reached.

Since precise timing constraints are not always known, one might replace con-
crete values by symbolic parameters, to study a whole family of timed systems.
This leads to the model of Parametric Timed Automata (PTA) [2]. The problem
is to find (some or all) values for the parameters such that the system satisfies a
desired property. Most problems on PTA are undecidable [3], in particular the
reachability problem. Several decidable fragments are known, e.g. by restricting
the number of clocks or the positions of the parameters, as in L/U PTA [14].
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This paper tackles the parameter synthesis problem for Parametric Timed
Games (PTG) [15] with reachability objectives. We provide the first implemen-
tation of a semi-algorithm for PTG parameter synthesis. It operates on-the-fly,
i.e. it starts solving the game while the symbolic state space is being gener-
ated. To avoid the generation of the full, potentially infinite, state space, we also
implement several state space reductions. These improve the termination and
efficiency of parameter synthesis. In particular, we lift inclusion/subsumption
from TA to PTG, generalize coverage pruning and losing state propagation from
TG to PTG, and we port cumulative pruning from PTA to PTG.

Interestingly, unlike the situation in PTA [5] and TG [10], the algorithm for
PTG is not guaranteed to terminate, even if the symbolic state space is finite.
But we claim that if the algorithm terminates, it produces the precise constraints
under which there exists a winning strategy. If the algorithm does not terminate,
the stronger guarantee holds, that (in the limit) it produces all valid parameter
valuations, provided the waiting list is handled fairly.

The implementation allows us to study the feasibility of parameter synthesis
for larger case studies in PTG. In particular, we synthesize parameters for the
correctness of a game version of the Bounded Retransmission Protocol [13] and a
parametric version of the Production Cell [19,10]. We measure the effectiveness
of the individual pruning heuristics on these case studies. It appears that the
state space reduction techniques are essential for feasible parameter synthesis.

Related Work. For TG, Maler et al. [18] proposed a strategy synthesis algo-
rithm based on classical reachability games, handling the uncountable set of
clock values using symbolic regions. Cassez et al. [10] improved the efficiency of
TG strategy synthesis by an on-the-fly algorithm, and working with symbolic
zones, represented by DBMs as implemented in UPPAAL Tiga [8]. Previous work
on PTG initially focused on decidable subcases, like the case for bounded inte-
gers [16] and the fragment of L/U PTG [15,17]. The latter two papers also provide
semi-algorithms for general PTG, either based on backward fixed points [17], or
an on-the-fly algorithm [15], directly extending the work on Timed Games [10].
That paper leaves an implementation of the algorithm (and hence an evaluation
on larger case studies) as future work. Our implementation extends the infras-
tructure of IMITATOR [4], which so far could only handle PTA. The symbolic
data structure is based on Parma’s convex Polyhedra Library [7].

Contributions. (1) We provide the first implementation of a parameter synthe-
sis algorithm for PTG (Sec. 4), and integrate this on-the-fly algorithm in the
IMITATOR toolset [4] (Sec. 6).

(2) We devise and implement several pruning heuristics to speed up param-
eter synthesis (Sec. 5).

(3) We evaluate the feasibility of parameter synthesis for PTG on two large
case studies, and measure the effect of the various pruning techniques (Sec. 6).

(4) We carefully introduce the model (Sec. 2) and solution principles (Sec. 3),
pointing out several semantic subtleties, and find that the semi-algorithm yields
all valid parameters in the limit (Sec. 4).
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2 Model of Parametric Timed Games

A Parametric Timed Game (PTQG) is a structure based on timed automata (TA).
Similarly to classical automata, it is composed of locations connected by discrete
transitions. Moreover, it is equipped with clocks. Locations are associated a
condition on clock valuations (invariant) that must be satisfied while staying
in the location. An action in a timed automaton is either to take a discrete
transition or to let some time pass. Discrete transitions have a guard that must be
satisfied in order to take the transition. In a parametric setting, these conditions
use linear terms over clocks and parameters. Parameters hold an unspecified
value, and remain constant during a run. A discrete transition also has a subset
of clocks which are reset when the transition is taken.

In a two-player timed game, discrete transitions are partitioned between con-
trollable transitions and uncontrollable environment transitions.

Definition 1 (PTG). A Parametric Timed Game is a tuple of the form G =
(L, X, P, Act, T,, Ty, Lo, Inv) such that
— L, X, P, Act are sets of locations, clocks, parameters, transition labels.
— T =T.UT, is the set of transitions in L x G(X,P) x Act x P(X) x L,
partitioned into sets T, of controllable and T, of uncontrollable transitions
of the form ((,g,a,Y,0"); {, I' are source and target locations; g € G(X, P)
is the guard (see Def. 4); a is the label; Y is the set of clocks to reset.
— (o 18 the initial location.
— Inv : L — G(X, P) associates an invariant with each location.

Example 1. Fig. 1 shows the example of a coffee machine. The controller repre-
sents the coffee machine and the environment represents the user. Uncontrollable
transitions are depicted as dashed arcs. From idle, the user can . It re-
sets clock y that will measure the time since the demand. The machine is then
preparing_coffee. Action serve_coffee can happen after (parameter featuring
the time to pour the coffee) and no later than after the request. While the

coffee is being prepared, the user may . Adding sugar does not inter-
rupt the pouring of the coffee and lasts p.. The coffee cannot be served while
-7 - preparing_coffee RS N
L N
idle O *********** N s @ coffee_served
v:=0 /
!
y< I x=
x:=0 !

adding_sugar

Fig. 1. Parametric Timed Game of the coffee machine.
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sugar is being added. A situation that may arise is that sugar is being added to
the coffee when the time limit p, is met, making it impossible for the coffee to
be served on time. To avoid this issue, is disabled after waiting

Our goal is to synthesize the constraints on parameters p, to p, for the coffee
to be timely served. Hence, the initial location is set to preparing coffee, with
both clocks at 0. One possible solution to the problem is p; +po < piAps <

2.1 Semantics of Parametric Timed Games

A state of a PTG consists of a location and a valuation of clocks and parameters.

Definition 2 (valuations). A clock valuation is a function vx € R, assign-

ing a positive real value to each clock. A parameter valuation vp € Q§0 assigns
a positive rational value to each parameter. A valuation of the game G is a pair
v = (vx,vp). The set of all valuations of the game is denoted V = RZ; x QL.

A guard is a constraint that can be satisfied by some valuations of the game.

Definition 3 (linear terms). A linear term over P is a term defined by the
following grammar: plt = k | kp | plt + plt where k € Q and p € P.

Definition 4 (guards). The set of guards G(X, P) is the set of formulas
defined inductively by the following grammar:

¢ =T oA |x~plt|plt' ~plt
where x € X, ~ € {<;<;=;>;>} and plt, plt’ are linear terms over P.
We now introduce the notion of zone which will be used to solve a PTG.

Definition 5 (zones). The set of parametric zones Z(X, P) is the set of
formulas defined inductively by the following grammar:

6= TN x~plt

where x,y € X, ~ € {<;<;=;>;>} and plt and plt’ are linear terms over P.

x —y ~plt | plt' ~ plt ,

Function vp is naturally extended to linear terms on parameters, by replacing
each parameter in the term with its valuation. With v = ¢, we denote that
valuation v = (vx,vp) satisfies a guard or a zone ¢, which is defined in the
expected manner. Zones, guards and invariants can also be seen as a convex
set in the space of valuations of the game by considering those valuations that
satisfy the condition.

Transitions modify clock valuations by letting time pass or resetting clocks.

Definition 6 (time delays). Let v = (vx,vp) be a valuation of the game and
6 >0 a delay.

—VxeX:(vx +9)(x) =vx(x)+6

—v+0=(vx +9,vp)



198 M. B. Dahlsen-Jensen et al.

Definition 7 (clock resets). Let v = (vx,vp) be a valuation of the game and
Y C X. vx[Y :=0] is the valuation obtained by resetting the clocks in'Y, i.e.:
- VxeY vx[V :=0](x) =0 and Vx € X \ Y : vx[Y := 0](x) = vx(x)
— oY :=0] = (vx[Y :=0],vp)

We can now define the semantics of a Parametric Timed Game.

Definition 8 (state). A state of a PTG is a pair ({,v) where { is a location
and v a valuation of the game satisfying its invariant: v |= Inv(l). The state
space is then S= {({,v) e LxV |v EInv(()} = J {{} x Inv(() .

(€L

From a state in this state space, timed and discrete transitions can happen.

Definition 9 (timed and discrete transitions). Let ¢ € R> be a time delay.
A timed transition is a relation —° € S x S s.t. Y(/,v), (¢',v") € St (1,v) —°
(V") iff 0 =0 and v' = v +4.

Let t = ({,g,2,Y,0") € T be a transition. A discrete transition is a relation
=t eSS s.t. V(l,v),((',0") €St (Lv) =t (U0 iff vE g and v = v[Y :=0].

Let 0 be the clock valuation where all clocks have value 0. The set of possible
initial states of the PTG is & = {(/, (0,vp)) | vp € Q% : (0,vp) = Inv(ly)}.

Definition 10 (run). A run of the PTG G is a finite or infinite sequence of
states sgs152... s.t. 59 € & and Vi € N, s9; —° 89541 = s2542. R(G)denotes
the set of runs, and R(G)(s) the set of those starting from state s.

A run alternates between (potentially null) delays and discrete transitions,
avoiding runs that let only time pass. However, there might still be Zeno runs
where infinitely many discrete transitions are taken in a finite amount of time.
When there is no ambiguity, we omit G in the notations.

Example 2. Let us consider again the coffee machine in Fig. 1. Assume the pa-
rameter valuations are: vp(p,) =5, vp(p2) = 2, vp(ps) = 5 and vp(p) = 6. Let
vx = (vx(x),vx(v)). We get the sequence: (preparing coffee, ((0,0),vp)) —4
(preparing_coffee, ((4,4),vp)) — (adding sugar, ((0,4),vp)) —2
(adding_sugar, ((2,6),vp)) — (preparing_coffee, ((2,6),vp)) .

Definition 11 (history). A history is a finite prefic of a run. The set of his-
tories of game G is denoted H(G), and those starting in state s by H(G)(s).

The notion of coverage allows for capturing all states that can occur up to
some time, without a discrete transition.

Definition 12 (coverage). Let s,s' € S and § > 0 such that s —° s'. The
coverage of the timed transition is the set of intermediate states traversed:
Cover(s =° ') ={s" €S|30:0<8 <6 A s—= 5"} .

The coverage of state s is the set of states obtained from s with timed tran-
sitions only: Cover(s) ={s' €S |36 >0s —=°s'} .

The coverage of a run r = S9S1S2... iS the union of the coverage of its
timed transitions. When finite, it includes the coverage of its last state ls(r) :

Cover(r) = (U Cover(sg; —° 52i+1)) U Cover(ls(r)) .
€N
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Definition 13 (reachability objective and winning runs). Let R C L be a
reachability objective. The set of winning runs Q2geqcn(R) is the subset of runs
that visit R: Qreacn(R) ={r e R |30 € R,Fv € V : ({,v) € Cover(r)} .

Ezample 3. In the coffee machine, the objective is to reach from the initial loca-
tion prepare_coffee the location coffee _served. The reachability objective is thus
R = {coffee_served}, and the set of winning runs is 2geqcn ({coffee_served}) .

2.2 Strategies in Parametric Timed Games

We introduce a definition of a strategy that deviates from [10], where at each
moment, a player decides to either wait, or take a discrete transition. So their
strategy returns values in T'U {wait}. The problem with their strategy is that it
is not always clear what should happen: for instance, given a delay &, a history
h = 5o =% s; and a strategy o, where o(h) = wait for 0 < § <1 and o(h) =t
for § > 1, it is not clear when transition ¢ happens: there is no minimal § > 1.
Although this works formally, it is less clear what the allowed behaviour of the
winning player is precisely. For that reason, in our definition of strategy, players
must decide in advance which delay they will take. This makes the definition
more constructive, clarifying what move the winning player will actually take
(i.e. perform an action or decide to wait for some particular time) and in the
end simplifies the definition of what is winning.

Furthermore, following [10], the definition of strategy is asymmetric for con-
troller and environment: If both wish to do a discrete transition, we provide
priority to the environment; this corresponds to the safest situation from a soft-
ware controller point of view. Another subtle asymmetry is that the controller
cannot assume that the environment will take some uncontrollable transition,
even when waiting any longer would violate the location invariant. While this
is in line with the formal definition of strategy in TG [10], experiments with
UPPAAL Tiga [8] reveal that in that tool, an uncontrollable discrete transition
is actually forced when reaching the boundary of violating an invariant.

Definition 14 (strategy). A controller strategy o. (resp. environment strat-
egy o.) models decision-making. It is a function, depending on a history, decid-
ing either to wait some amount of time (possibly infinite) or to take a discrete
transition: 0. : H — R>OUTC, oc:H = RSGUT, s.t. Vhe H and o € {0¢, 06},
L Ifo(h) = (Lg.nY.0) €
then Is(h) = (£,v) such that vEg and oY :=0] E Inv(!)

If (o(h) = 5 € Rx>g) and the transition —° is available in ls(h)

then o(h—=%s)eT

where h —° s denotes the history obtained by adding the delay § at the end of h.

A strategy can return a discrete transition if its guard is satisfied and the
resulting state satisfies the destination invariant (1). To respect the alternation
between timed and discrete transitions, we require that a strategy which returns
a finite delay § > 0 on a history returns a discrete transition after the delay (if
the run did not stop by violating an invariant)(2).



200 M. B. Dahlsen-Jensen et al.

A controller strategy o. and an environment strategy o. can be combined
into a global strategy o (s, ..) as follows. If both players try to take a transition,
we consider that the controller cannot guarantee his transition will be taken, thus
the environment chooses. If one player decides on a discrete transition while the
other decides to wait, the discrete transition is taken. If both players decide to
wait, we wait for the smallest delay.

Definition 15 (global strategy). Let o. be a controller strategy and o. an
environment strategy. For all h € H, the global strategy o (s, o) s defined by:

- O'e(h) =t,el, = 0.(0'070'6)(h) =1y

- Jc(h) =t. €T A Ue(h) =0>20 = U(ac,ae)(h) =t

—0c(h) =0>0AN0c(h) =06 >0 = 0(5,,6.)(h) = min(0,0")

Ezxample 4. Let us look at possible strategies in location preparing coffee of the
running example. The machine can choose while the user can select
. If both want to do an action, the strategy chooses , thus
giving priority to the user. If only one of them wants to take an action and the
other waits, the action is taken. Hence, the machine can do if the
user is waiting. This is the expected behavior of a coffee machine and its user.

The global strategy induces a unique run, introducing null delays between
two discrete transitions to guarantee the alternation with timed transitions.

Definition 16 (run induced by a global strategy). Let an initial state sg
and a global strateqy o be given. The run induced by strategy o is the unique
Toe = S0S1S2 ... obtained by:
— If i is even, the next transition is a timed transition :
o Ifo({sg,...,5;)) =t €T adelay0 is added: s; —° 5,11 —' s;12
o Ifo({so,...,8:)) returns a delay § > 0 and there is a unique state s such
that s; —° s (invariant not violated), then s;1 = s.
o Otherwise, the invariant is violated and the run ends.
— If i is odd, the next transition is a discrete transition. By the properties of
a strategy o({so,...,s;)) returns a transition t such that there is a unique
state s where s; —t s. Then, s;11 = s.

Definition 17 (winning strategy). A controller strategy o, is said to be win-
ning from a state s € S w.r.t. a reachability objective R if and only if all runs
starting in s and adhering to o. are winning w.r.t. the objective. State s is said
to be winning if there exists a winning strategy from it.

Run r is adhering to a controller strategy o, if there exists an environment
strategy o., such thatr =ry, .

The question we now aim to answer is: Given a Parametric Timed Game G
and a Reachability Objective R, is there a winning controller strategy from the
initial state? The question depends on the value of the parameters. So, more
precisely, we are interested in the question: For which parameter valuations is
the corresponding initial state winning?
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3 Solving the Game

In this section, we introduce necessary elements for solving a game. We first
describe the symbolic state space on which the algorithm operates. Then we
characterize the set of winning states as a nested fixed point.

3.1 Parametric Zone Graph

Since clock valuations assign real numbers, the timed transition system of a
PTG has an uncountable number of states. Zones (cf. Def. 5) are a practical
tool to regroup these states in more manageable sets. Recall that zones (like
guards and invariants) are conjunctions of simple constraints on valuations, and
can be viewed as sets of valuations. Our algorithms operate on symbolic states
& = (!, Z), which consist of a location and a zone. We require that Z C Inv(/).
For instance, the set of initial states of a PTG & (cf. Def. 10) can be described
by the symbolic state ({0, Inv(o) A A\, cx x = 0).

In the notation, we identify a symbolic state (¢, Z) with its semantics as the
set of concrete states: {(I,v) | v F Z} C S. We will write £.£ to denote the
(common) location of a symbolic state . Zones are closed under the following
operations, which we extend to symbolic states:

— Intersection between sets

— Temporal successors: ¢ = {s' €S| Is € £, 5 =9 '}

— Temporal predecessors: €< = {s' € S| Is € £,5" —° s}

Discrete successors: Succ(t,§) = {s' €S |Is €, s = s}
Discrete predecessors: Pred(t,£) ={s' € S| 3s € ¢, s’ =t s}

— Projection onto parameters: £lp = {vp | Jvx, ¥, (¢, (vx,vp)) € &}

These operations can be implemented by standard operations on convex polyhe-
dra [7]. We also use union, set complement and set difference, which can return
non-convex shapes. These are represented as unions of zones, still denoting sets
of concrete states. All previous operations are extended to unions of zones.
Our algorithms operate on the Parametric Zone Graph (PZG). The PZG of a
PTG is not guaranteed to be finite, so our algorithms are in fact semi-algorithms.

Definition 18 (Parametric Zone Graph). Given a PTA of the form G =
(L, X, P, Act, T,., T\, Lo, Inv), its Parametric Zone Graph is defined as the tuple
(5,50/,:%,:#;), where 5 C 25; V€, ¢ € £ we have € =L ¢ if € = Succ(t, &)
and t € T.; and € =t ¢ if € = Suce(t,€)” and t € T,.

3.2 Alternating Fixed Point Property

The algorithm works by alternating between exploring new states and back-
propagating winning-state information from discovered winning states, starting
from target states. The exploration relies on a fixed point property of the set
Reach(&p), defined as all symbolic states in some run from an initial state in &p:
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Lemma 1 (from [15]). Reach(&y) is the smallest set S containing 50/ such
that ¥t € T, Succ(t,S)” C S.

Similarly, the set of winning states W(R) of the PTG with reachability ob-
jective R can be computed as a fixed point. Intuitively, we can win the game if
we can take a temporal transition (without being diverted by an uncontrollable
action leading us to a non-winning state) to a state that is either directly win-
ning, or has a controllable transition to a winning state. We formalize this with
three operators on sets of states. Let W be the set of winning states of the game.

We call WinningMoves(S) = {s € S| 3t € T,,s' € S, s =" s’} the set of
states that have access to a controllable action leading to .S. When applied to W,
it gives us the states with a controllable action to reach W, from which we have
a winning strategy. WinningMoves(S) is increasing in S. It can be computed
using the previous operators as WinningMoves(S) = U, cp, Pred(t.,S) .

We call Uncontrollable(S) = {s € S| 3t € T,,s' ¢ S, s =t s'} the set of
states where an uncontrollable action leads to a state outside S. When applied to
W, it gives us the states where the environment can derail us into a state outside
W, from which we have no winning strategy. Uncontrollable(S) is decreasing
in S. It can be computed from the operators from the previous subsection by
Uncontrollable(S) = U, g, Pred(t.,S\S) .

Finally, we call SafePred(S1,S2) the set of states that can reach S; by a tem-
poral transition while avoiding S,. Since it aims to be applied to reach winning
moves while avoiding uncontrollable actions, if a state is in the intersection of
S1 and Ss, priority is given to the environment and the state is not considered
safe. SafePred(Si,Ss) = {s €S| 3s’ € Sy,5 = s’ A Cover(s —° s') N Sy = P}.
SafePred (S, S2) is increasing in S; and decreasing in Ss.

Thanks to the work of Cassez et al. [10], SafePred can be computed between
zones using the precedent operations and extended to union of zones:

Lemma 2 (from [10] for TG, [17] for PTG).
SafePred(S1,S2) = (S \S5 ) U ((S1 N (S5 ))\Sa)<

SafePred(|_JS1i,| JS2;) = (S5, N[)SafePred(Si), S2;)
i J i J

We can now formulate the fixed point property followed by W.

Lemma 3. W(R) is the smallest set S containing R such that
SafePred (S U WinningMoves(S), Uncontrollable(S)) C S .

Proof. See [12, App. B]

4 Algorithm and Correctness

We can now introduce the algorithm for parameter synthesis for PTG. Alg. 1
explores the state space and creates a map of symbolic states connected by



OTF Algorithm for Reachability in PTG 203

Algorithm 1 For PTG G = (L, X, P, Act, T.., T, lo, Inv) and reachability ob-
jective R, returns the set of all parameter valuations that win the game.

1: Ezplored, WaitingUpdate, WaitingExplore < 0,0, {50/} > Symbolic state sets
2: Win = {} > Map from symbolic states to unions of zones
3: Depends := {} > Map from symbolic states to sets of symbolic states
4: WinningParam := False

5: function SOLVEPTG

6: while ~TERMINATE() do

7 Choose either EXPLORE() or UPDATE()

8: return WinningParam

9: procedure EXPLORE
10: & + extract( WaitingExplore)
11: for ¢ transition from ¢ : do
12: ¢ := Succ(t, &)
13: Depends[€'] < Depends[€'] U {¢}
14: if ¢ not in Explored then
15: WaitingEzplore < WaitingExplore U {£'}
16: if £.4 € R then
17: Win[€] + &
18: WaitingUpdate < WaitingUpdate U Depends|[€]

19: WaitingUpdate < WaitingUpdate U {£}
20: Ezxplored < Explored U {£}

21: procedure UPDATE
22: & + extract( Waiting Update)
23: Uncontrollable + |J Pred(t, & \ Win[¢'])
{(¢" v)|e=1 ¢}
24: WinningMoves < |J Pred(t, Win[¢'])
{(¢)|g=Le'}
25: NewWin := SafePred(Win[¢] U WinningMoves, Uncontrollable) N &
26: if NewWin € Win[¢] then
27: WaitingUpdate < WaitingUpdate U Depends|[€]
28: Win[€] < Win[€] U NewWin
29: WinningParam <+ (Win[€] N &)dp

30: function TERMINATE
31: return WaitingEzplore = O A WaitingUpdate = ()
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a discrete transition through the operation Succ(ts, )”". Simultaneously, any
newly found winning states in a symbolic state &, starting from the target lo-
cations, are propagated by marking the predecessors of £ for an update. To
update a symbolic state £, we compute SafePred( Win U WinningMoves( Win),
Uncontrollable( Win)) within £ and add the result to Win[¢]. If new winning
states are found, we mark & predecessors for an update.

The algorithm is non-deterministic: it does not describe how we choose be-
tween explore and update, and which symbolic state in the waiting lists to explore
or update. These choices are left abstract on purpose, as optimization opportu-
nities. A fair strategy would be to join WaitingFExplore and WaitingUpdate in
a single queue, whose head determines which operation to apply next. In our
implementation, we prioritized back-propagation from WaitingUpdate.

4.1 Invariants and Correctness

Recall that the algorithm works on a zone graph. We are looking for subsets of
winning states within symbolic states. The same state may appear in different
symbolic states and may not have the same status in each instance. Therefore,
the set Wiemp, the winning states found by the algorithm so far, and W, the
set of all winning states, also take into account the symbolic state considered.
Formally, W consists of all pairs (£, s) where s is a winning state contained in
the symbolic state &, and Wiemp = |J {&} x Winlg].
£€ Explored

Theorem 1. These invariants hold during the execution of the algorithm:

1. 50/ € Ezxplored.

2. V& € Explored,t € T,¢', if € =t &', then ¢ € WaitingExplore U Explored

3. V& € Explored, if £1 € R, {€} X £ C Wiemp-

4- Wtemp g w.

5. V¢ € Explored, we have either £ € WaitingUpdate or SafePred(Wiemp U

WinningMoves(Wiemp), Uncontrollable(Wiemp)) N ({£} X &) € Wiemp-

Proof. See [12, App. B].

Invariant 4 guarantees that even if the algorithm times out the winning states
found by the algorithm are indeed winning. Furthermore, if the algorithm ter-
minates and the waiting lists are empty, we can apply the fixed point properties
of Reach(&) and W, and Wiep, corresponds exactly to W over the explored
symbolic states that cover Reach(&p).

Theorem 2. Alg. 1 is correct (when it terminates).
Proof. See [12, App. B].

Example 5. For the coffee machine, the PZG is only finite after applying inclu-
sion subsumption (Sec. 5). However, even on this finite PZG, Alg. 1 does not
terminate, but keeps reporting solutions at Line 29. In fact, it produces increas-
ingly more general solutions, including np> > p; (for any n > 0). If we bound
these parameters in the initial specification, for instance >1Ap <5, our
algorithm synthesizes the extra constraints p; +p. < ps Aps < py, as expected.
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Theorem 3. Provided the waiting lists are treated fairly, any explored winning
state s discovered as winning by the algorithm eventually.

Proof (sketch). For a classical TG, we can represent the underlying TA as a finite
classical automaton (e.g. the region graph). On this automaton, we can define a
(finite) turn-based reachability game equivalent to the initial TG. Hence, we can
use the notion of discrete distance to target in a reachability game, corresponding
to the smallest number of discrete transitions in which a controller can ensure
to reach a target. This is equivalent to solving a Min-Cost Reachability game as
studied in [9] where delay transitions have weight 0 and discrete transitions have
weight 1. The game graph is finite and the weights non-negative, so the discrete
distance to target of a winning state is positive and finite.

While the same construction is not necessarily finite in a PTG, any state of
a PTG is a state (¢, (vp,vx)) of the TG, where all parametric linear terms in
guards have been replaced by their valuation through vp. Therefore, this result
extends to winning states of a PTG.

Let s be an explored winning state of the PTG and n its distance to target.
We only need to explore states reachable in n discrete transitions from s. By
invariant 2 from Thm. 1, when all states reachable in k discrete transitions are
explored, all states reachable in k& + 1 discrete transitions are either already
explored or in the exploration waiting list. Assuming fairness of the waiting
lists, at some time they have all been explored. Therefore, at some time, all
states reachable from s in n discrete steps have been explored.

When all states reachable in n discrete steps have been explored, all target
states within are discovered. Those are states with distance to target 0. For
0 < k < n, when all winning states reachable in less than n—k discrete transitions
from s and with a distance to target less than k are discovered, then all winning
states reachable in less than n — (k 4+ 1) discrete transitions from s and with a
distance to target less than k+ 1 are discoverable by update. Using the invariant
(5) of Thm. 1, those states are either already discovered as winning or they are
in the update waiting list. Assuming fairness of the waiting lists, at some time
they have all been discovered winning. Applying this recurrence until & = n, we
get that there is a time where s is discovered winning.

We can guarantee: (1) All winning parameter valuations reported in Line 29
are correct, since the algorithm satisfies the invariants of Thm. 1. (2) Every
winning parameter valuation will eventually be reported, provided the waiting
lists are treated fairly. Hence, Alg. 1 is “sound and complete in the limit” [5].

5 Optimizations

We present four optimizations to the algorithm presented in Section 4. All of
them adapt optimizations from previous works, three of them (coverage pruning,
inclusion checking and losing state propagation) from Cassez et al. [10] and one
of them (cumulative pruning) from André et al. [5]. We start by updating the
exploration procedure to include the optimizations, as shown in Alg. 2.
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Algorithm 2 Adding optimizations to the explore procedure
1: procedure EXPLORE
2: & + extract( WaitingExplore)

3: if &lp C WinningParam then > Cumulative Pruning
4: return
5: if €. € R then
6: Win[€] « &
7: Waiting Update + WaitingUpdate U Depends|[€]
8: if controller_deadlock(§) N Win[€] # € then > Losing state propagation
9: WaitingUpdate ;, <+ WaitingUpdate ; U Depends[¢]
10: if Winl¢] =& V controller_deadlock(€) then > Coverage Pruning
11: return
12: for t transition from ¢ : do
13: ¢ := Succ(t, &)
14: if 3¢” € Explored : ¢ C ¢” then > Inclusion check
15: Depends[¢''] + Depends[¢”] U {&}
16: else
17: Depends[€'] < Depends|[€'] U {&}
18: WaitingEzplore < WaitingExplore U {£'}
19: Waiting Update,, < WaitingUpdate,, U {{}
20: WaitingUpdate ;, + WaitingUpdate; U {£} > Losing state propagation

21: Ezxplored < Ezplored U {£}

5.1 Pruning

First, we present some pruning techniques, as these only require slight modifi-
cations in the exploration procedure. To this end, we introduce the notion of a
controller deadlock state. A state is a controller deadlock state if it has no con-
trollable transitions. We define it as the following predicate on symbolic states:

controller_deadlock(¢) = Vt, &' : if ¢ =' ¢ then t € T,
Now, we introduce the two kinds of pruning:

— Cumulative Pruning: If the projected parameters of a zone in a new
symbolic state are included in the current set of winning parameters, we
can safely prune the successors of this state. Indeed, if the only possible
parameters in the zone already are determined to be winning, no new winning
parameter can be found by exploring the successors of this state. This check
can be seen in Lines 3 and 4 of Alg. 2.

— Coverage Pruning: If a symbolic state is either winning or a controllable
deadlock state, its successors can safely be pruned. Indeed, if the symbolic
state is winning, we gain nothing from exploring further. Dually, a controller
deadlock state can never become winning, since the controller has no action
to do. This check can be seen in Lines 10 and 11 of Alg. 2.
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5.2 Inclusion checking

Originally, checking if a symbolic state £ has been explored already is done by
checking if ¢’ € Ezplored. The optimization by inclusion checking instead checks
if 3¢” € Explored : & C &”. If this is the case, the newly discovered symbolic
state can safely be discarded since its superset has already been explored. Of
course, the new dependency that £ depends on £ still must be added. This
optimization is done in the exploration procedure (Lines 14 to 18 of Alg. 2).

5.3 Losing state propagation

Losing state propagation is inspired by Cassez et al. [10] for TG. The idea is that
instead of only discovering and propagating winning states, we will now also do
the same for losing states, starting from controller deadlock states. A map Lose
will maintain the currently known losing states for a given symbolic state. Thus,
each symbolic state & can now be partitioned into three:

— Winning: Win[¢],
— Losing: Losel¢]
— Unknown: &\ (Win[¢] U Losel€]).

To initially mark a state as losing, we use the controller deadlock predicate again
while also making sure that the state is not winning, as shown in Alg. 2, Lines 8
and 9. On Lines 19 and 20, we partition the WaitingUpdate list into two lists
for propagating winning and losing states respectively.

While pruning and inclusion checking only required the modification of the
exploration procedure, the propagation of losing states influences all of the pro-
cedures of the original algorithm. We go through them now.

Update procedure. We create a new procedure for updating losing states, which
can be seen in Alg. 3. As the dual of the original update procedure, it is almost
identical. Instead of Uncontrollable, we compute Controllable, i.e. the union of
zones where the controller can lead to a non-losing state. Similarly, instead of
WinningMoves, we compute LosingMoves which is the set of states where the
environment can lead to a losing state. We then compute NewLosing which
is the set of states where the environment can lead us to a losing state while
avoiding states where only controllable transitions are enabled (Controllable \
LosingMoves). Finally, we update Lose[{] and WaitingUpdate; accordingly.

Terminate function. The terminate function is modified to allow for early ter-
mination if all possible information is already known, i.e. fo/ \ (Win[g(J/ Ju
Lose[fo/‘ 1) = 0. Indeed, if for all valuations we have determined that we either
win or lose, the algorithm can safely terminate. This is shown in Alg. 4.

The final algorithm is then modified to include the new procedures and data
structures introduced. As a result, in the main loop we now have to choose
between three waiting lists instead of two: WaitingEzplore, WaitingUpdatey,
and WaitingUpdate,.
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Algorithm 3 Adding new update procedure for losing state propagation

procedure UPDATE_L
& + extract( WaitingUpdate )
Controllable + |J Pred(t, &'\ Lose[¢'])
{(¢")g=>te'}
LosingMoves < |J  Pred(t, Losel¢'])
{(¢" t)|e=1 ¢}
NewLosing := SafePred(Losel£] U LosingMoves, Controllable \ LosingMoves) N &
if Lose[¢] C NewLosing then
WaitingUpdate;, < WaitingUpdate; U Depends[€]; Lose[§] - NewLosing

Algorithm 4 New TERMINATE with early termination if initial zone is covered

function TERMINATE
isEmpty <+ WaitingEzplore = 0 A WaitingUpdate = ()
initial ZoneCovered « (€§) C (Winlég' ] U Lose[¢5'])
return isEmpty V initial ZoneCovered

6 Implementation and Experimental Evaluation

To evaluate the termination behavior and efficiency of the semi-algorithm and
the optimizations, we implement them in the IMITATOR toolset and measure the
performance on some realistic case studies.

6.1 Implementation

We have implemented our proposed algorithm and optimizations in the IMITA-
TOR model checker [4], which features a wide repertoire of synthesis algorithms
for PTA. We have extended its input language to PTG and added our PTG
parameter synthesis algorithm, including the optimizations described in Sec. 5.
The source code (in OCaml) is available on github?.

In IMITATOR, the user specifies a model consisting of parameters, clocks and
a network of parametric timed automata. The user can analyse the model using
an analysis or synthesis query. IMITATOR selects the corresponding algorithm to
use, after which it outputs the result of the query.

Our extension enables the user to specify edges in a PTA as (un)controllable,
effectively turning it into a PTG. Along with this we add a new property Win and
a corresponding algorithm A1goPTG. In order to synthesize parameters for a PTG
one must use property := #synth Win(state_predicate), using a predicate
to define which states are winning. Usually, this predicate is simply accepting,
meaning that any state in an accepting location of the PTG is winning.

In Alg. 1 we left the choice between exploration and back-propagation to be
non-deterministic. In the implementation back-propagation is prioritized over
exploration whenever possible (i.e. when WaitingUpdate is non-empty). This
seems to yield the fastest results in practice.

3 https://github.com/imitator-model-checker/imitator, branch: develop
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6.2 Experiment Design

We selected two large case studies, one PTA and one TG, and extended them to
PTGs by adding (un)controllable actions, and clock parameters, respectively. An
artifact containing instructions to run all the experiments is available online [11].

Production Cell. This case study [19] has two conveyor belts (1 / 2), a robot
with two arms (A / B) and a press. Plates arrive at conveyor belt 1 and are
taken to the press by robot arm A, where they are processed for some time.
Robot arm B takes processed plates and removes them through conveyor belt 2.

We model systems with 1-4 plates in IMITATOR. In the goal location, every
plate made it safely to conveyor belt 2. If two plates collide before they are
picked up by arm A, the game is lost immediately. We assume that the rotation
speed of the robot arm, the speed of the conveyor belt and the time to press are
known constants. The aim is to synthesize a parameter MINWAIT, the minimum
time interval between two plates arriving at the conveyor belt. The maximum
time interval between two plates is fixed by an additional constant MAXWAIT.

Our PTG model is largely inspired by the TG model of Cassez et al. [10].
Besides adding parameters, we check for collisions between plates rather than
defining a maximum waiting time frame. For 2—4 plates, we create a winning
and a losing configuration of the constants; for 1 plate a collision is not possible.
The losing configurations are created by setting MAXWAIT too small, which will
deadlock the system for any value of MINWAIT.

The IMITATOR model for the 1-plate configuration can be seen in [12, App.
C].

Bounded Retransmission Protocol. The BRP provides reliable communication
over an unreliable channel. We create a PTG from a PTA model of the BRP [6],
in turn based on a TA model [13], by making message loss uncontrollable.

In the BRP, a sender sends message frames to a receiver, tagged with an
alternating bit, through a lossy channel. The receiver acknowledges all frames.
If the sender does not receive an acknowledgement in time, it retransmits the
message at most k times, after which the sender gives up. The goal location
indicates the successful transmission of the message, or the abort by the sender.

Experimental Setup. All experiments were run on a single core of a computer
with an Intel Core i5-10400F CPU @ 2.90GHz with 16GB of RAM running
Ubuntu 20.04.6 LTS. For each implementation (basic, inclusion checking, cumu-
lative pruning, coverage pruning, losing state propagation) we run the experi-
ments 5 times and report the average time and state space size. A timeout of 2
hours is used.

6.3 Experimental Results

We present the results of the experiments in Table 1. We do not include the
runs without optimizations as they all timed out. This indicates that inclusion
checking is the most vital optimization and should always be enabled.
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Table 1. Experimental results for different optimizations: inclusion check (inc), cumu-
lative pruning (cm), coverage pruning (cv), losing state propagation (Ip). Running time
in seconds (s) and number of symbolic states (size). Green indicates the best results.

inc inc+cm inc+cm+-cv||inc+cm—+cv+lp
Time| Size [[Time[ Size [|Time| Size [[Time| Size
jﬁ Production Cell
[
1 |Win||0.06s| 86 |/0.06s| 86 [{0.06s| 86 ||/0.08s 86
9 Win||7.19s| 746 ||7.56s| 746 ||6.60s| 701 ||7.22s 701
Lose||1.43s| 439 || 1.44s| 439 ||2.03s| 517 ||2.17s 517
3 Win||36.7s| 1900 || 37.3s| 1900 || 24.0s | 1539 |[34.2s| 1539
Lose||13.4s| 1372 || 13.9s| 1372 ||9.53s | 1251 || 14.2s| 1251
4 Win |14903s|10755(|14750s|10755({2394s| 9350 |[3522s| 9350
Lose||34.8s| 2605 || 35.6s | 2605 || 21.6s| 2372 || 153s | 2372
Bounded Retransmission Protocol
[34.35] 1042 [[32.2s] 1042 [| 7.1s | 612 [[ 7.5s [ 612

Indicated in green cells are the best results for each row. We can clearly
see that coverage pruning has the biggest effect of all the optimizations in our
experiments. Losing state propagation seems to not provide much benefit in these
experiments, as the overhead overshadows any positive effect it might have had.

7 Conclusion

We provide the first implementation of parameter synthesis for Parametric Timed
Games with reachability objectives, based on an on-the-fly algorithm [10,16]. It
appears that without additional pruning heuristics, the algorithm cannot han-
dle the case studies, Bounded Retransmission Protocol and Production Cell.
Inclusion subsumption is a minimal requirement to achieve any result.

Contrary to previous algorithms for PTA [5] and TG [10], the parameter
synthesis algorithm does not terminate, even if the parametric zone graph is
finite. But we found that in the limit all parameter values will be enumerated.

We added additional pruning techniques (coverage pruning and cumulative
pruning) to further reduce the search space. These techniques generally increased
the speed. We also experimented with propagating losing states, but in our exam-
ples the overhead of checking and propagating losing states was not compensated
by any pruning potential. Future work could study under which circumstances
the propagation of losing states could be beneficial, but also strengthen the de-
tection of (partially) losing states. Another venue for future work is to study
other objectives, like safety games or liveness conditions.

Acknowledgment. We thank Etienne André for his help with integrating our
algorithm in the IMITATOR tool set.
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