
First Steps towards Deductive Verification of
LLVM IR ⋆

Abstract. Over the last years, deductive program verifiers have sub-
stantially improved, and their applicability on non-trivial applications
has been demonstrated. However, a major bottleneck is that for every
new programming language, a new deductive verifier has to be built.
This paper describes the first steps in a project that aims to address
this problem, by language-agnostic support for deductive verification:
Rather than building a deductive program verifier for every program-
ming language, we develop deductive program verification technology
for a widely-used intermediate representation language (LLVM IR), such
that we eventually get verification support for any language that can be
compiled into the LLVM IR format.
Concretely, this paper describes the design of VCLLVM, a prototype tool
that adds LLVM IR as a supported language to the VerCors verifier. We
discuss the challenges that have to be addressed to develop verification
support for such a low-level language. Moreover, we also sketch how we
envisage to build verification support for any specified source program
that can be compiled into LLVM IR on top of VCLLVM.

1 Introduction

As software has become an intrinsic part of our daily lives, we become more and
more dependent on software being reliable and dependable, and we need tools
that can help us to establish these guarantees. Over the last years, substantial
progress has been made in the development of formal verification techniques that
can be used to ensure that software provides certain guarantees. This covers a
wide range of different approaches that can be used to provide guarantees at dif-
ferent levels of abstraction and precision. Here, we focus in particular on deduc-
tive program verification techniques [11], which are used to provide guarantees
directly at code level, by verifying whether a program fragment behaves accord-
ing to the pre-postcondition-contract that is specified for it. A broad range of de-
ductive verifiers exist, such as VerCors [4], KeY [1], VeriFast [14, 15], Viper [25],
Dafny [20], RESOLVE [37], Whiley [31], Frama-C [3], KIV [9] and OpenJML [7],
which have been used in several non-trivial case studies, see e.g. [29, 35, 34, 29,
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13, 10, 17]. A major challenge for deductive verifiers in practice is to enlarge
the particular language features that they support. This language-dependency
creates a severe limitation on how effective these techniques can be used in cur-
rent software development, where language standards are regularly updated, new
programming languages are frequently used, and applications are often written
using multiple programming languages.

In compiler technology, this growth in source level programming languages,
as well as the wide range of target architectures has been tackled by the introduc-
tion of intermediate representation formats, such as LLVM IR [19]. They require
only a compiler into this intermediate representation format for a new program-
ming language, while new architectures are supported by defining a mapping
from the intermediate representation format into the new hardware. We propose
a similar approach to reduce the language-dependence of deductive program ver-
ification technology, by: (1) defining verification technology for LLVM IR, and
(2) developing a generic approach to translate contract specifications from a wide
range of source languages into contract specifications for LLVM IR.

This paper focuses in particular on the first step in this project: it contributes
VCLLVM, a prototype tool that encodes annotated LLVM IR programs into the
VerCors verifier [4] to enable deductive verification for LLVM IR. We describe
the challenges for the encoding of LLVM IR into VerCors, as LLVM IR is a much
lower-level language than the languages that are supported by VerCors already,
and how these challenges affect the design and implementation of VCLLVM. We
also sketch how we plan to use VCLLVM as a stepping stone in a bigger project
to develop language-independent support for deductive verification.

2 Background

This section gives a brief background on the VerCors verifier and LLVM IR.

VerCors VerCors [4] is a deductive verifier for concurrent programs. It can verify
programs written in several programming languages (e.g., Java, CUDA, OpenCL,
and its internal Prototype Verification Language PVL). To verify programs with
VerCors, they are first annotated with pre-postcondition-contract specifications
written in permission-based separation logic (PBSL) [38], and then the specified
programs are encoded into the internal format of VerCors, called COL, which is
transformed in several steps into the input language of Viper [25]. The Viper in-
frastructure is then used for verification. If verification with Viper fails, VerCors
translates the error message back to the level of the source program.

PBSL is a concurrent separation logic [27] with support for permissions [5].
Permissions make the language suitable to reason about concurrent programs,
as they are used to encode when variables may be read or written. VCLLVM at
the moment only supports sequential programs, thus we do not provide further
details about PBSL here, and instead refer to the documentation.

LLVM IR LLVM IR (LLVM Intermediate Representation) is the common in-
terface for the frontend and backend compilers developed as part of the LLVM
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project [19]. LLVM IR is designed to be abstract enough to be compiled to from
higher level frontend languages, and simple enough to be transformed into as-
sembly or machine code for a specific CPU architecture. It is also the language
being operated on by middle-end code optimisation and analysis passes [23].
More details about LLVM IR can be found in its documentation [22].

The LLVM IR language is an assembly language using the single static assign-
ment format. Each LLVM IR file consists of one module. Each module contains
multiple functions. Functions are divided into multiple (possibly labelled) blocks,
with one dedicated entry block. Every block consists of one or more instructions.
We briefly summarise the main features of LLVM IR that are relevant for our
work. First of all, LLVM IR features only two basic types, namely integers and
floats, with the standard (bitwise) binary operators. Both come with different
precisions. These two basic types can be combined into aggregate types, such as
vectors, arrays, and structs, and can be referenced via pointers. Further, LLVM
IR supports custom-declared constants and several predefined constants, such
as true and false. The constant undef is used to present undefined state to
the compiler as a range of possible values, which guarantees that the program
itself remains well-defined. The constant poison indicates erroneous state of a
program. LLVM IR offers branch instructions that can conditionally jump to
the beginning of any instruction block in the same function. This can be used
to encode conditionals and loops, and it offers a basis for error handling instruc-
tions. It is important to note that the internals of LLVM IR are not stable,
meaning there are no guarantees for compatibility between different LLVM IR
versions [21]. However, there are stable LLVM API functions that can analyse
and manipulate the internals of LLVM IR.

3 Challenges for Deductive Verification of LLVM IR

In order to encode LLVM IR programs into input for the VerCors verifier, several
challenges need to be addressed, as discussed in this section. The next section
discusses how these challenges influence our prototype design and implementa-
tion. In particular, challenge 1 to 3 have been addressed in our prototype, while
providing full solutions to challenges 4 to 7 has been left as future work.

– Challenge 1: Instability of LLVM IR As mentioned, LLVM IR is an unstable
language [21], without backwards compatibility, and there is no guaranteed
interoperability between the syntax of LLVM IR of different LLVM versions.

– Challenge 2: LLVM IR Specifications VerCors specifications use expressions
from the source language. As expressions in LLVM IR are written as a block
of single instructions, this raises the question what a suitable specification
language for LLVM IR would be: writing blocks in specifications (or even
multiple blocks with branches, e.g. for Boolean expressions) would be im-
practical and error-prone. However, an upside is that LLVM IR uses the SSA
(static single-assignment) format, which makes it hard to write specifications
that have side effects, and all instructions in LLVM IR are pure except for
memory instructions such as store and alloca.
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– Challenge 3: Origin of User Errors Parsing an LLVM IR file with the parser
of the LLVM API returns a module object that does not retain any origin
information; it is merely a semantically equivalent in-memory representation
of the program. This makes it challenging to communicate the origin of a
verification problem in the source code to the user. LLVM offers the possi-
bility to construct a string of LLVM IR representing any LLVM value, but
calculating line and column numbers or extracting a source string is complex
as extraneous white spaces and comments in the source file are ignored.

– Challenge 4: Control Flow LLVM IR depends on jumps and branches (i.e.
goto statements) in the function body to facilitate any control flow in a pro-
gram, while VerCors requires structured, reducible programs to be verified.
VerCors technically supports goto statements but there are some caveats to
be aware of when using them: the inclusion of goto statements obstructs the
guarantee that the program is reducible [12], and loop invariants are hard
to verify when a loop contains arbitrary goto statements.

With that in mind, the encoding essentially needs to be an LLVM IR de-
compiler to the high-level COL representation of VerCors. Loops can be
especially hard to recover due to their various forms (e.g. for-loops, while-
loops, and do-while loops), and the possibility of nesting. The challenge is
not so much in detecting cycles in the CFG (control flow graph) of the pro-
gram (for which trivial graph algorithms exist), but mainly to identify the
different parts of the loop (e.g., the loop condition, the loop body, and loop
breaks).

– Challenge 5: Low-level Language Features LLVM IR introduces new low-
level language constructs that have not been handled by VerCors yet, such
as loads, stores and other low-level memory instructions, Φ nodes (from the
SSA format), and low-level exception handling. All these concepts have to
be integrated into COL.

The current VCLLVM prototype simplifies many of these concepts or has
not yet implemented them. Some ideas on how other LLVM IR low-level
concepts could be translated into COL are discussed in [28].

– Challenge 6: LLVM Concurrency Model While LLVM IR does support in-
structions and control mechanisms that can be useful to ensure thread safety,
it does not support constructs for parallel thread creation or signal handling
natively. Instead, LLVM IR code depends on being linked against existing
concurrency libraries, e.g. the pthread library on POSIX systems for Clang.
Thus, in order to support reasoning about these concurrency libraries, their
behaviour has to be modeled.

– Challenge 7: undef and poison Both constants undef and poison are se-
mantically complex, and it is challenging to capture their semantics into
VerCors. First, undef represents a set of possible values, which should be
semantically treated as if it is a single value, and this concept does not yet
exist in VerCors. Second, poison indicates erroneous behaviour, and it will
have to be integrated into exception handling support of VerCors.
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Fig. 1: Workflow of using VCLLVM and VerCors

4 Design and Implementation of VCLLVM

This section discusses the design and implementation of our prototype tool
VCLLVM that translates LLVM IR programs into the VerCors internal COL
format. Figure 1 gives a general overview how VCLLVM connects to VerCors.
We discuss the main decisions in the design of VCLLVM, taking into account the
challenges mentioned above. For a more in-depth analysis of the design choices,
we refer to the Master thesis accompanying this paper [28].

Embedding versus Externalising The first design choice was whether to embed
VCLLVM into the VerCors codebase or to develop it as an extension. Embedding
could exacerbate the problems of Challenge 1 (instability of LLVM IR), and it
would also restrict the tool implementation language to be JVM-compatible,
which makes it hard to interface with existing LLVM IR functionality from the
LLVM project. Instead, externalising makes it possible to use C++ to implement
VCLLVM and to use all existing LLVM support functionality. We decided to go
for this option, as it makes VCLLVM easier to maintain in the future.

VCLLVM Output Format As VCLLVM is developed as an external tool, its
output needs to be in a format that is either already interpretable by VerCors
or for which an interpreter would be simple to implement. If VCLLVM would
generate concrete syntax, this requires that we define a concrete input language
that supports all features of LLVM IR. Instead, we opted to use serialisation,
which makes it possible to connect to the internal COL AST directly. We use
Protocol Buffers1 for this. It offers a largely automatable serialisation method,
with language support for Scala (implementation language of VerCors) and C++
(implementation language of VCLLVM). Moreover, it supports code generation
both from and to a Protocol Buffer definition, which simplifies the development
of the communication layer between VCLLVM and VerCors considerably.

Specification Syntax To specify the properties that need to be verified, we need
to embed the specifications into LLVM IR code such that they do not change
the behaviour of the program, but are available to VCLLVM after the LLVM IR
program has been parsed. Since comments are ignored by the LLVM parser, the
only option available is to use LLVM metadata to embed specifications.

1 See: https://developers.google.com/protocol-buffers.
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!VC.contract !{
!"ensures",
!"%var1 = mul i32 %y, %x",
!"%var2 = add i32 %var1, %z",
!"%verdict = icmp eq i32 %var2, \result;"

}

(a)

!VC.contract !{
!"ensures %x * %y + %z == \result;"

}

(b)

!VC.contract !{
!"ensures icmp(eq,

add(mul(%y, %x), %z), \result);"
}

(c)

Fig. 2: Possible Specification Syntax Options

Ideally, the specification syntax stays as close as possible to the LLVM IR
syntax, but as explained in Challenge 2, it is not obvious for LLVM IR because of
its low-level nature. We considered 3 different options, as illustrated in Figure 2
with contracts that describe the following add-multiply LLVM IR function.

1 define i32 @addMult(i32 %x, i32 %y, i32 %z)
2 !VC.contract !1 ;, !2 or !3 from Figure 2 {
3 %1 = mul i32 %y, %x
4 %res2 = add i32 %1, %z
5 ret i32 %res2 }

This function takes as input parameters x, y and z. First it multiplies x and y,
stores the intermediate result in a local variable %1, and then adds z to this, and
returns this final result. All specifications in Figure 2 express that the return
value is equal to x * y + z. As usual, we use the keyword ensures to specify
a postcondition of the function, and \result to refer to the output value of
the function. Figure 2a uses blocks of instructions to write the specification
expressions. This is verbose, error prone and complicates parsing. Figure 2b
uses a specification syntax that is independent of LLVM IR syntax. This is
readable, but also creates ambiguities, as it makes it harder to connect the
specification to the code. Finally, Figure 2c uses the known LLVM IR instruction
keywords, but in a more functional manner. This is fairly readable, and avoids
the ambiguity. We decided to use this option for VCLLVM. Notice that, as
described in Section 7, eventually we hope to use VCLLVM as an intermediate
tool to reason about programs in any language that compiles into LLVM IR.
In that set up, the specification would be written in the input language of the
high-level language, and compiled into a VCLLVM specification.
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External library support LLVM IR is often compiled and linked against existing
libraries to provide support for external libraries. Support for this is needed in
particular to reason about concurrent LLVM IR, which rely on thread libraries.
The VCLLVM prototype has been designed with this requirement in mind, but
it has not yet been implemented.

5 Evaluation

To use the current version of VCLLVM, one needs to (1) write C code, (2) compile
that C code to LLVM IR, (3) optionally run the LLVM opt tool [23] to mitigate
program structures VCLLVM cannot yet interpret, (4) annotate the resulting
LLVM IR program manually, and (5) let VCLLVM/VerCors verify the LLVM
IR program. C is recommended because the C LLVM compiler (Clang) produces
concise LLVM IR code (unlike some of the other frontends like clang++ and
rustc). Moreover, the regression test suite of VCLLVM currently only supports

The tool is only a prototype, but it has been used on several non-trivial
examples, such as functions to compute triangular numbers and Cantor pairs,
a function for date comparison (using branching and integer comparison), and
recursive functions like Fibonacci and the factorial. In order to specify func-
tional behaviour of these programs, VCLLVM supports the definition of pure
specification-only functions, such as for example fib:

1 !VC.global = !{!0}
2 !0 = !{
3 !"pure i32 @fib(i32 %n) =
4 br(icmp(sgt, %n, 2),
5 add(call @fib(sub(%n, 1)), call @fib(sub(%n, 2))),1);”}

This expresses that for any fib(n) is computed using the following expres-
sion: if(n > 2) then fib(n - 1) + fib(n - 2) else 1 (where br denotes
a branch and icmp compares two integers).

Using this function, we can write and prove the following contract for a
recursive implementation of the Fibonacci function, see [28] for the full program.
This contract states that for any n > 1, the correct Fibonacci value is returned.

1 define dso_local i32 @fibonacci(i32 noundef %0)
2 !VC.contract !{
3 !"requires icmp(sge, %0, 1);",
4 !"ensures icmp(eq, \result, call @fib(%0));"
5 }
6 { ... }

Special attention has been given to give informative feedback when verifica-
tion fails. For more details about these examples, we refer to [28].
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6 Related Work

There exist several projects that develop formal static analysis techniques for bug
finding in LLVM IR. SMACK [32] defines a translation of LLVM IR into Boo-
giePL [20], to reason about C-programs using assertions that are compiled into
LLVM IR using Clang. The verification itself is bounded and a potential exten-
sion to contract specifications has not yet been explored. The Vellvm project [40,
39]) develops a framework to reason about LLVM IR programs. It provides a
mechanised semantics for LLVM IR, which can be used for verification. Rea-
soning is done directly in Coq, rather than at the code level, which requires
Coq expertise. KLEE [6]. is a dynamic symbolic execution engine, which auto-
matically generates suitable unit tests for LLVM IR applications, with a much
better coverage than manually created test suites, thus increasing the likelihood
of finding bugs. However, KLEE focuses only on bug finding, not on proving
correctness. Another recent tool to easily find bugs via a bounded analysis of
LLVM IR programs is Alive2 [24], which is tailored to reduce the number of false
positives. Other model checkers or bounded verifiers for LLVM IR are LLMC [2],
RCMC [16], Serval [26], FauST [33] and SAW [8]. They can only check properties
over a bounded state space, in contrast to our approach which uses deductive
verification. PhASAR is a static analysis framework for LLVM IR [36]. Users
specify arbitrary data-flow properties, and PhASAR then fully automatically
tries to analyse these properties. The approach shows promising results, but as
it is fully automatic, it also suffers from imprecisions that have to be manually
filtered out. Lammich [18] formalises the semantics of LLVM IR, using it as the
target language of the Refinement Framework in Isabelle. They do not analyse
LLVM IR programs, but rather they derive correct by construction LLVM IR
programs. Finally, verifying complex programs in the current VCLLVM/VerCors
implementation heavily relies on pure functions. This is similar to approach of
Paganoni and Furia [30] using predicates to verify Java bytecode.

7 Next Steps

As mentioned above, the current version of VCLLVM is still a prototype, and
it needs to be extended with better support for more language features, control
flow reconstruction, concurrency, and library inclusion.

Ultimately, the idea is not to use VCLLVM as a standalone tool to verify
LLVM IR programs directly, but rather to use it as part of a larger infras-
tructure (called Pallas) that will provide deductive verification support for any
programming language that can be compiled into LLVM IR. Figure 3 gives a
visual representation of the Pallas infrastructure. It will define a generic spec-
ification format for contract specifications. For each source-level programming
language supported by Pallas, a concrete contract specification syntax is defined
to specify the desired program properties at the level of the source language,
and then this should bee embedded into the generic contract specification for-
mat. The source to LLVM IR compiler is then used, combined with a compiler
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Fig. 3: Pallas Overall Idea

for the contract specifications in the generic contract specification format to the
LLVM IR format. VCLLVM then enables VerCors to reason about the program.
If verification succeeds, we know that the original source program satisfies the
source-code-level contracts; if verification fails, the error message will be trans-
lated back into an error message for the source program.

Further research questions that we need to investigate to create the Pallas
infrastructure are: (1) How to define a generic contract specification format that
can capture program properties for a large class of source-level programming
languages? (2) How to define a generic translation from the contract specification
format into LLVM IR contract specifications, which can be parametrised by the
compiler from a specific source language into LLVM IR? (3) How to provide
effective feedback at the level of the source language if verification at the LLVM
IR level fails by using decompilation techniques?

8 Conclusions

As a first step to solve the language-dependency problem of deductive verifiers,
we propose to use the LLVM IR format as a generic format. This paper sketches
the design of VCLLVM, a prototype implementation that enables deductive ver-
ification of LLVM IR programs, and we discuss the kind of examples that can
already be verified. In future work, we will expand this into a deductive verifi-
cation framework for any language that can be compiled into LLVM IR.

Data-Availability Statement

The artifact accompanying this paper can be found in [41].
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