
Fast Symbolic Computation of Bottom SCCs

Anna Blume Jakobsen , Rasmus Skibdahl Melanchton Jørgensen,
Jaco van de Pol , and Andreas Pavlogiannis

Aarhus University, Aarhus, Denmark
{jaco,pavlogiannis}@cs.au.dk

Abstract. The computation of bottom strongly connected components
(BSCCs) is a fundamental task in model checking, as well as in character-
izing the attractors of dynamical systems. As such, symbolic algorithms
for BSCCs have received special attention, and are based on the idea
that the computation of an SCC can be stopped early, as soon as it is
deemed to be non-bottom.

In this paper we introduce Pendant, a new symbolic algorithm for com-
puting BSCCs which runs in linear symbolic time. In contrast to the stan-
dard approach of escaping non-bottom SCCs, Pendant aims to start the
computation from nodes that are likely to belong to BSCCs, and thus is
more effective in sidestepping SCCs that are non-bottom. Moreover, we
employ a simple yet powerful deadlock-detection technique, that quickly
identifies singleton BSCCs before the main algorithm is run. Our exper-
imental evaluation on three diverse datasets of 553 models demonstrates
the efficacy of our two methods: Pendant is decisively faster than the
standard existing algorithm for BSCC computation, while deadlock de-
tection improves the performance of each algorithm significantly.

Keywords: BDDs · strongly connected components · symbolic algorithms

1 Introduction

The decomposition of a graph to its strongly connected components (SCCs) is one
of the most standard tasks in automated system verification. For example, model
checking against LTL and ω-regular properties reduces to computing cycles [30],
while fairness conditions are typically checked given an SCC decomposition of
the graph [21,34]. Of special interest are bottom/terminal SCCs (or BSCCs), i.e.,
SCCs that, once entered, cannot be escaped. BSCCs are used to speed up LTL
model checking [28], and they capture the long-run properties of Markov Chains
[4,11] and Markov Decision Processes [23,13], while they also correspond to the
attractors of dynamical systems, as in signal transduction networks [29,33].

Large-scale model-checking settings comprise huge systems that suffer from the
state-space explosion problem. These systems are usually represented compactly
by a model, e.g., by means of a programming language, a logic or a reaction net-
work, and have size that is exponentially large in its description. Nevertheless,
the system typically exhibits numerous symmetries that can be preserved when
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 110–128, 2024.
https://doi.org/10.1007/978-3-031-57256-2_6

(B)

https://orcid.org/0009-0005-7892-7230
https://orcid.org/0000-0003-4305-0625
https://orcid.org/0000-0002-8943-0722
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_6&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

the state space is represented symbolically rather than explicitly. One predomi-
nant symbolic representation is via (reduced/ordered) Binary Decision Diagrams
(BDDs) [10], which are found at the core of many classic and modern model
checkers [14,24,20,26,5]. To benefit from the symbolic representation, analysis
algorithms typically only have coarse-grained access to the graph, querying for
the successors (Post(X)) and predecessors (Pre(X)) of a set of nodes X rep-
resented by a single BDD. Each such operation counts as a symbolic step. As
symbolic steps are significantly slower than primitive operations, they serve as
the complexity measure of symbolic algorithms [9,18,12,25].

Due to the prevalence of SCC decomposition, the problem has been studied ex-
tensively in the symbolic setting, starting with the Xie-Beerel algorithm [32]
of symbolic complexity O(n2); LockStep [8] improves this bound to O(n log n),
while Skeleton [17] achieves O(n) time at the expense of Θ(n) symbolic space
(i.e., number of BDDs). The most recent step in this progression is Chain [25]
which achieves both O(n) symbolic time and O(log n) symbolic space. In prac-
tice, heuristics aim to further improve the running time [31,16,34].

Naturally, the computation of BSCCs can be achieved by using one of the afore-
mentioned algorithms to obtain an SCC decomposition, and check whether each
SCC is indeed a BSCC. In practice, however, computing an SCC can be ex-
pensive, as it typically requires traversing it multiple times. For this reason,
algorithms dedicated to BSCCs have received special attention. Although these
do not offer theoretical improvements, they attempt to minimize the number of
non-bottom SCCs computed and thus perform better in practice.

The predominant, general-purpose BSCC-decomposition algorithm is BwdFwd,
which is a modification of Xie-Beerel [32], and has O(n) complexity. Effec-
tively, this algorithm aborts the computation of an SCC S as soon as it deter-
mines that S cannot be a BSCC, and removes it from the graph, as well as any
node that can reach S. A recently-introduced preprocessing technique, called
interleaved transition-guided reduction (ITGR) [6], aims to further detect and
discard non-bottom SCCs before the main algorithm is run. ITGR is general-
purpose, and was shown to be effective in handling asynchronous Boolean Net-
work models [3,1,2]. However, as these algorithms are typically executed on huge
inputs, issues of scalability often remain. We address this challenge here.

1.1 Our contributions

The Pendant algorithm. We develop a new, linear-time algorithm for sym-
bolic BSCC computation, called Pendant, drawing inspiration from the recent
Chain algorithm [25]. In contrast to the existing BSCC paradigm based on stop-
ping the computation of SCCs that are deemed non-bottom, Pendant aims to
start such computations from SCCs that are likely to be bottom. To achieve this,
while Pendant computes an SCC, it also implicitly (at no extra cost) traverses
the quotient graph Q downwards, making future SCC computations start from
nodes that are close to the bottom of Q, and thus discover a BSCC quickly.

Fast Symbolic Computation of Bottom SCCs 111

Deadlock detection. We employ a simple yet powerful preprocessing tech-
nique, called deadlock-detection. This is based on the insights that (i) each dead-
lock (singleton SCC) is a BSCC, and (ii) all deadlocks can be computed effec-
tively in a single symbolic step.

Experimental evaluation. We implement Pendant and the deadlock-
detection preprocessing, and evaluate their performance on computing the
BSCCs of a large pool of models from three diverse datasets, namely, (i) Petri
Nets from the Model Checking Contest [22], (ii) DiVinE models from the Bench-
mark of Explicit Models [27], and (iii) Asynchronous Boolean Network mod-
els [3,1,2]. Our experiments conclude that (i) Pendant is decisively more effi-
cient than BwdFwd, (ii) deadlock-detection improves the performance of both
algorithms, and (iii) after deadlock-detection, ITGR is scarcely effective.

2 Preliminaries

In this section we present standard definitions and the BwdFwd algorithm.

2.1 Graphs, Bottom SCCs and Symbolic Representations

Graphs. We consider directed graphs G = (V,E), where V is a set of nodes and
E ⊆ V ×V is a set of edges. We often write u → v to denote an edge (u, v) ∈ E.
For a node v, the image of v is Post(v) = {u | v → u}, while the pre-image of v
is Pre(v) = {u | u → v}. These notions are extended to sets of nodes X in the
natural way, i.e., Post(X) =

⋃
v∈X Post(v) and Pre(X) =

⋃
v∈X Pre(v).

A path is a sequence P = v1 → v2 → · · · → vk, in which case we also write
v1 ⇝ vk, and say that vk is reachable from v1. The length of P is |P | = k − 1.
For a set of nodes X we write Fwd(X) = {u | ∃v ∈ X, v ⇝ u} for the forward
set of X and Bwd(X) = {u | ∃v ∈ X,u ⇝ v} for the backward set of X. We
call a set X ⊆ V forward-closed if Fwd(X) ⊆ X. The restriction of G on a set
X ⊆ V is the graph G[X] = (X, (X×X)∩E). A node v ∈ V is called a deadlock
if it has no outgoing edges, i.e., Post(v) = ∅.

Bottom Strongly Connected Components (BSCCs). A strongly connected
component (SCC) of G is a maximal set of nodes S such that for all u, v ∈ S we
have u⇝ v. Each node v belongs to one SCC, written SCC(v). A set X ⊆ V is
called SCC-closed if for each v ∈ X, we have SCC(v) ⊆ X. The diameter of an
SCC S is the maximum distance between two nodes in S, i.e.,

δ(S) = max
u,v∈S

min
P : u⇝v

|P |

The quotient graph of G represents each SCC of G by a single node, and has
a directed edge S → S′ iff Post(S) ∩ S′ ̸= ∅, i.e., there exists nodes u ∈ S and
v ∈ S′ with u → v. The quotient graph is a directed acyclic graph. The leaf
nodes of a quotient graph represent the SCCs that have no outgoing edges to

112 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

any other SCCs, called bottom SCCS (or BSCCs). We denote by SCCs(G) and
BSCCs(G) the set of SCCs and BSCCs of G, respectively.

The problem targeted in this paper is the computation of BSSCs. The following
two simple properties of BSCCs are used throughout the paper.

Proposition 1. An SCC S is a BSCC if and only if Fwd(S) = S.

Proposition 2. If S is a BSCC then there is no BSCC in Bwd(S) \ S.

Symbolic operations and complexity. In large-scale model-checking settings,
graphs are typically represented symbolically. One popular symbolic representa-
tion is Binary Decision Diagrams (BDDs) [19]. In particular, the node set V and
edge relation E are represented compactly as BDDs, while algorithms use BDDs
as data structures for representing subsets of V and E. The basic BDD oper-
ations give only coarse-grained access to the graph: given a BDD representing
a set of nodes X, an algorithm can access Pre(X) and Post(X), each of which
counts as one symbolic step. The complexity of symbolic algorithms is measured
in the number of symbolic steps they execute [12,25], since these are much slower
than elementary operations (e.g., incrementing a counter). Basic set operations
on BDDs (union, intersection, etc.) also do not count towards the time complex-
ity∗. Finally, given a set X represented as a BDD, we use a Pick(X) operation
which returns an arbitrary node v ∈ X. This operation is natural and efficient
for BDDs, and has been common in symbolic SCC algorithms [17,8,25].

2.2 The BwdFwd Algorithm for BSCCs

The symbolic computation of BSCCs(G) can be performed by computing each
S ∈ SCCs(G) using some existing symbolic algorithm [32,17,8,25], and then re-
porting that S is a BSCC iff Post(S) ⊆ S (following Proposition 1). Although this
approach runs in O(n) symbolic steps when using Chain [25] or Skeleton [17],
it can be unnecessarily slow in practice, as it typically spends considerable time
computing SCCs that are not BSCCs. For this reason, the computation of BSCCs
is targeted by algorithms dedicated to this task. The standard symbolic BSCC
algorithm is BwdFwd, which we briefly present here.

The Backward-Forward BSCC algorithm. BwdFwd is an adaptation
of the standard Xie-Beerel algorithm [32]. Algorithm 2 follows its recent pre-
sentation in [6], adapted to our setting. The algorithm uses the standard
mechanism for computing SCCs symbolically: given a pivot node v, we have
SCC(v) = Fwd(v) ∩ Bwd(v). Given such a node v, BwdFwd first calls Algo-
rithm 1 (Line 3) to retrieve the backward set Bwd(v) (called the basin of v)
using a standard fixpoint computation. Then, it uses a similar fixpoint compu-
tation to retrieve Fwd(v) (Line 5) in F . This computation is terminated early

∗For many algorithms, including ours, counting set operations does not affect the
asymptotic complexity.

Fast Symbolic Computation of Bottom SCCs 113

Algorithm 1: Bwd
Input: A graph G = (V,E) and a node v ∈ V

1 B = {v}
2 while Pre (B) ̸⊆ B do // Fixpoint not reached
3 B = B ∪ Pre (B) // Update with new predecessors
4 return B

Algorithm 2: BwdFwd
Input: A graph G = (V,E)

1 if V = ∅ then return
2 v = Pick(V) // Pick a pivot
3 B = Bwd (G, v) // Compute safe-to-remove nodes
4 F = ∅; Layer = {v}
5 while Layer ̸= ∅ andF ⊆ B do // Compute and detect BSCC
6 F = F ∪ Layer
7 Layer = Post (Layer) \ F
8 if F ⊆ B then // Output if BSCC
9 outputFwd

10 BwdFwd (G[V \B]) // Recursive call w/o safe nodes

if the algorithm discovers that Fwd(v) ̸⊆ Bwd(v), as then Fwd(v) ̸⊆ SCC(v),
and due to Proposition 1, we have that SCC(v) is not a BSCC. On the other
hand, if the computation is carried to a fixpoint, we have that Fwd(v) ⊆ Bwd(v)
and thus Fwd(v) = SCC(v); then, Proposition 1 guarantees that SCC(v) is a
BSCC. Since the check in Line 9 succeeds, BwdFwd correctly outputs SCC(v)
as a BSCC. Finally, Proposition 2 guarantees that the basin Bwd(v) contains no
BSCC, except possibly SCC(v) which was just outputted. The algorithm hence
safely removes Bwd(v) from G, and proceeds recursively (Line 10).

It is not hard to see that BwdFwd runs in O(n) symbolic steps, but offers two
practical improvements over general SCC-decomposition algorithms. In each re-
cursive call, the algorithm avoids computing SCCs in Bwd(v) \ SCC(v) as they
are guaranteed to be non-bottom; nodes in this set are only accessed during the
basin computation in Algorithm 1, which is cheaper. Moreover, it stops comput-
ing SCC(v) as soon as it discovers that Fwd(v) ̸⊆ Bwd(v) (as SCC(v) is not a
BSCC). However, the algorithm can spend significant time in computing Fwd(v)
before it discovers that Fwd(v) ̸⊆ Bwd(v), which results in wasteful symbolic
operations. The following example illustrates this issue on a small graph.

Example. Fig. 1 shows a graph G = (V,E) (a) and two recursion trees. The
left-most tree (b) illustrates the execution of BwdFwd on G. Each node in the
tree has its variables subscripted by the pivot node v chosen in the corresponding
recursive call, with the variables showing their values in that recursive call. E.g.,

114 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Fv is the value of F after the loop of Line 5 has completed, given that v was
chosen as pivot in that recursive call. The number of a node is underlined in
Fv if it is a node is outside the backward set Bv and cuts the computation
of Fv short (Line 5). Observe that the algorithm makes four recursive calls,
where the second (v = 2) and third (v = 3) call spend considerable time in
the forward computation (of the sets F2 and F3, respectively), and essentially
compute SCC(2) and SCC(3) before determining that these are not BSCCs.

1

2

4

6

8

10

3

5

7

9

(a)

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
B1 = {1}, F1 = {1, 2, 3}

V2 = {2, 3, 4, 5, 6, 7, 8, 9, 10}
B2 = {2, 4, 6, 8}, F2 = {2, 4, 6, 8, 10}

V3 = {3, 5, 7, 9, 10}
B3 = {3, 5, 7, 9}, F3 = {3, 5, 7, 9, 10}

V10 = {10}
B10 = {10}, F10 = {10}

(b)

W1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
F1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

L1 = {10}, S1 = {1}

W10 = {2, 3, 4, 5, 6, 7, 8, 9, 10}
F10 = {10}
L10 = {10}
S10 = {10}

B10 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

(c)

Fig. 1: An example input graph (a) and the recursion trees of the BwdFwd (b)
and Pendant (c) algorithms on it.

3 The Pendant Algorithm for BSCCs

In this section we present our new algorithm, Pendant, for computing BSCCs
symbolically. Like BwdFwd, Pendant spends linear time in the number of
nodes of the input graph. In particular, we have the following theorem.

Theorem 1. Given a graph G = (V,E) of n nodes, Pendant computes
BSCCs(G) in O(

∑
S∈SCCs(G) δ(S)) = O(n) symbolic time.

However, as we will see in Section 5, in practice Pendant typically requires fewer
symbolic steps than BwdFwd. Intuitively, this is achieved by making, over time,
smarter choices of pivot nodes v to start the SCC computation, meaning nodes
v that are more likely to have SCC(v) close to the leaves of the quotient graph.

Fast Symbolic Computation of Bottom SCCs 115

In turn, this reduces the number of non-bottom SCCs computed throughout the
execution of the algorithm, which reduces the number of symbolic steps.

3.1 Pendant

Pendant is shown in Algorithm 4, and uses FwdLastLayer, shown in Algo-
rithm 3, as a sub-procedure.

Algorithm 3: FwdLastLayer
Input: A graph G = (V,E) and a node v ∈ V

1 F = ∅; Layer = {v}; L = ∅
2 while Layer ̸= ∅ do // Fixpoint not reached
3 F = F ∪ Layer // Update with new successors
4 L = Layer // L stores the last layer of nodes reached
5 Layer = Post (Layer) \ F // Compute the new layer
6 return F,L

FwdLastLayer. FwdLastLayer computes the forward set Fwd(v) of a
node v using a standard fixpoint computation. The algorithm also keeps track
of the last layer L of nodes discovered during the fixpoint computation, and
returns both Fwd(v) (represented in F) and L. Intuitively, Fwd(v) is used by
Pendant for computing SCC(v) and testing whether it is a BSCC, while L is
used to guide the selection of future pivots downwards in the quotient graph.

Pendant. On input G = (V,E), Pendant begins by Pick’ing an arbitrary
pivot node v (Line 2), with the aim to compute SCC(v) and test whether it is a
BSCC. For this purpose, it calls FwdLastLayer to retrieve F = Fwd(v), and
L being the last layer of Fwd(v) (Line 5). It then computes S = SCC(v), by
calling Bwd (Algorithm 1, Line 6) to compute the backward set of v restricted
to Fwd(v). At this point, there are two cases.

– If F \ S ̸= ∅, then S is not a BSCC. At this point, the set W = F \ S is
guaranteed to contain a BSCC, and the algorithm resumes its search for a
BSCC in this set, running a new iteration of the main loop. Moreover, the
algorithm attempts to pick a new pivot in the last layer of Fwd(v) (Line 10),
as opposed to an arbitrary node in W . Intuitively, this effectively allows
Pendant to traverse the quotient graph downwards towards its leaves, and
thus quickly pick a pivot v such that SCC(v) is a BSCC.

– If F \S = ∅, then D = SCC(v) is guaranteed to be a BSCC; this is reported
(Line 15), and the loop breaks (Line 4). Then the backwards set of B is
computed and removed from the graph, as it is guaranteed to not contain
any other BSCC, and the algorithm proceeds recursively in the remaining
graph (Line 17). Note that the number of recursive calls of Pendant thus
equals the number of BSCCs in the input graph.

116 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Algorithm 4: Pendant
Input: A graph G = (V,E)

1 if V = ∅ then return
2 v = Pick (V) // Pick a pivot
3 W = V ;D = ∅ // D stores a BSCC, once found
4 while D = ∅ do // Find a BSCC
5 F,L = FwdLastLayer (G[W], v) // Get Fwd(v) and its last layer
6 S = Bwd (G[F], v) // Compute SCC(v)

7 if F \ S ̸= ∅ then // Not a BSCC
8 W = F \ S // W contains a BSCC, continue here
9 if L ∩W ̸= ∅ then // If there are candidates in last layer,

10 v = Pick (L ∩W) // pick new pivot from the last layer
11 else
12 v = Pick (W) // otherwise, pick any v from W

13 else
14 D = S
15 output D

16 B = Bwd (D,G) // Compute safe-to-remove nodes
17 Pendant (G[V \B]) // Recursive call w/o safe nodes

Observe the qualitative differences between Pendant and BwdFwd. First,
BwdFwd begins with a backward search from the pivot v, while Pendant be-
gins with a forward search from v. Second, BwdFwd removes the basin Bwd(v)
from G as soon as SCC(v) is deemed to be non-bottom, while Pendant de-
lays this step, and only computes (and removes) the basin of BSCCs. Third,
BwdFwd picks pivots completely arbitrarily, whereas Pendant, any time it
computes an SCC S that is not bottom, it picks the next pivot from a distant
successor of S in the quotient graph, which allows it to discover BSCCs quickly.

Example. Let us revisit our example in Fig. 1. The right-most recursion tree (c)
illustrates the computation of Pendant. Since there is only one BSCC, there
is only one recursive call, but the node is subdivided to show each iteration of
the loop in Line 4. As before, variables are subscripted with the pivot node v of
that iteration. Initially, Pendant chooses arbitrarily v = 1, like BwdFwd, and
computes Fwd(1). Then, it deems SCC(1) as a non-bottom SCC, and the next
pivot is chosen from the last layer of Fwd(1), i.e., v = 10. Effectively, Pendant
has reached a leaf of the quotient graph (the only leaf, in this case), and thus
identifies a BSCC quickly. Importantly, it skips the expensive computation of two
SCCs with large diameters (SCC(2) and SCC(3)), in contrast to BwdFwd.

3.2 Correctness

We now turn our attention to the correctness of Pendant. We start with two
simple lemmas regarding forward-closed sets.

Fast Symbolic Computation of Bottom SCCs 117

Lemma 1. Assume that X ⊆ V is forward-closed, and D ⊆ X is a BSCC.
Then X \ Bwd(D) is forward-closed.

Proof. For any node v ∈ X, if Fwd(v) ∩ Bwd(D) ̸= ∅ then clearly v ∈ Bwd(D)
and hence v ̸∈ X \ Bwd(D). Thus, for every node v ∈ X \ Bwd(D), we have
Fwd(v)∩Bwd(D) = ∅, and since X is forward-closed, we have Fwd(v) ⊆ X. ⊓⊔

Lemma 2. For any node v, the set Fwd(v) \ SCC(v) is forward-closed.

Proof. For any node u ∈ Fwd(v), if Fwd(u) ∩ SCC(v) ̸= ∅, then u ∈ SCC(v).
Hence for every node u ∈ Fwd(v) \ SCC(v), we have Fwd(u)∩ SCC(v) = ∅, and
thus Fwd(u) ⊆ Fwd(v) \ SCC(v). The desired result follows. ⊓⊔

We now prove the soundness of Pendant, i.e., every SCC outputted in Line 15
is a BSCC. For this, we prove the following stronger lemma, which states three
invariants maintained by the algorithm.

Lemma 3. At each iteration of the main loop of Pendant, the following in-
variants hold: (a) V and W are forward-closed, (b) S is an SCC, and (c) D is
a BSCC.

Proof. Before entering the first iteration of the loop, we have that each of W
and V is the whole node set of the input graph, hence both are trivially forward-
closed. Now, assuming that W is forward-closed, we have that F = Fwd(v)
in Line 5. In turn, this implies that S = SCC(v) in Line 6. Moreover, due to
Proposition 1, if F ⊆ S in Line 7, then S is a BSCC, thus D outputted in Line 15
is indeed a BSCC.

To complete the invariant proof, it remains to argue that V ′ and W ′ remain
forward-closed after they have been updated. There are two cases.

1. If the algorithm proceeds with another iteration of the main loop, we have
V ′ = V and W ′ = F \ S. Since F = Fwd(v) and S = SCC(v), Lemma 2
implies that W ′ is forward-closed.

2. Otherwise, the algorithm proceeds with a new recursive call in Line 17. We
have that W ′ = V ′ = V \ B, where B = Bwd(D), and D is a BSCC. By
Lemma 1, we have that V \B is forward-closed, as desired. ⊓⊔

Observe that case (c) of Lemma 3 establishes the soundness of Pendant. Next
we establish its completeness, thereby concluding the correctness of Pendant.

Lemma 4. Pendant outputs every BSCC of the input graph.

Proof. First, observe every time Pendant calls itself recursively in Line 17,
it has outputted a BSCC D, and the recursion proceeds on the subgraph V \
Bwd(D). Due to Proposition 2, the algorithm has outputted all BSCCs in V \

118 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Bwd(D). Hence, in each recursive call on a graph G = (V,E), the node set V
contains all the BSCCs not already outputted by the algorithm. It thus suffices
to argue that, in each recursive call, the main loop eventually terminates, as in
doing so it outputs a BSCC.

In each iteration of the main loop, the set W is updated to W ′ = F \S (Line 8),
where F = Fwd(v) and S = SCC(v), where v is the current pivot. Since F ⊆ W
and S ̸= ∅, it follows that W ′ ⊊ W , and thus the loop must eventually terminate.

⊓⊔

3.3 Complexity

Although the linear upper-bound of BwdFwd is trivial, the case of Pendant is
more involved. This is because a call to FwdLastLayer may compute forward
sets that consist of many layers (and thus cost many symbolic steps), while these
sets are not immediately removed from the graph (as opposed to the backward
set computed by BwdFwd), and are again accessed in future iterations of the
algorithm. Nevertheless, a careful analysis shows that the complexity is indeed
linear. We start with a simple lemma.

Lemma 5. Assume that X ⊆ V is forward-closed and D ⊆ X is a BSCC. Then
Bwd(D) ∩X is SCC-closed.

Proof. Consider any node v ∈ Bwd(D) ∩X. Since X is forward-closed, we have
Fwd(v) ⊆ X and thus SCC(v) ⊆ X. Moreover, Bwd(v) ⊆ Bwd(D) and thus
SCC(v) ⊆ X. Hence SCC(v) ⊆ Bwd(D) ∩X.

We now prove the complexity of Pendant.

Lemma 6. Pendant runs in O(
∑

S∈SCCs(G) δ(S)) = O(n) symbolic steps.

Proof. In each recursive call, Pendant makes symbolic steps to (i) compute the
SCCs of the picked pivots (Lines 5 and 6), and (ii) compute the backwards set
of the outputted BSCC (Line 16). We will argue that, in total, case (i) takes∑

S∈SCCs(G) 3δ(S) time, while case (ii) takes
∑

S∈SCCs(G) δ(S) time.

We start with case (i). For a given pivot v, computing SCC(v) is done in two
steps: (a) Line 5 computes the forward set F of v restricted to the node set
W , while (b) Line 6 computes SCC(v) as the backward set of v restricted to F .
Clearly, (b) takes δ(SCC(v)) symbolic steps, thus summing over all pivots v, we
have that Line 6 takes at most

∑
S∈SCCs(G) δ(S) time. To bound the time spent in

(a), denote by Levels(v) the number of iterations executed in FwdLastLayer,
i.e., Pendant spends Levels(v) symbolic steps in Line 5. If F \ SCC(v) = ∅
or L \ SCC(v) = ∅, we have Levels(v) = δ(SCC(v)). Otherwise, the next pivot
v′ is Pick’ed from L (Line 10). Consider a shortest-path P : v ⇝ v′, and let
{S1, . . . Sk} be the SCCs of nodes along P (except v), and note that Levels(v) ≤

Fast Symbolic Computation of Bottom SCCs 119

∑k
i=1 δ(Si). Moreover, we have Si ⊆ Bwd(v′) for each i ∈ {1, . . . , k}, and thus

each Si is not touched again by FwdLastLayer, except if Si = SCC(v′), but
this case is accounted for already. Summing over all such Si across all pivots v,
we have that

∑
v Levels(v) ≤

∑
S∈SCCs(G) δ(S). Hence the total symbolic time

spent for case (i) is bounded by
∑

S∈SCCs(G) 3δ(S).

We now turn our attention to case (ii). Due to Lemma 3, W is forward closed
and D is a BSCC. By Lemma 5, the set B computed in Line 16 is SCC-closed.
The number of symbolic steps is hence bounded by

∑
S∈SCCs(B) δ(S). Finally, B

is removed from the graph in the recursive call, hence it will not be processed
again. Thus the total time for case (ii) is

∑
S∈SCCs(G) δ(S). ⊓⊔

4 Deadlock Detection

We now outline a simple but effective preprocessing technique for BSCCs.

Recall that a deadlock is a node v without outgoing edges, i.e., Post(v) = ∅.
Observe that all deadlocks are BSCCs: formally we have Fwd({v}) = {v} =
SCC(v), and thus the statement follows from Proposition 1 (the opposite is, of
course, not true in general). Thus, deadlock-detection can be seen as a natural
preprocessing step to any BSCC algorithm.

The key observation in this approach is that the set of all deadlocks can be
computed efficiently, in only one symbolic step; this is achieved by Algorithm 5.
In particular, the deadlock set is computed as D = V \ H where H is the set
of nodes u that have a successor. In turn, H can be computed by a single Pre
operation on the entire node set. Finally, due to Proposition 2, the set Bwd(D)
is guaranteed to contain no BSCCs other than those in D, and thus it can be
removed. The resulting graph is then passed to the main BSCC algorithm.

Algorithm 5: Deadlock detection (preprocessing)
Input: A graph G = (V,E)

1 H = Pre (V,G) // Compute all nodes that have a successor
2 D = V \H // Compute all deadlocks
3 B = Bwd (D,G) // Compute safe-to-remove nodes
4 output each node in D // Output BSCCs
5 return G[V \B] // Return remaining graph for further computation

5 Experiments

Here we report on an implementation of Pendant, including the deadlock-
detection technique, and an experimental evaluation of its performance on a
large dataset of standard model-checking benchmarks across various domains.

120 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Baselines. To assess the performance of Pendant and deadlock detection, we
compare it with BwdFwd (Algorithm 2), as well as the recently introduced
interleaved transition guided reduction (ITGR) [6], which we have implemented
in our setting. ITGR is applicable when the transition relation is partitioned into
a number of smaller relations E = (R1, . . . , Rk) (as is the case in our setup),
and works as a preprocessing step, much like our deadlock detection. At a high
level, ITGR employs some local reasoning for each relation Ri to identify sets of
nodes that do not contain BSCCs. Such sets can be removed, reducing the size
of the graph that is further processed by a BSCC-computation algorithm.

Research Questions. Our setup is centered around the following questions.

RQ1 How does the performance of Pendant compare to that of BwdFwd?
RQ2 How does deadlock detection impact the performance of Pendant and

BwdFwd?
RQ3 How does ITGR impact the performance of Pendant and BwdFwd?
RQ4 How does the performance of Pendant compare to the performance of

BwdFwd when both use deadlock detection?
RQ5 How does ITGR impact the performance of Pendant after deadlock de-

tection?

Datasets. We use benchmarks from the following categories.

– Petri Net models from MCC, the Model Checking Contest [22].
– DiVinE models from BEEM, the Benchmark of Explicit Models [27].
– Asynchronous Boolean Network models [3,1,2].

We do not apply any selection criteria, except discarding models that are too slow
to handle by all algorithms in our timed experiments. This results in 553 models
in total.† In each model, the edge relation is naturally partitioned into subre-
lations R1, . . . , Rk, following the structure of the high-level specifications (tran-
sitions in Petri Nets and DiVinE state machines, and reactions in the Boolean
Networks). We use the language-independent model checker LTSmin [20] to gen-
erate symbolic graphs for the DVE and PNML models. Since LTSmin does not
handle Boolean Networks, these graphs are generated by a custom parser. The
time taken for the graph generation is not measured in the running time of each
algorithm. We use the BDD package Sylvan as our symbolic representation [15].

Experimental setup. Our experiments are run on a Linux machine with
2.4GHz CPU speed and 60GB of memory. We measure both symbolic steps
and run time, but only present the results on symbolic steps here, as they reflect
the true symbolic time-complexity of the algorithms, and are independent of the
choice of the underlying BDD package. The results on time are qualitatively the
same. Each run is timed out after 400 seconds, indicated as the graph taking
109 symbolic steps on the figures. Since our input relation is partitioned into

†Tool and data set available at https://doi.org/10.5281/zenodo.10427894.

Fast Symbolic Computation of Bottom SCCs 121

https://doi.org/10.5281/zenodo.10427894

several sub-relations E = (R1, . . . , Rk), each Pre/Post operation incurs k sym-
bolic steps (for all algorithms). Our setup is completely deterministic, however
certain operations, like Pick’ing a node, are executed arbitrarily.

Experimental results. We now present our experimental results for addressing
the above research questions. Note that all figures are plotted in log-scale.

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

BwdFwd

P
en

d
a
n
t

Symbolic Steps

DVE
PNML
Bool Net

Fig. 2: The number of symbolic steps executed by Pendant and BwdFwd.

RQ1: Pendant vs BwdFwd. The performance of Pendant and BwdFwd
is shown in Fig. 2, across all three datasets. Both algorithms manage to han-
dle many models within the time limit, though there are a few time outs. We
see that Pendant is generally no slower than BwdFwd, with the clear ex-
ception of three timeout outliers. For the rest, the models that are slower for
Pendant sit only slightly above the x = y line, meaning that the slowdown
is comparatively small. On the other hand, there are several models on which
Pendant is generally faster than BwdFwd, and the speedup increases as we
go towards more demanding benchmarks (more than two orders of magnitude).
Finally, Pendant times out on much fewer models than BwdFwd. Overall,
Pendant is measurably faster than BwdFwd, and this trend persists across all
three datasets (DVE, PNML and Boolean Networks).

RQ2: The impact of deadlock detection. The impact of deadlock detection to
both Pendant and BwdFwd is shown in Fig. 3. We see that deadlock detection
improves the performance of both algorithms significantly. Indeed, detecting

122 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

102 104 106 108

102

104

106

108

Pendant

P
en

d
a
n
t

+
de

ad
lo

ck
Symbolic Steps

Deadlock
No Deadlock

102 104 106 108

102

104

106

108

BwdFwd

B
w

d
F
w

d
+

de
ad

lo
ck

Symbolic Steps

Deadlock
No Deadlock

Fig. 3: The impact of deadlock detection in the number of symbolic steps ex-
ecuted by Pendant (left) and BwdFwd (right). Data points are classified as
those having at least one deadlock, and those having no deadlock.

deadlocks requires only one symbolic step (per relation Ri), hence it is natural
to expect that it does not slow down any algorithm, and has no effect on models
that have no deadlocks. On the other hand, it leads to a measurable speedup on
the models that have deadlocks, and the impact varies depending on the fraction
of the graph that is removed during deadlock removal. Interestingly, deadlock
detection also reduces significantly the number of timeouts for both Pendant
and BwdFwd. In conclusion, deadlock detection helps both algorithms.

RQ3: The impact of ITGR. The impact of ITGR to both Pendant and
BwdFwd is shown in Fig. 4. Perhaps surprisingly, we find that ITGR does
not have a consistent effect: it can both speed up and slow down each of the
algorithms. At closer inspection, we observe that ITGR has a positive effect on
most Boolean Network models, which is indeed the context in which it was in-
troduced [6]. On the other hand, it has both positive and negative effects on
DVE and PNML models, and even makes both algorithms time out on instances
that they could easily handle without ITGR.

RQ4: Pendant vs BwdFwd, with deadlock detection. Since deadlock detection
has a clear positive effect on both algorithms, it is natural to revisit RQ1 and ask
about the performance of the two algorithms when also using deadlock detection.
The result is shown in Fig. 5. Deadlock detection makes the performance of
the two algorithms more similar in many benchmarks (i.e., more data points
lie closer on the x = y line). However, Pendant remains decisively faster on
many models, and thus its benefit is not overshadowed by the positive impact of
deadlock detection. At closer inspection, we see that Pendant is faster on DVE
and PNML models, but not on Boolean Networks. This is due to the fact that

Fast Symbolic Computation of Bottom SCCs 123

102 104 106 108

102

104

106

108

Pendant

P
en

d
a
n
t

+
it
gr

Symbolic Steps

DVE
PNML
Bool Net

102 104 106 108

102

104

106

108

BwdFwd
B

w
d
F
w

d
+

it
gr

Symbolic Steps

DVE
PNML
Bool Net

Fig. 4: The impact of ITGR in the number of symbolic steps executed by
Pendant (left) and BwdFwd (right).

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

BwdFwd + deadlock

P
en

d
a
n
t

+
de

ad
lo

ck

Symbolic Steps

DVE
PNML
Bool Net

Fig. 5: The number of symbolic steps executed by Pendant and BwdFwd,
when also using deadlock detection.

124 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

most Boolean Networks have many deadlocks, and thus the common deadlock-
detection component simplifies such models considerably, making the remaining
performance of the two algorithms similar.

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

Pendant + deadlock + itgr

P
en

d
a
n
t

+
de

ad
lo

ck

Symbolic Steps

DVE
PNML
Bool Net

Fig. 6: The impact of ITGR after using deadlock detection.

RQ5: The impact of ITGR after deadlock detection. Finally, in Fig. 6 we examine
whether ITGR improves the performance of Pendant after deadlock detection
has run. Although ITGR improves the performance on a few models, it gener-
ally leads to a slowdown, as well as to more timeouts. Interestingly, ITGR has
the fewest positive effects (on top of deadlock detection) for Boolean Network
models, for which it was originally introduced. Since these models have several
deadlocks, the fast deadlock-detection preprocessing simplifies them consider-
ably, at which point the cost of ITGR is not worth its little (or no) impact.

6 Conclusion

We have introduced Pendant, a new symbolic algorithm for computing BSCCs,
as well as a deadlock-detection technique for this task. Though both Pendant
and the standard BwdFwd have O(n) symbolic-time complexity, our experi-
mental results show that Pendant is typically faster, and thus to be preferred
for this task. Moreover, deadlock-detection is an efficient and effective prepro-
cessing technique for reporting singleton BSCCs (and removing their basin),

Fast Symbolic Computation of Bottom SCCs 125

before handing the computation to the general algorithm. Finally, the recently
introduced ITGR, although effective on Boolean Network models, has mixed
effects on DVE and PNML models, while its effect is often negative after dead-
lock detection (but not always). Some opportunities for future research include
introducing saturation techniques [34] to Pendant, extending the algorithm to
symbolically handle colored graphs [7,25], and understanding better the settings
in which ITGR is effective.

Acknowledgements. This work was supported in part by Villum Fonden
(Project VIL42117).

References
1. EMBL-EBI’s BioModels model repository (2023), https://www.ebi.ac.uk/

biomodels/, Last accessed on 2023-10-10
2. PyBoolNet model repository (2023), https://github.com/hklarner/pyboolnet/

tree/master/pyboolnet/repository, Last accessed on 2023-10-10
3. SBML models repository (2023), https://github.com/sybila/

biodivine-lib-param-bn/tree/master/sbml_models, Last accessed 2023-10-10
4. Abraham, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model

checking by SCC reduction. In: Proceedings of the 2010 Seventh International
Conference on the Quantitative Evaluation of Systems. p. 37–46. QEST ’10, IEEE
Computer Society, USA (2010). https://doi.org/10.1109/QEST.2010.13

5. Amparore, E.G., Donatelli, S., Gallà, F.: starMC: an automata based CTL* model
checker. PeerJ Comput. Sci. 8, e823 (2022)

6. Benes, N., Brim, L., Pastva, S., Safránek, D.: Computing bottom SCCs sym-
bolically using transition guided reduction. In: Silva, A., Leino, K.R.M. (eds.)
Computer Aided Verification, CAV 2021, Part I. LNCS, vol. 12759, pp. 505–528.
Springer (2021). https://doi.org/10.1007/978-3-030-81685-8_24

7. Benes, N., Brim, L., Pastva, S., Safránek, D.: BDD-based algorithm for SCC de-
composition of edge-coloured graphs. Logical Methods in Computer Science 18(1)
(2022). https://doi.org/10.46298/lmcs-18(1:38)2022

8. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods in System Design 28(1),
37–56 (2006)

9. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking
of linear time logic properties. In: Proceedings of the 11th International Conference
on Computer Aided Verification. p. 222–235. CAV ’99, Springer (1999)

10. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

11. Buchholz, P., Katoen, J.P., Kemper, P., Tepper, C.: Model-checking large
structured Markov chains. The Journal of Logic and Algebraic Pro-
gramming 56(1), 69–97 (2003). https://doi.org/https://doi.org/10.1016/
S1567-8326(02)00067-X, probabilistic Techniques for the Design and Analysis of
Systems

12. Chatterjee, K., Dvořák, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: Strongly connected components, liveness, safety,
and diameter. In: Proc. 29th ACM-SIAM Symp. on Discrete Algorithms. p.
2341–2356. SODA ’18, Soc. for Industrial and Applied Mathematics, USA (2018)

126 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository
https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository
https://github.com/sybila/biodivine-lib-param-bn/tree/master/sbml_models
https://github.com/sybila/biodivine-lib-param-bn/tree/master/sbml_models
https://doi.org/10.1109/QEST.2010.13
https://doi.org/10.1109/QEST.2010.13
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.46298/lmcs-18(1:38)2022
https://doi.org/10.46298/lmcs-18(1:38)2022
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X

13. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms. p. 1318–1336. SODA
’11, Society for Industrial and Applied Mathematics, USA (2011)

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: CAV. LNCS, vol. 2404, pp. 359–364. Springer (2002)

15. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. Journal on Software Tools for Technology Transfer 19(6), 675–696 (2017)

16. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic
cycle-detection algorithm? In: Proc. 7th IC on Tools and Algorithms for the Con-
struction and Analysis of Systems. p. 420–434. TACAS 2001, Springer (2001)

17. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. p. 573–582. SODA ’03, Society
for Industrial and Applied Mathematics, USA (2003)

18. Hardin, R.H., Kurshan, R.P., Shukla, S.K., Vardi, M.Y.: A new heuristic for bad
cycle detection using BDDs. Form. Methods Syst. Des. 18(2), 131–140 (mar 2001).
https://doi.org/10.1023/A:1008727508722

19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press (2004)

20. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.:
LTSmin: High-performance language-independent model checking. In: TACAS.
Lecture Notes in Computer Science, vol. 9035, pp. 692–707. Springer (2015)

21. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model checking with strong fairness.
Formal Methods Syst. Des. 28(1), 57–84 (2006)

22. Kordon, F., Garavel, H., Hillah, L., Paviot-Adet, E., Jezequel, L., Hulin-Hubard,
F., Amparore, E.G., Beccuti, M., Berthomieu, B., Evrard, H., Jensen, P.G., Botlan,
D.L., Liebke, T., Meijer, J., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.:
MCC’2017 - the seventh model checking contest. Trans. Petri Nets Other Model.
Concurr. 13, 181–209 (2018)

23. Kučera, A., Stražovský, O.: On the controller synthesis for finite-state Markov
decision processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science. pp. 541–552. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

24. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

25. Larsen, C.A., Schmidt, S.M., Steensgaard, J., Jakobsen, A.B., van de Pol, J., Pavlo-
giannis, A.: A truly symbolic linear-time algorithm for SCC decomposition (2023)

26. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017)

27. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN. Lecture
Notes in Computer Science, vol. 4595, pp. 263–267. Springer (2007)

28. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-Based Decom-
position of the Property Büchi Automaton for Faster Model Checking. In: Piter-
man, N., Smolka, S.A. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 580–593. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_42

Fast Symbolic Computation of Bottom SCCs 127

https://doi.org/10.1023/A:1008727508722
https://doi.org/10.1023/A:1008727508722
https://doi.org/10.1007/978-3-642-36742-7_42
https://doi.org/10.1007/978-3-642-36742-7_42

29. Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous boolean
models of signal transduction networks. Journal of Theoretical Biology 266(4),
641–656 (2010). https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.
022

30. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: TACAS.
Lecture Notes in Computer Science, vol. 3440, pp. 174–190. Springer (2005)

31. Wang, C., Bloem, R., Hachtel, G.D., Ravi, K., Somenzi, F.: Divide and compose:
SCC refinement for language emptiness. In: Proceedings of the 12th International
Conference on Concurrency Theory. p. 456–471. CONCUR ’01, Springer-Verlag,
Berlin, Heidelberg (2001)

32. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 19(10), 1225–1230 (2000)

33. Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method for de-
tecting attractors in synchronous boolean networks. Science of Computer Program-
ming 180, 18–35 (2019). https://doi.org/https://doi.org/10.1016/j.scico.
2019.05.001

34. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components
and fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141–150 (2011)

128

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
http://creativecommons.org/licenses/by/4.0/

	Fast Symbolic Computation of Bottom SCCs

