R, N \ /
\:O,{?P[%:l A \:‘\ via_4 Check for

PROTON: PRObes for Terminatio ONot
(Competition Contribution)

Ravindra Metta2(=)®*, Hrishikesh Karmarkar'®, Kumar Madhukar3®,
R. Venkatesh!, and Supratik Chakraborty*

1 TCS Research, Tata Consultancy Services, Pune, India
{r.metta,hrishi.karmarkar,r.venky}@tcs.com
2 School of CIT, Technical University of Munich, Munich, Germany

3 Dept. of Computer Science and Engineering, IIT Delhi, New Delhi, India
madhukar@cse.iitd.ac.in

4 Dept. of Computer Science and Engineering, IIT Bombay, Bombay, India
supratik@cse.iitb.ac.in

Abstract. PROTON is a tool to check whether a given C program has
a non-terminating behaviour or not. It is built around the C Bounded
Model Checker (CBMC). CBMC cannot prove non-termination directly,
as all non-terminating runs are unbounded. PROTON annotates the
loops in a given program with assertions that check for a recurrent pro-
gram state. Violation of such an assertion shows the existence of a re-
current state and thereby proves non-termination. PROTON also trans-
forms the violating trace returned by CBMC into a non-termination
witness for the program.

1 Introduction

Given a program P for which we want to check termination under all inputs,
a checker should either provide a witness for non-termination of P, or give a correct
verdict that P always terminates. For termination checking, PROTON reuses
the high confidence, but unsound, technique used in VeriFuzz 1.4 [9]. For proving
non-termination, PROTON implements a novel sound technique that attempts
to discover recurrent states inside loops. A recurrent state (RS) is a program
state at the head of a loop such that (1) RS entails the loop guard; (2) RS is
reachable from an initial state in some valid program execution and (3) RS is
reachable from itself after the loop body is executed. This notion of an RS is a
strengthening of the recurrent set definition proposed in [5].

Consider the example program P in Listing 1.1, adapted from the SV-COMP
benchmark WhileSingle.c. This program does not terminate for any nondet
value < 3. For example, if nondet value on Line 1 is 3, then the if-condition
on Line 3 gets evaluated to false and hence the value of i remains unchanged,
causing the loop to run infinitely. PROTON works in three main phases, as
described below.

* Jury member

© The Author(s) 2024
B. Finkbeiner and L. Kovacs (Eds.): TACAS 2024, LNCS 14572, pp. 393-398, 2024.
https://doi.org/10.1007/978-3-031-57256-2_27


http://orcid.org/0000-0001-7368-2389
http://orcid.org/0000-0002-9132-8356
http://orcid.org/0000-0001-5686-9758
http://orcid.org/0000-0002-7527-7675
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_27&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

PROTON: PRObes for Termination Or Not (Competition Contribution) 394

Listing 1.1. Program P Listing 1.2. Program P’
+ i = __VERIFIER nondet_int(); . i = __VERIFIER_nondet_int();
> while (i < 10) { > bool pStored0 = false;
if (1 1= 3) { s while (i < 10) {
! i = i+1; . bool flag = __VERIFIER_nondet_bool();
5 } 5 static int oi; if (pStored0)
6} ¢ {__CPROVER_assert (! (oi==1i),"RSF");}

7 if(flag){oi=i;pStoredO=true;}
s {if (4 '=3) {1i=i+1; }}}

Phase 1 - Program Instrumentation: PROTON instruments each loop in
P with a __CPROVER_assert to check for a recurrent state. This is illustrated
in Listing 1.2. PROTON first parses P using various Clang/LLVM APIs and
collects the set of all program variables visible in the scope of each loop Ly in
P. Following this, PROTON instruments each Ly as follows:-

— A boolean variable pStoredk is introduced just before the loop-guard of Ly,
and initialized to false (Line 2 of Listing 1.2).

— Another boolean variable flag is added inside the loop, immediately past the
guard condition, which is nondeterministically initialized (Line 3).

— For each variable 4, visible in the scope of Ly, a corresponding static variable
oi; i.e. i prefixed with o is added, which tracks the “old” value of 7 (Line 5).

— An assertion that the “old” state of P never repeats in any later iteration of
Ly, (lines 5 and 6) is added.

— If flag is true, then the program state is stored as shown on line 7, and
pStoredk is set to true.

— Lastly, PROTON emits the loop body as is, but enclosed in braces (Line 8).

The above instrumentation ensures that the assertion gets checked (due to
the if-condition on Line 5), in every iteration after the one in which the state
is stored, as pStoredk is set to true after this if-statement. So, in the very first
iteration in which the program state is stored, the assertion is not invoked.
This encoding allows a bounded model checker like CBMC [3,4] to check if the
program state stored during a non-deterministically chosen iteration of L recurs
during any subsequent iteration of L, subject to the loop iteration bound used
for checking.

Phase 2 - Bounded Model Checking for recurrent states: After in-
strumenting P, PROTON iteratively invokes CBMC for different unwind bounds
until a pre-configured max unwind bound (empirically chosen to be 1000, for SV-
COMP 2024) for a pre-configured time limit (set to 2 minutes for SV-COMP
2024). If the recurrent state assertion ever gets violated, it proves the presence of
a recurrent state and hence non-termination. When this happens, CBMC gen-
erates a corresponding counterexample trace. During Phase 1 described above,
PROTON does additional instrumentation (not shown in Listing 1.2 for want of
space) to help generate a corresponding non-termination witness in the graphml



395 R. Metta et al.

format. If the recurrent state assertion does not get violated until the max bound
or if it times out, then PROTON moves to Phase 3, described below.

Phase 3 - Value-Bounded Termination Check In this phase, entered
only if PROTON could not find a non-termination witness in Phase 2, PROTON
invokes the termination check of VeriFuzz 1.4 [9], which is reimplemented in
PROTON, for a pre-configured time limit (set to 2 minutes for SV-COMP 2024).

2 Software Architecture

P Pb P,
Bracer Instrumenter —>
NO

YES

Iterative RSA YES Generate
» ?

Check CBMC NT? Witness Report NT
NO

VeriFuzz 1.4
Termination
Check

UNKNOWN or
ERROR

Fig. 1. PROTON architecture

Currently PROTON checks only termination and non-termination of pro-
grams. Figure 1 shows the tool flow of PROTON. Given an input program P,
PROTON first invokes Bracer, which simply adds curly braces around all loop
bodies in P to produce P,. PROTON then invokes Instrumenter on Py, which
instruments P, as described in Phase 1, to produce P;. Sometimes, due to in-
ternal errors, the Instrumenter may not be able to instrument the program. So,
PROTON then checks if P; has at least one Recurrent State Assertion (RSA).
If so, it performs the non-termination check as described in Phase 2 above and
generates a corresponding witness if it detects non-termination.

If P; does not contain any RSA, or if this non-termination check is unsuccess-
ful, PROTON then invokes confidence based termination check on P, mentioned
in Phase 3 above. If this termination check concludes that P terminates, PRO-
TON reports P to be terminating. Else, PROTON reports either UNKNOWN
(when both checks failed) or ERROR (if there is any internal error).

PROTON is built using CBMC v5.95.0 [3] with Z3 4.12.2 [10] and Glucose
Syrup [1] as the backend SMT and SAT solvers respectively. The Bracer and
Instrumenter were implemented in C++ using the clang-14 and llvm-14 libraries.
The tool flow is implemented in a bash shell script.



PROTON: PRObes for Termination Or Not (Competition Contribution) 396
3 Strengths and Weaknesses

Here we present our analysis of strengths and weaknesses of PROTON’s non-
termination check, as that is the main novelty of PROTON.

Strengths: Of the 818 Non-termination tasks in SV-COMP 2024 [2], PROTON
correctly solved 627, out of which 501 witnesses could be successfully validated.
There are 18 tasks, all from systemc directory, such as token_ring.10.cil-1.c
and transmitter.08.cil.c, for which PROTON was the only tool in the com-
petition that could identify them as non-terminating. These programs have sev-
eral function calls and while loops, with around 1000 lines of code. However,
none of the corresponding witnesses generated by PROTON could be validated.
Further, the total time taken by PROTON for the 818 tasks is 37000 seconds,
which is well below other top tools such as ULTIMATE Automizer [6] (correct
solved: 548, confirmed: 537, time 100000 seconds) and 2LS [8] (correctly solved:
685, confirmed: 484, time: 52000 seconds). This shows that PROTON’s approach
of checking for recurrent sets at shallow loop unwinding depths is both effective
and efficient.

Weaknesses: As mentioned above in Phase 2 - Bounded Model Checking for
recurrent states, PROTON checks for a recurrent state only up to an unwind
to 1000 in SV-COMP 2024. Therefore, it cannot handle cases where recurrent-
states occur beyond this unwind bound, such as in cohencul-both-nt.c, where
the first recurrent state occurs after 232 iterations. Another technical limita-
tion of our approach is the inability to handle arrays, as it requires instru-
menting each array element, which does not scale for large arrays. So, we cur-
rently ignore loops that modify arrays, and hence could not solve cases such as
Arrays02-EquivalentConstantIndices.c. Also, since our instrumenter does
not handle recursion currently, PROTON could not identify benchmarks like
RecursiveNonterminating-1.c as non-terminating. Lastly, due to a bug in the
instrumenter, one pointer was nottracked by our insutrmenter, leading to PRO-
TON incorrectly reporting the program as non-terminating.

4 Tool Configuration and Setup

PROTON comes with an MIT license, and is available at [7,11]. To install
and run the tool, follow the instructions in the file named README.txt.
The benchexec tool-info module is PROTON.py and the benchmark definition
file is PROTON.xml. A sample run command is: PROTON --graphml-witness
witness.graphml --propertyfile termination.prp --64 example.c.
PROTON opted to participate only in the Termination category in SV-COMP 2024.

5 Software Project and Contributors

PROTON is developed and maintained by the authors at IIT Delhi, TCS Re-
search, and IIT Bombay. We thank everyone who has contributed to the devel-
opment of PROTON, Clang and LLVM Infrastructure, CBMC, Glucose Syrup,
and Z3.



397 R. Metta et al.

6 Data-Availability Statement

PROTON is publicly available at https://github.com/kumarmadhukar/term.
The SV-COMP 2024 competition version of PROTON is available at Zenodo:
https://doi.org/10.5281/zenodo.10185252. For any queries, please contact the
authors.

References

1. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
pp. 1840001:1-1840001:25 (2018). https://doi.org/10.1142/50218213018400018

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

3. C Bounded Model Checker. https://github.com/diffblue/cbmec

4. Clarke E., Kroening D., L.F.: A tool for checking ansi-c programs. In: TACAS. pp.
168-176 (2004). https://doi.org/10.1007/978-3-540-24730-2_15

5. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL. pp. 147-158. ACM (2008)

6. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schiissele, F.,
Podelski, A.: ULTIMATE AUTOMIZER 2024 (competition contribution). In: Proc.
TACAS. LNCS , Springer (2024)

7. Karmarkar, H., Madhukar, K., Metta, R.: Proton sv-comp 2024 competition version
(Nov 2023). https://doi.org/10.5281/zenodo.10185252, https://doi.org/10.5281/
zenodo.10185252

8. Malik, V., Schrammel, P., Vojnar, T., Necas, F.: 2LS: Arrays and loop unwind-
ing (competition contribution). In: Proc. TACAS (2). pp. 529-534. LNCS 13994,
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8 31

9. Metta, R., Yeduru, P., Karmarkar, H., Medicherla, R.K.: Verifuzz 1.4: Checking
for (non-)termination (competition contribution). In: Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 594-599. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8 42

10. Moura, L.M.d., Bjgrner, N.: Z3: An Efficient SMT Solver. In: TACAS. pp. 337-340
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

11. Proton github. https://github.com/kumarmadhukar/term (2023), accessed: 22-
Dec-2023


https://github.com/kumarmadhukar/term
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.1142/S0218213018400018
https://github.com/diffblue/cbmc
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.1007/978-3-031-30820-8_31
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/kumarmadhukar/term

PROTON: PRObes for Termination Or Not (Competition Contribution) 398

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	PROTON: PRObes for Termination Or Not (Competition Contribution)



