
Foundations for Query-based Runtime Monitoring
of Temporal Properties over Runtime Models

1 Brandenburg University of Technology, Cottbus, Germany

2 Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany

Abstract. In model-driven engineering, runtime monitoring of systems
with complex dynamic structures is typically performed via a runtime
model capturing a snapshot of the system state: the model is represented
as a graph and properties of interest as graph queries which are evaluated
over the model online. For temporal properties, history-aware runtime
models encode a trace of timestamped snapshots, which is monitored
via temporal graph queries. In this case, the query evaluation needs to
consider that a trace may be incomplete, thus future changes to the
model may affect current answers. So far there is no formal foundation for
query-based monitoring over runtime models encoding incomplete traces.
In this paper, we present a systematic and formal treatment of incomplete
traces. First, we introduce a new definite semantics for a first-order
temporal graph logic which only returns answers if no future change
to the model will affect them. Then, we adjust the query evaluation
semantics of a querying approach we previously presented, which is based
on this logic, to the definite semantics of the logic. Lastly, we enable
the approach to keep to its efficient query evaluation technique, while
returning (the more costly) definite answers.

1 Introduction

Modern safety-critical systems, e.g., smart healthcare and autonomous trans-
portation, consist of numerous interconnected technologies such as sensors, smart
devices, and information systems [15]. These systems are human-in-the-loop and
operate in highly dynamic environments [16]. Moreover, they are real-time, i.e.,
their safe operation depends on the timing of their actions, and missed deadlines
for these actions may lead to hazardous situations [46]. These characteristics
hinder complete quality assurance during the design of such systems and increase
the uncertainty about their behavior at runtime. Consequently, their safe opera-
tion relies on formally precise Runtime Monitoring (RM) techniques [34], which
are capable of handling the complex underlying structure and its dynamic [13]
as well as timing constraints when monitoring the system behavior [4].

As shown by recent surveys [9, 52], in model-driven engineering, RM of
systems with complex dynamic structures is typically performed via a (structural)
Runtime Model (RTM) [12] capturing a snapshot of the system state: the model
is represented as a graph of interacting components and properties of interest
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 22–55, 2024.
https://doi.org/10.1007/978-3-031-57259-3_2

Lucas Sakizloglou1(B) , Holger Giese2 , and Leen Lambers1

lucas.sakizloglou@b-tu.de

http://orcid.org/0000-0001-6971-1589
http://orcid.org/0000-0002-4723-730X
http://orcid.org/0000-0001-6937-5167
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_2&domain=pdf

as graph queries which are evaluated over the model online; query matches
constitute monitoring issues. For efficiency, the evaluation of graph queries is
based on methods which afford incremental and change-driven evaluation [54],
i.e., triggered only when changes to the RTM are relevant to a query.

For temporal properties, history-aware RTMs capture past changes to the
model and their timing [11], thereby encoding a trace of timestamped snapshots.
These RTMs are then monitored via the evaluation of temporal graph queries
which specify the ordering and timing constraints that matches should satisfy. In
this case, the query evaluation needs to consider that the trace encoded by the
history-aware RTM may be incomplete, i.e., the execution may be ongoing, and
hence future changes to the RTM may affect current query answers. So far there
is no formal foundation for temporal-query-based RM over incomplete RTMs.

In our previous work, we presented a querying approach for the evaluation
of temporal graph queries over history-aware RTMs named InTempo [49]—see
Section 2.3 for an overview and Fig. 1 for an illustration. InTempo advances the
state-of-the-art by: enabling a formally precise answer set which pairs matches
with their temporal validity , i.e., the set of all time points for which a match
exists and satisfies a temporal property according to a first-order temporal graph
logic; featuring sound methods for incremental and change-driven evaluation as
well as the optional pruning of the RTM, i.e., the removal of temporally irrelevant
history. Extensive experimental evaluation showed that our implementation of
InTempo efficiently evaluated complex queries over considerably large models
(approx. from 10K to 48M elements) [49]. The experimental evaluation included
an RM application scenario, in which InTempo evaluated queries faster than an
RTM-based tool and a tool from the related RM approach known as Runtime
Verification (RV).

However, the formal foundation of InTempo assumes that the RTM encodes
a complete trace. For the RM scenario, we equipped InTempo with a check
that was applied to the answer set and, based on the timing constraint of the
property, filtered matches that could be affected by future changes to the RTM.
In this paper, we present a formal foundation for temporal-query-based RM over
incomplete RTMs. The foundation entails the introduction of an answer set which
formalizes the intuition behind the check and allows approaches like InTempo
to maintain their efficiency while returning formally precise answers.

Specifically, our contributions are the following. First, we introduce a definite
semantics for a temporal graph logic (Section 3), which only returns answers if
they are definite, i.e., no future change to the RTM will affect them; we show
that the definite semantics is sound. Then, we introduce a new definite answer set
(Section 4) for the query language of InTempo which pairs matches with their
definite temporal validity and invalidity. Compared to the original (non-definite)
answer set, the definite answer relies on the time point on which a query is
evaluated and thus requires the re-computation of the definite temporal validity
and invalidity in each evaluation. The definite answer set is thus inefficient, i.e.,
not amenable to change-driven evaluation. However, we use this theoretical result
to show that our last contribution, the effective answer set (Section 5), which

Foundations for Query-based RM of Temporal Properties over RTMs 23

status : string
Probe

SHSService

pID : int
PMonitoringService

pID : int
DrugService

Servicects : long
dts : long

MonitorableEntity

[0..*]

[0..*]
event trace

(ℎ!)

answer set
(T or Te)

evaluationmetamodel

mapping of events
to modifications (E)

temporal queries
(in L)

pruningRTMH

operationalization

InTempo

Fig. 1: An excerpt of the SHS metamodel from [49] (left) and an operational
overview of the InTempo implementation where arrows denote input and output.

essentially incorporates the check mentioned above, can return definite answers
while relying on the original, and thus efficient, answer set.

The presented contributions are based on unpublished material from the
doctoral thesis of the first author [47]. Section 2 reiterates preliminaries and
InTempo, Section 6 discusses related work, and Section 7 concludes the paper.
Running Example As a running example we will use the Smart Healthcare
System (SHS) introduced in [49]. Fig. 1 shows an excerpt of the SHS metamodel.
An SHS is an envisioned smart medical environment [45], based on the service-
based exemplar in [55], which supports clinicians in medical treatments by
automating tasks via smart devices. In the context of an SHS, RM may be used
to verify whether treatments comply with the requirements in a guideline, which
typically contain timing constraints [17]. In the SHS, services are invoked by a
main service called SHSService to collect measurements from patient sensors,
i.e., PMonitoringService, or take medical actions via smart medical devices
such as a smart pump, i.e., DrugService. The results of service invocations are
tracked via monitoring probes (Probe) that are attached to Services. Probes
are generated periodically or upon events in the real world. Each Probe has a
status attribute whose value depends on the type of Service. Each Service has
a pID attribute which identifies the patient for whom the Service is invoked.
The MonitorableEntity is explained in Section 2.1.

We focus on a property P that tracks time between triage and admission, as
often done in medical guidelines [39]; in the context of an SHS, these activities are
represented by the invocation of a sensor service and a drug service, respectively:
“When a sensor service is invoked for a patient, there should be a drug service
invoked for the same patient within one minute and, until then, there should
be no other sensor service invoked for the same patient.” The specific timing
constraint is adjusted for the purpose of presentation. Assume an RTM that
captures that a sensor service has just been invoked for a patient, but contains no
drug invocation yet; for monitoring P , it is important to consider that a future
state which contains the drug service invocation may follow in time; therefore,
the present state does not yet violate P .

2 Preliminaries

In this section, we summarize preliminaries and the InTempo query language.
An overview of the notation used in the paper is shown in Table 2 in Section A.

24 L. Sakizloglou et al.

n!.!
s:SHSService

pm:PMonitoringServicepm2:PMonitoringService

{pm.pID = pm2.pID}

n!.#
s:SHSService

pm:PMonitoringService

{pm.pID = d.pID}

d:DrugService

n!	 s:SHSService pm:PMonitoringService

(𝑛!, 𝜓%)

𝑁
(𝑛!, ¬𝜓%)

(𝑛!, ¬∃𝑛!.!)

(𝑛!, ∃𝑛!.!)

(𝑛!.!, 𝑡𝑟𝑢𝑒)

(𝑛!, ∃𝑛!.#)

(𝑛!.#, 𝑡𝑟𝑢𝑒)

Fig. 2: Patterns for the SHS (left) and the GDN N for the query (n,¬ψP).

2.1 Formal Representation of Models and Queries

An RTM is typically represented as a graph, where system entities are captured by
vertices, information about the entities by attributes, and relationships between
entities by edges [25, 14, 24]. In this paper, for the formal representation of RTMs,
we rely on the well-known typed graphs [20], i.e., graphs typed over a type graph
which defines types of vertices, edges, and valid structures for typed graphs.

Definition 1 ((typed) graph, (typed) graph morphism, type graph). A
graph G = (GV , GE , sG, tG) consists of a set of vertices GV , a set of edges GE,
a source function sG : GE → GV , and a target function tG : GE → GV . Given
two graphs G = (GV , GE , sG, tG) and K = (KV ,KE , sK , tK), a graph morphism
f : G → K is a pair of mappings fV : GV → KV , fE : GE → KE such that
fV ◦ sG = sK ◦ fE and fV ◦ tG = tK ◦ fE. A graph morphism f : G → K is a
monomorphism, denoted by ↪→, if fV and fE are injective. A type graph is a
distinguished graph TG = (TGV , TGE , sTG, tTG). A tuple (G, type) consisting of
a graph G and a graph morphism type : G→ TG is called a typed graph. Given
two typed graphs GT = (G, type) and KT = (K, type′), a typed graph morphism
f : GT → KT is a graph morphism f ′ : G→ K such that type′ ◦ f ′ = type.

Type graphs can be extended to support the well-known concepts of inheritance
and multiplicities from the object-oriented paradigm [53]. Moreover, typed graphs
can be extended by vertex and edge attributes, each associated with a data type,
i.e., a character string, an integer, a real number, or a boolean, to obtain typed
attributed graphs [20]. Attribute assignments assign data-type-compatible values
to attributes, and attribute constraints , i.e., a boolean expression over attribute
values, restrict the possible assignments. Our contributions rely on such graphs,
defined in detail in our prior work [50]; to avoid the complication of presentation,
here we omit these extensions from our definitions.

The metamodel in Fig. 1 may be seen as an informal representation of the
type graph of the SHS, where only vertices have attributes. Correspondingly, the
RTM G7 in Fig. 3 is an informal representation of a typed attributed graph. We
henceforth refer to typed attributed graphs simply as graphs or patterns. The
RTM G7 contains assignments, which assign values to attributes, e.g., pm1.pID

Foundations for Query-based RM of Temporal Properties over RTMs 25

𝐻["]

pID= 1
cts= 5
dts= ∞

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

s:SHSService

𝐻[$]

pID= 2
cts= 7
dts= ∞

pm2:PMonitoringService
pID= 1
cts= 5
dts= 7

d1:DrugService

pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService
cts= 2
dts= ∞

s:SHSService

𝐺% s:SHSService

s:SHSService𝐺&

pID= 1
pm1:PMonitoringService

s:SHSService𝐺$

pID= 1
pm1:PMonitoringService

pID= 2
pm2:PMonitoringService

𝐺" s:SHSService

pID= 1
pm1:PMonitoringService

pID= 1
d1:DrugService

Fig. 3: Snapshots as RTMs (G∗) and traces as RTMH instances (H[∗]).

= 1. The representation of the textual statements in property P of the running
example by patterns is illustrated in Fig. 2: The invocation of a sensor service is
captured in patterns n1 and n1.1, and the invocation of a drug service is captured
in n1.2; constraints are illustrated between braces, e.g., n1.1 requires that the
values for pID of pm and pm2 are equal; vertices with the same label refer to the
same vertex in the queried RTM.

We assume that the system is instrumented to generate (instantaneous) events
upon changes to its state, and identify the system execution with a possibly
infinite sequence of such events. The system has a clock whose time domain is the
set of non-negative real numbers R+

0 , and uses the clock to timestamp events. We
refer to an element of the time domain as a time point. Intuitively, an (execution)
trace hτ of a system with respect to an event at time point τ is the sequence of
all observed events in the execution from its beginning, i.e., time point 0, up
to and including τ . For brevity, we group all changes with the same time point
in one event. However, we require that no event groups an infinite amount of
changes, thereby ruling out Zeno behaviors—in the use-cases of interest, all traces
will eventually terminate and differences between measurements cannot become
infinitely small. We denote the time point at position i of hτ by τi, with i ∈ N+.

For a model-based representation of a trace hτ , we rely on a Runtime Model
with History (RTMH) [49]. An RTMH H is a distinguished RTM where the fol-
lowing conditions hold. All vertices in H have a distinguished creation timestamp
cts and a deletion timestamp dts to which a value is assigned—therefore in Fig. 1,
all vertices inherit from the MonitorableEntity.3 When a vertex is created, the
time point of creation is assigned to cts and the value ∞ is assigned to the dts;
the dts value changes when the vertex is deleted in the modeled system. As a
vertex cannot have been deleted prior to its creation or deleted simultaneously
to its creation, the value of dts , if not ∞, has to be larger than the value of cts .

3 If tracking changes to attribute values or edges in an RTM is of importance, those
can be modeled as vertices, which is a customary modeling technique, e.g., [36].

26 L. Sakizloglou et al.

An hτ can be transformed to an RTMH H based on a mapping E from the set
of all possible events to corresponding graph modifications [48]; to capture the
period covered by H in this case, we denote it by H[τ]. Each trace continuation
hτ ′ that is yielded by an event at time point τ ′ with τ ′ > τ can be similarly
transformed to a H[τ ′] by applying the changes in the event at τ ′ to H[τ]; we
refer to H[τ ′] as a new version of H[τ]. This process generates a trace of RTMs
hHτ ′ , called an RTMH-trace, which mirrors h′τ ; we refer to members of hHτ ′ as
instances of the RTMH. Formally, an H[τ] is a compact representation of a timed
graph sequence [26], i.e., a sequence of timestamped graphs where additions and
deletions between two consecutive graphs are represented by morphisms. As an
example of an RTMH, see H[5] in Fig. 3 which contains all changes in events up
to time point 5; H[5] represents the timed graph sequence G2G4G5 (left in Fig. 3;
morphisms are omitted). A new event at time point 7 which contains the deletion
of d1, and the addition of pm2 is transformed into H[7]; this RTM represents the
sequence G2G4G5G7. If τ in hτ , hHτ , or H[τ] is irrelevant, we omit it.

2.2 Metric Temporal Graph Logic

For the specification and analysis of temporal properties in temporal queries,
InTempo relies on the Metric Temporal Graph Logic (MTGL) [50, 26]. MTGL
builds on Nested Graph Conditions (NGCs) [27] and Metric Temporal Logic
(MTL) [35] to enable the formulation of Metric Temporal Graph Conditions (MT-
GCs). The language of NGCs can formulate requirements that are as expressive
as first-order logic on graphs [18], as shown in [27, 44], and constitutes as such a
natural formal foundation for pattern-based queries. As NGCs, MTGCs support
bindings , i.e., morphisms between patterns which bind elements in outer condi-
tions to inner (nested) conditions, and are therefore able to track the evolution
of a given binding in a sequence of graphs separately to other bindings.

In the following definition of MTGL, we focus on a subset of MTGL operators
which contains the metric, i.e., interval-based, temporal operators until (UI , with
I an interval in R+

0) and its dual since (SI) from MTL. The existential quantifier
features a binding between the patterns n and n̂.

Definition 2 (metric temporal graph conditions). Let n,n̂ be patterns and
f : n ↪→ n̂ a binding. Moreover, let I be an interval in R+

0 . Then ψ is a Metric
Temporal Graph Condition (MTGC) over n defined as follows.

ψn ::= true | ¬ψn | ψn ∧ ψn | ∃(f : n ↪→ n̂, ψn̂) | ψn UIψn | ψn SIψn

In the remainder, we abbreviate ∃(f, true) by ∃ f and, when the domain of f is
clear from the context, ∃(f : n ↪→ n̂, ϕn̂) by ∃(n̂, ϕ). Other abbreviations, e.g.,
disjunction (∨), eventually (♢I) can be defined as usual.

Based on the patterns in Fig. 2, property P from the running example can be
reformulated into “given a binding for n1 at a time point τ , at least one binding
for n1.2 is found at some time point τ ′ ∈ [τ, τ +60], i.e., at most 60 seconds later;
in addition, at each time point τ ′′ ∈ [τ, τ ′) in between, no binding for n1.1 is
present.” In MTGL, this property is captured by the MTGC ψP := ¬∃ (n1 ↪→

Foundations for Query-based RM of Temporal Properties over RTMs 27

n1.1, true)U[0,60] ∃ (n1 ↪→ n1.2, true), or, abbreviated, ¬∃n1.1 U[0,60] ∃n1.2. The
system is assumed to track time in seconds; vertices s and pm from n1 are bound
in the patterns n1.1 and n1.2, i.e., all patterns refer to the same s and pm.

MTGL reasons over (finite) timed graph sequences. However, MTGCs can also
be equivalently checked over a graph with history [26], which here corresponds to
an RTMH. In the following, we define the semantics of the satisfaction relation
of MTGL based on an RTMH.

Definition 3 (satisfaction of metric temporal graph conditions over an
RTM). Let H be an RTMH, n a pattern, and m : n ↪→ H a binding. Moreover,
let τ be a time point in R+

0 and ψ be an MTGC over n. Then m in H satisfies
ψ at τ , written (H,m, τ) |= ψ, if maxe∈Ee.cts ≤ τ < mine∈Ee.dts, with E the
vertices of m, and one of the following cases applies.

– ψ = true.
– ψ = ¬χ and (H,m, τ) ̸|= χ.
– ψ = χ ∧ ω, (H,m, τ) |= χ, and (H,m, τ) |= ω.
– ψ = ∃(f : n ↪→ n̂, χ) and there exists m̂ : n̂ ↪→ H such that m̂ ◦ f = m and
(H, m̂, τ) |= χ.

– ψ = χUIω and there exists τ ′ with τ ′ − τ ∈ I such that (H,m, τ ′) |= ω and
for all τ ′′ ∈ [τ, τ ′) (H,m, τ ′′) |= χ.

– ψ = χSIω and there exists τ ′ with τ − τ ′ ∈ I such that (H,m, τ ′) |= ω and
for all τ ′′ ∈ (τ ′, τ] (H,m, τ ′′) |= χ.

Intuitively, a binding m for n in the RTM H satisfies the MTGC ∃(f : n ↪→ n̂, χ)
at time point τ if (i) all elements of m are already created but not yet deleted at
τ , and (ii) there exists a binding m̂ for n̂ in H such that m̂ is compatible with
m, i.e., respects the binding between the two patterns captured in n ↪→ n̂, and
m̂ satisfies the MTGC χ at τ . The intuition behind true, negation, conjunction,
until, and since is the usual.

2.3 InTempo: Query Language and Overview of Operation

InTempo introduces a query language, henceforth referred to as L, which has
two distinguishing features: it enables the formulation of ordering and temporal
constraints in MTGL, i.e., as an MTGC, thereby enabling formal precision in
checking whether matches satisfy those constraints; it computes the period for
which a match satisfies an MTGC, thereby enabling practical query evaluations,
as the query does not have to be evaluated for each time point of interest. We
summarize core concepts of graph queries and L below.

In its plainest form, a graph query is characterized by a pattern n. A match
for this query is a binding from n to a queried graph which preserves structure
and type. L allows for the specification of temporal graph queries , i.e., queries of
the form (n, ψ) with ψ an MTGC over n, whereby matches for n in an RTMH H
need to satisfy the temporal requirement captured in ψ. Based on the running
example, the query (n1,¬ψP), searches H for matches for n1, i.e., sensor services,
which falsify ψP .

28 L. Sakizloglou et al.

Vertices in H have lifespans, defined by their cts and dts . Similarly, a match
m in H is valid only if there is a non-empty interval λm = ∩e∈E [e.cts, e.dts), with
E the vertices of m, called the lifespan of a match. According to its definition,
the values of regular attributes in H cannot change and, hence, cannot affect λm.
In the special case where the pattern of a query is the empty graph ∅, an (empty)
match m is always found with λm = R. Temporal logics that reason over intervals,
such as MTGL, are capable of deciding the truth value of a property for the
entire time domain; in InTempo, the set of time points satisfying a property is
called the satisfaction span and defined as Y(m,ψ) = {τ | τ ∈ R∧ (H,m, τ) |= ψ}
with ψ an MTGC. The temporal validity V(m,ψ) is equal to λm ∩ Y(m,ψ) and
defined as the period for which m exists in H and satisfies ψ.

The following computation, called the satisfaction computation Z of m for
ψ, soundly computes Y, as shown in [49]. The computation relies on interval
operations defined as usual [see 41]: Let k, z be intervals; then k ⊕ z = [ℓ(k) +
ℓ(z), r(k) + r(z)], k ⊖ z = [ℓ(k) − r(z), r(k) − ℓ(z)] with ℓ(k) and r(k) the left
and right end-point of k, respectively. We denote the unions ℓ(k) ∪ k by +k, and
k ∪ r(k) by k+; when r(k) = ∞, k+ = k. The interval k is overlapping z when
k ∩ z ̸= ∅ and adjacent to z when k ∩ z = ∅ but k ∪ z is an interval.

Definition 4 (satisfaction computation Z). Let n, n̂ be patterns and ψ, χ, ω
be MTGCs. Moreover, let m be a match for n in an RTM H, and M̂ a set of
matches for n̂ that are compatible with the (enclosing) match m. The satisfaction
computation Z(m,ψ) is recursively defined as follows.

Z(m, true) = R (1)
Z(m,¬χ) = R \ Z(m,χ) (2)

Z(m,χ ∧ ω) = Z(m,χ) ∩ Z(m,ω) (3)

Z(m, ∃(n̂, χ)) =
⋃

m̂∈M̂

λm̂ ∩ Z(m̂, χ) (4)

Z(m,χUIω) =

⋃

i∈Z(m,ω), j∈Ji

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ̸∈ I⋃

i∈Z(m,ω)

i ∪
⋃

j∈Ji

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ∈ I

(5)

Z(m,χSIω) =

⋃

i∈Z(m,ω), j∈Ji

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ̸∈ I⋃

i∈Z(m,ω)

i ∪
⋃

j∈Ji

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ∈ I

(6)

with Ji the set of all intervals in Z(m,χ) that are either overlapping or adjacent
to some i ∈ Z(m,ω).

The intuition behind the equations for true, negation, and conjunction is clear.
Regarding exists, the satisfaction span is the union of the temporal validity of
all matches m̂ for n̂ which are compatible with m. Regarding until, if 0 ̸∈ I, the
satisfaction includes every time point τ in the intersection of some i′ ∈ Z(m,ω)
with a j′ ∈ Z(m,χ) for which a time point τ ′ ∈ i′ occurs within I. Furthermore, j′

Foundations for Query-based RM of Temporal Properties over RTMs 29

needs to overlap i′, e.g., j′ = [1, 3], i′ = [2, 4] or be adjacent to i′, e.g., j′ = [1, 2),
i′ = [2, 4]. If j′ and i′ are adjacent, during the computation j becomes right-
closed to ensure that their intersection produces a non-empty set. If 0 ∈ I, then,
according to Definition 3, it may be that j′ is empty, i.e., does not exist, and
until is satisfied by every i′ ∈ Z(m,ω). Therefore, the computation includes every
i′ and remains unchanged otherwise. The intuition behind since is analogous.

The intersection of two intervals is always an interval, whereas the union of
two intervals may result in disjoint sets. Hence, technically Z and V are interval
sets which may contain disjoint or empty intervals.

We define below the answer set T for a query in L.

Definition 5 (query answer set T). Given a pattern n, an MTGC ψ, and an
RTMH H, the answer set T of a query in L over H is given by:

T(H) = {(m,V(m,ψ))|m is a match for n ∧ V(m,ψ) ̸= ∅}

Regarding the operation of InTempo (see Fig. 1), the approach expects a
metamodel, a set of queries in L, a mapping E from events to modifications,
and an event trace hτ as input—see definitions earlier. InTempo operationalizes
queries (see Section 5). For each event events in hτ , InTempo performs the
corresponding changes to an RTMH and, after each change, evaluates the queries.
Pruning may follow, which triggers another query evaluation to update stored
matches. Finally, InTempo returns the answer set T or, for RM, performs the
check described in Section 1 and essentially returns matches in the effective answer
set Te (see Section 5). In our implementation of InTempo, the metamodel, the
queries, and the mapping are defined based on model-based technologies [48].

We present an example that demonstrates that T may contain imprecise
answers in the context of an incomplete trace.

Example 1 (imprecision over incomplete trace). Evaluated over H[7] in Fig. 3, the
query (n1,¬ψP) returns an answer set T(H[7]) which contains a pair (m2, [7,∞));
m2 is a match for n1 involving the vertex pm2, and [7,∞) is the temporal validity
V which states that m2 falsifies ψP from time point 7 onward. V is the result of
the intersection of λm2 = [7,∞) with Z(m2,¬ψP) = R. The satisfaction span Z

is computed according to Definition 4—see Table 1 for details.
This computation is definite only if H[7] is the last instance in an RTMH-trace;

if the trace is incomplete, and it is to be continued by a new H[τ] with τ ≤ 67,
the match m2 may still satisfy ψP , as there is still time for a DrugService to be
created timely, i.e., a match for the pattern n1.2, which is compatible with m2,
to be found—assuming that until then there would be no match for n1.1.

3 Definite Semantics for Metric Temporal Graph Logic

This section presents our contribution to MTGL. Specifically, we introduce a new
semantics, called definite, which only returns answers if they are definite, i.e., no
future change to the RTMH will affect them. Similarly to temporal logics which

30 L. Sakizloglou et al.

account for RM over incomplete traces [8, 21], the definite semantics is three-
valued, as they return the value unknown when the result of the satisfaction check
is not definite. We show the soundness of the definite semantics in Theorem 1
based on the regular semantics in Definition 3. Moreover, we show that for a
certain period the definite and the regular semantics are equivalent (Theorem 2);
this equivalence enables our contribution in Section 5, i.e., it allows InTempo to
return definite answers efficiently. Finally, we demonstrate an intrinsic limitation
of the definite semantics: we show that for unsatisfiable properties, the semantics
may return decisions with a delay, compared to the earliest time point on which
the decisions could have been returned. We compute the maximum possible
magnitude of the delay (Corollary 2).

We begin with the definition of the definite semantics. In the context of an
RTMH H[c], a satisfaction decision for time point τ ∈ [0, c] is definite if the
decision for τ remains the same in all possible future versions of H[c]. We obtain
the definite satisfaction span by adjusting the satisfaction relation of MTGL
from Definition 3 to this notion of definiteness. Moreover, we obtain the definite
falsification by negating the statements in the cases of the definite satisfaction.
We present the adjusted satisfaction relation, called definite satisfaction relation,
and the definite falsification relation over an RTMH below.

Definition 6 (definite satisfaction and definite falsification of metric
temporal graph conditions over an RTMH). Let H[c] be a RTMH, n a
pattern, and m : n ↪→ H[c] a match. Moreover, let τ ∈ R be a time point and
ψ be an MTGC over n. Then the definite satisfaction relation |=d and definite
falsification relation |=d

F are defined via mutual recursion as follows. The match
m definitely satisfies ψ at τ , written (H[c],m, τ) |=d ψ, iff τ ∈ λm ∩ [0, c], or m
is the empty match, and one of the following cases applies.

– ψ = true.
– ψ = ¬χ and (H[c],m, τ) |=d

F χ.
– ψ = χ ∧ ω, (H[c],m, τ) |=d χ, and (H[c],m, τ) |=d ω.
– ψ = ∃(f : n ↪→ n̂, χ) and there exists m̂ : n̂ ↪→ H[c] such that m̂ ◦ f = m and
(H[c], m̂, τ) |=d χ.

– ψ = χUIω and there exists τ ′ with τ ′ − τ ∈ I such that (H[c],m, τ
′) |=d ω

and for all τ ′′ ∈ [τ, τ ′) (H[c],m, τ
′′) |=d χ.

– ψ = χSIω and there exists τ ′ with τ − τ ′ ∈ I such that (H[c],m, τ
′) |=d ω

and for all τ ′′ ∈ (τ ′, τ] (H[c],m, τ
′′) |=d χ.

The definite falsification relation is based on a logical negation of the statements
in the cases of the definite satisfaction relation. The match m definitely falsifies
ψ at τ , written (H[c],m, τ) |=d

F ψ, iff τ ∈ λm ∩ [0, c], or m is the empty match,
and one of the following cases applies.

– ψ = ¬χ and (H[c],m, τ) |=d χ.
– ψ = χ ∧ ω and (H[c],m, τ) |=d

F χ or (H[c],m, τ) |=d
F ω.

– ψ = ∃(f : n ↪→ n̂, χ) and either there does not exist an m̂ : n̂ ↪→ H[c] such
that m̂ ◦ f = m, or there exists m̂ and (H[c], m̂, τ) |=d

F χ.

Foundations for Query-based RM of Temporal Properties over RTMs 31

– ψ = χUIω and for all τ ′ with τ ′ − τ ∈ I (H[c],m, τ
′) |=d

F ω or there exists
τ ′′ ∈ [τ, τ ′) such that (H[c],m, τ

′′) |=d
F χ.

– ψ = χSIω and for all τ ′ with τ − τ ′ ∈ I (H[c],m, τ
′) |=d

F ω or there exists
τ ′′ ∈ (τ ′, τ], (H[c],m, τ

′′) |=d
F χ.

In comparison to |=, |=d confines the lifespans of matches and the satisfaction
of exists to the period that has been observed, i.e., [0, c]. Moreover, |=d relies on
|=d

F for the satisfaction of a negation. Similarly to |=d, |=d
F confines the decisions

for matches to [0, c], and relies on |=d for the falsification of negation. The match
m never falsifies true. We note that |=d

F and ̸|=d are not equivalent; ̸|=d returns
true for time points that do not definitely satisfy the operator, i.e., points that
falsify it but also points for which a definite decision cannot yet be made.

The following theorem shows the soundness of the definite relations |=d and
|=d

F by relating them to the regular satisfaction relation |= from Definition 3 and
its negation ̸|=. The theorem refers to observed prefixes of a possibly infinite
RTMH-trace hH and their possible continuations; an RTMH H[τi] in hH is
associated with the τ of the event with index i ∈ N+ in the execution h—see
Section 2.1. The theorem states that a definite decision, i.e., a decision made
by either |=d or |=d

F , for a certain time point τ over an H[τi] in hH implies that
the same decision is made by |= (or ̸|=) for τ over H[τi]; moreover, |= makes the
same decision for τ over all possible future versions of H[τi] in hH .

Theorem 1 (definite relations imply satisfaction relation over trace).
Let ψ be an MTGC over a pattern n. Moreover, let hHτD be RTMH-trace, with
D ∈ N+. For all i ∈ [1,D] ∩ N+, if m is a match for n in H[τi] and τ ∈ [0, τi],
then for all k ∈ [i,D] ∩ N+, (i) if (H[τi],m, τ) |=d ψ, then (H[τk],m, τ) |= ψ, and
(ii) if (H[τi],m, τ) |=d

F ψ, then (H[τk],m, τ) ̸|= ψ.

Proof (idea). By mutual structural induction over ψ. The implication is shown
to hold for each MTGL operator. See Section B.1 for the complete proof. ⊓⊔

In the following, we discuss the second important result of this section, i.e.,
the equivalence of the definite and regular semantics.

The satisfaction decision for future temporal operators at time point τ may
depend on a τ ′ > τ . The upper bound of the distance between τ ′ and τ is given
by the non-definiteness window, defined below.

Definition 7 (non-definiteness window w). Given an MTGC ψ, the non-
definiteness window w, i.e., the period for which a satisfaction decision for ψ at
a time point τ may be non-definite, is defined as follows.

w(ψ) =

r(I) + max (w(χ), w(ω)) if ψ = χUI ω

max (w(χ), w(ω)) if ψ = χSI ω

max (w(χ), w(ω)) if ψ = χ ∧ ω
w(χ) if ψ = ¬χ
w(χ) if ψ = ∃(n, χ)
0 if ψ = true

(7)

32 L. Sakizloglou et al.

As usual in (online) RM, we assume that w ̸= ∞, i.e., MTGCs contain no
unbounded future operators which may render a property non-monitorable [42].

Based on w, we present a variation of Theorem 1 which states that, given an
H[τi], if τ ∈ [0, τi − w], with i an index in a RTMH-trace, then definite decisions
made by either the definite satisfaction relation |=d or definite falsification relation
|=d

F are equivalent to the decisions of the satisfaction relation |=. If w ̸= 0, in
order for [0, τi − w] to be a valid interval, it is implicitly required that τi ≥ w,
i.e., H[τi] covers a period that is larger than the non-definiteness window.

Theorem 2 (definite relations are equivalent to satisfaction relation
over certain period of trace). Let ψ be an MTGC over a pattern n and w
the non-definiteness window of ψ. Moreover, let hHτD be an RTMH-trace, with
D ∈ N+. For all i ∈ [1,D]∩N+, if m is a match for n in H[τi] and τ ∈ [0, τi−w],
then for all k ∈ [i,D] ∩ N+, (i) (H[τi],m, τ) |=d ψ iff (H[τk],m, τ) |= ψ, and (ii)
(H[τi],m, τ) |=d

F ψ iff (H[τk],m, τ) ̸|= ψ.

Proof (idea). By mutual structural induction over ψ. The equivalence is shown
to hold for each MTGL operator. See Section B.2 for the complete proof. ⊓⊔

Theorem 2 enables our contribution to change-driven evaluation in Section 5.
Finally, we present the third important result of the section, i.e., the limitation

of the semantics. The following corollary states that all time points for which a
definite decision cannot be made belong to a certain period in the observed trace.

Corollary 1 (period in trace with non-definite decisions). Let ψ be an
MTGC, w be the non-definiteness window of ψ, H[τi] be an RTMH instance
associated with the time point τi, m be a match for a pattern n, and τ a time
point in [0, τi]. If (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ, then τ ∈ (τi −w, τi].

Proof (idea). Follows from Theorem 2—see Section B.3 for the complete proof.
⊓⊔

We demonstrate below that, in case an MTGC is unsatisfiable (or unfalsifiable),
the definite relations may return an answer with a delay. The maximum possible
delay depends on the non-definiteness window w from Definition 7.

Let |=T and |=F,T be respectively a satisfaction and falsification relation for
MTGL that reflect the timeliest knowledge : Given a match m, an MTGC ψ, an
RTMH instance H[τi] from a sequence of instances, and a time point τ ∈ [0, τi],
(H[τi],m, τ) |=T ψ if (H[τi],m, τ) |= ψ and there exists no possible successor of
H[τi] in the sequence that could falsify ψ at τ ; analogously, (H[τi],m, τ) |=F,T ψ if
(H[τi],m, τ) ̸|= ψ and there exists no possible successor of H[τi] that could satisfy
ψ at τ . These timeliest relations can only make decisions for m over the observed
trace, as m may not exist in the parts covered by successors of H[τi], i.e., in time
points larger than τi.

Given a sequence of RTMH instances hH with H[τi] an instance in hH , let
H[τk] be the first successor of H[τi] in hH for which τk ≥ τi + w. The following
corollary states that, contrary to |=T and |=F,T, the definite relations may have
to wait for H[τk] to be able to make a definite decision for τ ∈ (τi − w, τi].

Foundations for Query-based RM of Temporal Properties over RTMs 33

Corollary 2 (maximum possible delay before definite decision). Let ψ
be an MTGC, w be the non-definiteness window of ψ, m be a match for a pattern
n, and H[τi] be an RTMH instance from a sequence of RTMH instances hHτD with
i ∈ [1,D] ∩ N+. Moreover, let τ ∈ (τi − w, τi] and k be the smallest index in
[i,D] ∩ N+ such that τk ≥ τi + w. If (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ,
then a definite decision for τ can be made over H[τk].

Proof. Follows from Corollary 1. ⊓⊔

Thus, compared to |=T and |=F,T, the definite relations may make a decision
for τ ∈ (τi − w, τi] with a delay of at most (τk − τi) time points.

Example 2. (delay in definite decision) Let ψc := ♢[0,1](¬∃n1 ∧ ∃n1). Consider
an RTMH-trace comprising two RTMH instances: H[7] in Fig. 3 and a hypo-
thetical H[9] which is yielded by an unrelated change and all elements from
H[7] are unchanged. Therefore, a match m1 exists in both instances. The check
(H[7],m1, 7) |=F,T ψc returns true, as (H[7],m1, 7) ̸|= ψc and there is no possible
successor of H[7] that could satisfy ψc; on the other hand, (H[7],m1, 7) |=d

F ψc

makes no decision, as according to its definition, the relation waits first for a
duration of history that covers the timing constraint of until to be observed.
The check (H[9],m1, 7) |=d

F ψc returns true, as enough time has elapsed. Thus,
compared to |=F,T, this decision has been made with a delay of two time points.

Avoiding this delay would require that the definite relations recognize whether
an MTGC is satisfiable which is undecidable for NGCs and thus MTGCs. The
delay is not observed with the running example, i.e., ψP := ¬∃n1.1 U[0,60] ∃n1.2
or similar MTGCs, e.g., (♢[0,2]∃n1.1) ∧ (♢[0,3]∃n1.2).

4 Computations and Answer Set for Definite Semantics

This section presents our contribution to the semantics of L, the query language
of InTempo. Specifically, we adjust the satisfaction computation presented in
Definition 4 to the definite satisfaction relation (|=d) from Definition 6. Moreover,
we introduce the analogous concepts for the definite falsification relation (|=d

F).
Theorem 3 shows the soundness of the introduced computations. Based on these
computations, we introduce a definite answer set for L.

In the context of a temporal query (n, ψ) the definite satisfaction span related
to a match m for n in H[c] is defined similarly to the satisfaction span Y in
Section 2.3, i.e., Yd = {τ |τ ∈ R ∧ (H[c],m, τ) |=d ψ}. The definite falsification
span is defined as Fd = {τ |τ ∈ R ∧ (H[c],m, τ) |=d

F ψ}. Any time point in the
time domain not in Yd or F belongs to the unknown span X. The sets Yd,Fd,
and X are disjoint. It also holds that R = Yd ⊎ Fd ⊎X. The definite satisfaction
computation Zd and the definite falsification computation F d for an MTGC are
defined below.

34 L. Sakizloglou et al.

Definition 8 (definite satisfaction computation Zd and definite falsifica-
tion computation F d). Let n, n̂ be patterns and ψ, χ, ω be MTGCs. Moreover,
let m be a match for n in an RTMH H, and M̂ a set of matches for n̂ that are
compatible with the (enclosing) match m. The definite satisfaction computation
Zd(m,ψ) and definite falsification computation F d(m,ψ) are defined via mutual
recursion as follows.

Zd(m, true) = R (8)

Zd(m,¬χ) = F d(m,χ) (9)

Zd(m,χ ∧ ω) = Zd(m,χ) ∩ Zd(m,ω) (10)

Zd(m, ∃(n̂, χ)) = (−∞, τ] ∩
⋃

m̂∈M̂

λm̂ ∩ Zd(m̂, χ) (11)

Zd(m,χUIω) =

⋃

i∈Zd(m,ω), j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ̸∈ I⋃

i∈Zd(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ∈ I

(12)

Zd(m,χSIω) =

⋃

i∈Zd(m,ω), j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ̸∈ I⋃

i∈Zd(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ∈ I

(13)

with Jd
i the set of all intervals in Zd(m,χ) that are either overlapping or adjacent

to some i ∈ Zd(m,ω).
Based on R = Yd⊎Fd⊎X, the definite falsification computation F d(m,ψ) can

be generally defined as F d = R \ (Zd ⊎X), which leads to the following equations.

F d(m, true) = ∅ (14)

F d(m,¬χ) = Zd(m,χ) (15)

F d(m,χ ∧ ω) = F d(m,χ) ∪ F d(m,ω) (16)

F d(m, ∃(n̂, χ)) = (−∞, τ] ∩
(
R \ Zd(m, ∃(n̂, χ))

)
(17)

F d(m,χUIω) =

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jd

i

j ∩
(
(j+ ∩ i)⊖ I

))
if 0 ̸∈ I

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

))
if 0 ∈ I

(18)

F d(m,χSIω) =

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jd

i

j ∩
(
(+j ∩ i)⊕ I

))
if 0 ̸∈ I

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

))
if 0 ∈ I

(19)

Foundations for Query-based RM of Temporal Properties over RTMs 35

where Jd
i is the set of all intervals in Zd(m,χ)⊎X(m,χ) that are either overlapping

or adjacent to some i ∈ Zd(m,ω) ⊎X(m,ω).

Regarding Zd, the equations for conjunction, until, and since have the same
structure with their corresponding equations in Definition 4, but rely on Zd

instead of Z. Analogously to |=d, the computation for negation relies on F d. The
computation for exists confines its decisions to the period that has been observed.

Regarding F d, a match m never falsifies true; analogously to |=d
F , F d relies on

Zd for the falsification of negation; the operator exists confines its computation to
the observed period; the equations for until and since complement their respective
definite satisfaction computations, whereby the definite satisfaction computation
for their operands χ and ω instead of considering only time points that definitely
satisfy χ and ω, i.e., their satisfaction spans Zd(m,χ) and Zd(m,ω), considers
time points that do not definitely falsify χ and ω, i.e., Zd(m,χ) ⊎X(m,χ) and
Zd(m,ω) ⊎X(m,ω).

The following theorem states that the set of time points in the definite
satisfaction span Yd and definite falsification span Fd are equal to the sets of
time points obtained by the definite satisfaction computation Zd and definite
falsification computation F d, respectively.

Theorem 3 (equality of definite spans and definite computations for
satisfaction and falsification). Given a match m in an RTMH H[τ] and an
MTGC ψ, it holds that Yd(m,ψ) = Zd(m,ψ) and Fd(m,ψ) = F d(m,ψ).

Proof (idea). The proof for Zd proceeds by structural induction over ψ. The proof
for F d is based on the application of F d = R \ (Zd ⊎X) for each MTGL operator.
See Section B.4 for the complete proof. ⊓⊔

Based on the definite computations, we now extend L with a notion of definite
answers by adjusting the answer set T in Definition 5. To this end, we define
the notion of temporal invalidity IV as the dual notion of temporal validity V

from Section 2.3, i.e., the intersection of the lifespan λm of a match m with
the falsification span. Moreover, we define the definite temporal validity Vd as
λm ∩ Zd, and the definite temporal invalidity IVd as λm ∩ F d.

Definition 9 (definite answer set Td). Given a pattern n, an MTGC ψ, and
an RTMH H, the definite answer set Td of a query in L over H is given by:

Td(H) = {(m,Vd(m,ψ), IVd(m,ψ))|m is a match for n ∧ (Vd ̸= ∅ ∨ IVd ̸= ∅}

Example 3 (precision of definite computations over incomplete trace). As in
Example 1, the query (n1,¬ψP) is evaluated over H[7]. This time however, we
obtain the definite answer set Td(H[7]). The match m2 for n1, that involves the
object pm2, is not contained in Td; m2 is matched and its lifespan is computed
to be λm2 = [7,∞) but no compatible match for n1.2 is found; As shown in
Table 1, Zd(m2, ψP) = (−∞,−53] and F d(m2, ψP) = ∅. Therefore, both Vd and
IVd are empty, and the match is excluded from Td. Note that Td(H[7]) contains

36 L. Sakizloglou et al.

Table 1: Computations Z, Zd, and F d for two matches for (n1,¬ψP) over H[7].
m1 m2

MTGC Z Zd F d Z Zd F d

true R R ∅ R R ∅
∃n1.1 ∅ ∅ (−∞, 7] ∅ ∅ (−∞, 7]
¬∃n1.1 R (−∞, 7] ∅ R (−∞, 7] ∅

true R R ∅ R R ∅
∃n1.2 [5, 7) [5, 7) {(−∞, 5), [7, 7]} ∅ ∅ (−∞, 7]

ψP [−55, 7) [−55, 7) {(−∞,−55), [7, 7]} ∅ ∅ (−∞,−53]
¬ψP {(−∞,−55), [7,∞)} {(−∞,−55), [7, 7]} [−55, 7) R (−∞,−53] ∅

a match m1 for n1 that involves pm1, as its Vd is non-empty (see Table 1), i.e.,
there are time points for which m1 definitely falsifies ¬ψP , or definitely satisfies
ψP . All computations in Table 1 are interval sets (see Section 2.3), however, for
presentation purposes, singletons are displayed as intervals.

Let H[67] be an RTMH that is yielded by an event at time point 67; the changes
by this event do not affect vertices or nodes in H[7]; m2 would be returned by Td,
paired with Vd = [7, 7], as there would be no future version of the RTMH which
could satisfy ψP at time point 7.

5 Keeping to Change-driven Evaluation

The operationalization of queries in InTempo (see also Fig. 1) is based on
Generalized Discrimination Networks (GDNs) [28, 10]. Specifically, a query in L

is decomposed into a suitable ordering, i.e., a network, N of simple sub-queries. N
is a tree where each node represents a query and each edge a dependency between
queries—see Fig. 2 (right) for the GDN for ψP . N is executed bottom-up, i.e., the
execution starts with leaves and proceeds upward. The root of N computes the
answer set T(H) of q. Each node in N stores intermediate matches paired with
their Z; therefore N is amenable to change-driven and incremental execution:
changes to H are propagated through N , whose nodes only recompute their
stored matches if the change is relevant to them or one of their dependencies.
Moreover, InTempo offers a method to remove temporally irrelevant history
from the RTMH, thereby rendering the query evaluation memory-efficient.

Based on these features, an extensive experimental evaluation of our im-
plementation of InTempo showed efficient performance in the evaluation of
temporal graph queries over considerably large models (approximately from
10K to 48M elements) [49]. InTempo also evaluated queries faster than the
established RV tool MonPoly [6] as well as the RTM-based tool Hawk [24] in
an RM application scenario. In the scenario, incomplete traces were handled by
performing a check for each match which, based on the timing constraints of the
property, postponed returning the match if future changes could affect it.

Foundations for Query-based RM of Temporal Properties over RTMs 37

The definite answer set Td from Definition 9 handles incomplete traces com-
prehensively, as it only includes matches and time points which no future change
can affect. However, Td relies on the definite MTGL semantics from Definition 6
which, contrary to the regular semantics from Definition 3, considers the time
point on which a query is evaluated; consequently, adjusting N to compute the
definite computations Zd and F d, and thus to return Td, would imply that every
new version of H[τ] would trigger a re-computation of all spans stored in N .
Therefore, Td is not amenable to change-driven evaluation.

Based on the intuition behind the check from above, we lastly present a new
answer set, called effective, that contains definite results while relying on T, which
is amenable to change-driven evaluation. Specifically, based on the equivalence
in Theorem 2, we show that T is equivalent to a subset of Td if the V of matches
in T is restricted to a period with definite decisions (see Corollary 1). This last
contribution formalizes the intuition behind the check from above, and allows
approaches like InTempo to maintain their efficiency while returning sound
results. We define the effective answer set Te for L based on T below.

Definition 10 (effective answer set Te). Given a pattern n, an MTGC ψ
with w the non-definiteness window of ψ, an RTMH H[τ], and an answer set
T(H[τ]) of a query in L, the effective answer set Te(H[τ]) of the query is the
set of all tuples (m,V ∩ [0, τ − w]) such that (i) (m,V(m,ψ)) ∈ T(H[τ]) and (ii)
V(m,ψ) ∩ [0, τ − w] ̸= ∅.

The following theorem states that Te is equal to a restricted version of Td

whose Vd excludes a period equal to w. We assume that the trace duration is
larger than w and that the trace has more than one member.

Theorem 4 (equality of effective answer set and restricted definite
temporal validity answer set over trace). Let (n, ψ) be a query with ψ
an MTGC, w be the non-definiteness window of ψ, and hHτD be a RTMH-trace
with D ∈ [2,∞] ∩ N+, and i be an index in [k,D − 1] ∩ N+ such that τk ≥ w.
Moreover, let Td

V,r(H[τi]) be the restricted definite temporal validity answer set
over H[τi] which has been obtained from the definite answer set Td but contains
(i) only pairs of matches with their temporal validity Vd, with Vd ≠ ∅ and (ii) Vd

is intersected with [0, τi − w]. Then, Te(H[τi]) = Td
V,r(H[τi]).

Proof (idea). Based on the more general Theorem 2. See Section B.5 for the
complete proof. ⊓⊔

Theorem 4 shows how InTempo returns definite results while using the change-
driven evaluation for T described above. On the other hand, as Td

V,r excludes
F d, obtaining F d with Te requires the evaluation of a separate query (n,¬ψ) in
parallel to (n, ψ). Moreover, due to postponing returning answers that may be
non-definite, Te may return answers with a delay; although this is not observed
in ψP from the running example, it may affect other properties, as demonstrated
in Example 4. Hence, Te is intended for application scenarios where this impact
is either absent or acceptable.

38 L. Sakizloglou et al.

Example 4 (Delay in detection). Let ψD := (¬∃n1.1)∧(¬♢[0,2]∃n1.2) be an MTGC
and (n1,¬ψD) a query in L. Let H[5] be a hypothetical RTMH that contains a
match for n1 and a match for n1.1, whose lifespans are [5,∞). The time point 5
is contained in Vd(m1,¬ψD), i.e., the decision for 5 is definite; however, this time
point is not admitted to Te(H[5]) due to the intersection with [0, 5− w], where,
for ψD, w = 2. The time point will be admitted to Te when w has elapsed.

6 Related Work

In our previous work, we presented an analysis procedure with preliminary support
for RM of MTGL, as the procedure can be adjusted so that it returns true either
as soon as a falsification is detected or only when it has become definite [51].
When a falsification is detected, the procedure returns the time point on which
the procedure was last executed. The result abstracts the interval-based semantics
of MTGL into a point-based interpretation which lacks precision. The definite
semantics from Section 3 supports RM of MTGL directly, i.e., at the level of
semantics. Moreover, it enables the computations of the definite falsification and
satisfaction spans, which in turn enable practical query evaluations.

Compared to InTempo and its advancement we presented, other query-based
approaches for RM over structural RTMs either lack a formal treatment of
monitoring, e.g., [24, 1], or do not support other key features, e.g., first-order
quantification [19], temporal operators [14, 13], or timing constraints [40]. On the
other hand, these approaches have their own advantages over the foundations we
presented, e.g., support for distributed query evaluation [14] and more temporal
primitives [24].

Runtime Verification (RV) is also concerned with formally precise online
RM over incrementally processed, and thus possibly incomplete, traces of events.
Despite the similarity of their aim, RV and RTMs are different in their applications
and characteristics: for instance, state representations in RV focus on a low level
of abstraction and are typically inaccessible during monitoring. Conversely, an
RTM aims at a richer knowledge representation [14] and has to be accessible to
end-users or other technologies during monitoring, as it acts as an interface to
manage the system [23]—see [47, 49] for a more elaborate comparison. In RV,
properties may be specified using various formalisms, e.g., temporal logics and
regular expressions [3], comparisons among which are non-trivial [33, 43]. In the
following, we focus on approaches based on temporal logics. According to a recent
classification, no approach simultaneously supports key features of InTempo
such as first-order quantification, metric temporal constraints, interval-based
interpretations, and native support for graph queries and bindings [22].

The RV approach most relevant to our work is MonPoly [6]. MonPoly, an
established tool that has been among the top-performers in an RV competition [2],
is an implementation of an incremental monitoring algorithm based on Metric
First-Order Temporal Logic (MFOTL) [7]. The semantics of MFOTL is point-
based, i.e., the logic assesses the truth of a formula only for the time points
of events in a trace, which means the logic cannot support the computation

Foundations for Query-based RM of Temporal Properties over RTMs 39

of a temporal validity or represent the lifespan of a match straightforwardly.
MonPoly cannot always encode complex graph queries: for instance, expressing
the MTGC from the running example, which prohibits the existence of a pattern,
is not possible as MonPoly restricts the use of negation in this place at the
formula for reasons of monitorability. Even when possible, this encoding may
become overly technical and, as indicated by the performance comparison of
InTempo to MonPoly [49] as well as another similar comparison [19], may
affect performance: for instance, emulating graph pattern matching requires that
partial orderings of match candidates are explicitly formulated in MFOTL which
may bloat the size of the formula.

The RV tool DejaVu [31, 30] monitors properties specified in a first-order
metric past-only logic with point-based semantics. Translating MTGCs in this
logic would require emulating graph-based encodings and bindings (similar to
MonPoly) and, moreover, reformulating MTGCs such that they feature only past
operators. Such reformulations are not always possible and could be significantly
less compact [37, 32]. Monitoring algorithms for interval-based propositional or
signal logics with metric timing constraints [5, 38] are capable of interval-based
interpretations; although inapplicable to a graph-based first-order setting, they
are therefore based on interval computations which are similar to ours. Havelund
et al. present a monitoring approach for a logic defined over intervals; properties
in the logic refer to interval relations, e.g., requiring that two intervals overlap,
where the intervals my contain data [29]. The logic supports quantification over
intervals but does not support quantification over the data.

7 Conclusion and Future Work

We present a formal and systematic treatment of incomplete traces in query-based
runtime monitoring of temporal properties over structural runtime models. First,
we introduce a new semantics for a first-order temporal graph logic, called definite,
which only returns decisions if no future change to the model will affect them.
Then, based on the definite semantics, we introduce a new definite answer set
for the query language of InTempo, a querying scheme we previously presented.
Lastly, we present the effective answer set which, contrary to the definite answer
set, is amenable to change-driven evaluation. This answer set allows approaches
like InTempo to maintain their efficiency while returning definite answers.

Our plans for future work include a consideration of a rewriting procedure
for properties in MTGL, such that the rewritten properties avoid or minimize
possible delays in returning results, while allowing for a comparable performance
to the property before rewriting. We plan to extend the API of the InTempo
implementation with the option to return the effective answer set directly. More-
over, we plan to implement the definite answer set and investigate its impact on
performance. Although not as efficient as the effective answer set, we also plan
to use the definite answer set for testing the answers in the effective answer set.
Finally, we plan to extend InTempo with a decision procedure that, depending
on the property, switches to the answer set that is more appropriate.

40 L. Sakizloglou et al.

A Overview of Notation

The overview is shown in Table 2.

B Proofs

Following are the proofs for the theorems in the paper, as presented in the
doctoral thesis of the first author [47].

B.1 Theorem 1: definite relations imply satisfaction relation over
trace

Following is the proof for Theorem 1 (see [47, Section A.3.2]), i.e., given an
MTGC ψ over a pattern n and an RTMH-trace hHτD with D ∈ N+ the last index,
for all i ∈ [1,D] ∩ N+, if m a match for n in H[τi] and τ ∈ [0, τi], then for
all k ∈ [i,D] ∩ N+, (i) if (H[τi],m, τ) |=d ψ, then (H[τk],m, τ) |= ψ, and (ii) if
(H[τi],m, τ) |=d

F ψ, then (H[τk],m, τ) ̸|= ψ.

Proof. By definition of the RTMH, a match m in H[τi] will be structurally present
in all H[τk] with k ∈ [i,D] ∩ N+—what may change (once) in future versions of
H[τi] is the lifespan of m, i.e., if the dts of all matched elements is ∞ and one of
these elements is updated to a value less than ∞; even then, this change will not
affect the lifespan of m in the period [0, τi], that is, in H[τi], the observation on
whether m is present in λm ∩ [0, τi] will never be refuted.

The proof proceeds by mutual structural induction over ψ. In the base case,
we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

– Base case: true.
We begin with the definite satisfaction. We assume (H[τi],m, τ) |=d true
and show that (H[τk],m, τ) |= true for an arbitrary k ∈ [i,D] ∩ N+. By the
semantics of MTGL, true is always satisfied. Therefore, m in H[τk] also satisfies
true at τ . We have shown that the implication is true.
We proceed with the definite falsification. Based on the semantics of the definite
falsification relation, a match m never falsifies true. Therefore, the antecedent
(H[τi],m, τ) |=d

F true is false, making the consequent (H[τk],m, τ) ̸|= true true.
– Induction step: ψ = ¬χ.

We begin with the definite satisfaction. Assume that (H[τi],m, τ) |=d
F χ ⇒

(H[τk],m, τ) ̸|= χ for an arbitrary k ∈ [i,D]∩N+. By the semantics of negation
and the definite relations, (H[τi],m, τ) |=d

F χ ⇔ (H[τi],m, τ) |=d ¬χ. Simi-
larly, (H[τk],m, τ) ̸|= χ ⇔ (H[τk],m, τ) |= ¬χ. Therefore, it also holds that
(H[τi],m, τ) |=d ¬χ⇒ (H[τk],m, τ) |= ¬χ.
We proceed with the definite falsification. Assume that (H[τi],m, τ) |=d χ⇒
(H[τk],m, τ) |= χ. Analogously to the definite satisfaction, (H[τi],m, τ) |=d χ⇔
(H[τi],m, τ) |=d

F ¬χ and (H[τk],m, τ) |= χ ⇔ (H[τk],m, τ) ̸|= ¬χ. Therefore,
(H[τi],m, τ) |=d

F ¬χ⇒ (H[τk],m, τ) ̸|= ¬χ.

Foundations for Query-based RM of Temporal Properties over RTMs 41

Symbol Concept Formal Representation Def.

P temporal property from running
example

- p. 3

Gτ runtime model, at time point τ typed attributed graph p. 4
τ time point real number p. 5
hτ event trace, spanning the interval

[0, τ]
sequence of events p. 5

i index of sequence member natural number p. 5
τi time point at i-th member of

sequence
real number p. 5

E mapping from events to graph
modifications

function p. 6

H[τ] runtime model with history,
spanning the interval [0, τ]

typed attributed graph p. 6

hH
τ RTMH-trace, spanning the interval

[0, τ]
sequence of runtime models with

history
p. 6

ψ, χ, ω temporal property metric temporal graph condition p. 6
n, n̂ (graph) pattern typed attributed graph p. 6
|= (regular) satisfaction relation of

metric temporal graph logic
relation p. 7

m, m̂ match morphism p. 7
L query language of InTempo set of queries p. 7
E set of matched vertices set of vertices in given match p. 7
e matched vertex vertex in E p. 7
λm lifespan of a match m interval p. 8
Y satisfaction span interval set p. 8
Z satisfaction computation interval set p. 8
V temporal validity interval set p. 8
M̂ set of matches of m̂ compatible to

m
set of matches p. 8

T (regular) answer set of L set of (m,V) pairs p. 9
|=d definite satisfaction relation relation p. 10
|=d

F definite falsification relation relation p. 10
c current time point real number p. 10
D last member of sequence natural number p. 11
w non-definiteness window interval p. 11
|=T timeliest satisfaction relation relation p. 12
|=F,T timeliest falsification relation relation p. 12
Yd definite satisfaction span interval set p. 13
Zd definite satisfaction computation interval set p. 13
Fd definite falsification span interval set p. 13
F d definite falsification computation interval set p. 13
X unknown span interval set p. 13
Vd definite temporal validity interval set p. 15
IV temporal invalidity interval set p. 15
IVd definite temporal invalidity interval set p. 15
Td definite answer set of L set of (m,Vd, IVd) triples p. 15
N network generalized discrimination network p. 16
Td
V,r restricted temporal validity answer

set of L
subset of Td only with Vd p. 17

Te effective answer set of L subset of T with V capped based
on w

p. 17

Table 2: Main symbols, their denoted concept, and formal representation; the
rightmost column shows the page on which the symbol was first defined.

42 L. Sakizloglou et al.

– Induction step: ψ = ∃(n̂, χ).
Let the induction hypothesis be (H[τi], m̂, τ) |=d χ ⇒ (H[τk], m̂, τ) |= χ and
(H[τi], m̂, τ) |=d

F χ⇒ (H[τk], m̂, τ) ̸|= χ, where m̂ is a match for the pattern n̂
and k an arbitrary index in [i,D] ∩ N+.
We begin with the definite satisfaction. We assume (H[τi],m, τ) |=d ∃(n̂, χ) and
show this implies (H[τk],m, τ) |= ∃(n̂, χ). Since (H[τi],m, τ) |=d ∃(n̂, χ), there
exists matches m and m̂ such that m̂ is compatible with m and τ ∈ λm ∩ λm̂.
The matches m, m̂ will be structurally present and m̂ will be compatible
with m in all future versions of H[τi]. Moreover, there will be no changes in
λm, λm̂ for the period [0, τ]. Also, by the induction hypothesis, m̂ satisfies
χ at τ . Therefore, by the semantics of the satisfaction relation for exists,
(H[τk],m, τ) |= ∃(n̂, χ). We have shown that the implication is true.
We proceed with the definite falsification. We assume that (H[τi],m, τ) |=d

F

∃(n̂, χ) and show that this implies (H[τk],m, τ) ̸|= ∃(n̂, χ). Since (H[τi],m, τ)

|=d
F ∃(n̂, χ), (i) either there exists no m̂ in H[τi] such that m̂ is compatible

with m, or (ii) there exists m̂ compatible with m, but τ ̸∈ λm ∩ λm̂, or (iii)
there exists m̂ compatible with m with τ ∈ λm ∩ λm̂ but m̂ definitely falsifies
χ at τ . If (i) is true, it will be true in all future versions of H[τi], as matches
cannot be found retrospectively. If (ii) is true, the lifespan of λm̂ in the period
[0, τi] will not change in all future versions of H[τi]. Finally, if (iii) is true, we
know from the induction hypothesis that (m̂, τ) ̸|= χ also over H[τk]. Therefore,
in any case, (H[τk],m, τ) ̸|= ∃(n̂, χ). We have shown that the implication is
true.

– Induction step: ψ = χUIω.
We begin with the definite satisfaction. Induction hypothesis: (H[τi],m, τ)

|=d χ⇒ (H[τk],m, τ) |= χ and (H[τi],m, τ) |=d ω ⇒ (H[τk],m, τ) |= ω with k
an arbitrary index in [i,D] ∩ N+.
We assume (H[τi],m, τ) |=d χUIω and show this implies (H[τk],m, τ) |=
χUIω. Since (H[τi],m, τ) |=d χUIω, there exists τ such that τ ′ − τ ∈ I and
(H[τi],m, τ

′) |=d ω, and for all τ ′′ ∈ [τ, τ ′) (H[τi],m, τ
′′) |=d χ. The decisions

for the time point τ ′ and for all time points τ ′′ either concern a match or not: if
they do concern a match, then they are confined to [0, τi] and remain unaltered
throughout the trace; if they do not concern a match, e.g., they concern true
or ¬true, then they again remain unaltered. Therefore, also over H[τk] it will
hold that at τ ′ (H[τk],m, τ

′) |= ω, and for every τ ′′ (H[τk],m, τ
′′) |= χ. Thus,

by the semantics of the satisfaction relation for until, (H[τk],m, τ) |= χUIω.
We have shown that the implication is true.
We proceed with the definite falsification. Let the induction hypothesis be
(H[τi],m, τ) |=d

F χ⇒ (H[τk],m, τ) ̸|= χ and (H[τi],m, τ) |=d
F ω ⇒ (H[τk],m, τ)

̸|= ω.
We assume (H[τi],m, τ) |=d

F χUIω and show that this implies (H[τk],m, τ)

̸|= χUIω. Since (H[τi],m, τ) |=d
F χUIω, for all τ ′ such that τ ′−τ ∈ I, either (i)

(H[τi],m, τ
′) |=d

F ω or (ii) there exists τ ′′ ∈ [τ, τ ′) such that (H[τi],m, τ
′′) |=d χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ ′ and at τ ′′ concern a match,

Foundations for Query-based RM of Temporal Properties over RTMs 43

they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold over H[τk]. Therefore, (H[τk],m, τ) ̸|= χUIω.
We have shown that the implication is true.

– Induction step: ψ = χSIω.
The proof proceeds analogously to until. We begin with the definite satisfaction.
Let the induction hypothesis be (H[τi],m, τ) |=d χ ⇒ (H[τk],m, τ) |= χ and
(H[τi],m, τ) |=d ω ⇒ (H[τk],m, τ) |= ω with k an arbitrary index in [i,D]∩N+.
We assume (H[τi],m, τ) |=d χSIω and show this implies (H[τk],m, τ) |=
χSIω. Since (H[τi],m, τ) |=d χSIω, there exists τ ′ such that τ − τ ′ ∈ I

and (H[τi],m, τ
′) |=d ω, and for all τ ′′ ∈ (τ ′, τ] (H[τi],m, τ

′′) |=d χ. The deci-
sions for the time point τ ′ and all time points τ ′′ either concern a match or
not: if they do concern a match, then they are confined to [0, τi] and remain
unaltered throughout the trace; if they do not concern a match, then they
will again remain unaltered. Therefore, also over H[τk] it will hold that at τ ′
(H[τk],m, τ

′) |= ω, and for all τ ′′ (H[τk],m, τ
′′) |= χ. Thus by the semantics of

the satisfaction relation for since, (H[τk],m, τ) |= χSIω. We have shown that
the implication is true.
We proceed with the definite falsification. Let the induction hypothesis be
(H[τi],m, τ) |=d

F χ⇒ (H[τk],m, τ) ̸|= χ and (H[τi],m, τ) |=d
F ω ⇒ (H[τk],m, τ)

̸|= ω.
We assume (H[τi],m, τ) |=d

F χSIω and show that this implies (H[τk],m, τ)

̸|= χSIω. Since (H[τi],m, τ) |=d
F χSIω, for all τ ′ such that τ − τ ′ ∈ I, either (i)

(H[τi],m, τ
′) |=d

F ω or (ii) there exists τ ′′ ∈ (τ ′, τ] such that (H[τi],m, τ
′′) |=d χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ ′ and at τ ′′ concern a match,
they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold over H[τk]. Therefore, (H[τk],m, τ) ̸|= χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows that Theorem 1 holds. ⊓⊔

B.2 Theorem 2: definite relations are equivalent to satisfaction
relation over certain period of trace

Following is the proof for Theorem 2 (see [47, Section A.3.3]), that is, given
an MTGC ψ over a pattern n, the non-definiteness w window of ψ, and a
sequence of RTMH instances hHτD with D ∈ N+ the last index, for all i ∈
[1,D] ∩ N+, if m a match for n in H[τi] and τ ∈ [0, τi − w], then for all k ∈
[i,D]∩N+, (i) (H[τi],m, τ) |=d ψ iff (H[τk],m, τ) |= ψ, and (ii) (H[τi],m, τ) |=d

F ψ
iff (H[τk],m, τ) ̸|= ψ.

By definition of the RTMH, a match m in H[τi] will be structurally present
in all H[τk] with k ∈ [i,D] ∩ N+—what may change (once) in future versions of
H[τi] is the lifespan of m, i.e., if the dts of all matched elements is ∞ and one of
these elements is updated to a value less than ∞; even then, this change will not
affect the lifespan of m in the period [0, τi], that is, in H[τi], the observation on
whether m is present in λm ∩ [0, τi] will never be refuted.

44 L. Sakizloglou et al.

Proof. The direction ⇒ of the equivalence has been shown by the more general
Theorem 1, which concerned an arbitrary τ . We therefore focus on direction
⇐ of the equivalence. As m is present in H[τi], its lifespan λm in the period
[0, τi] will remain unchanged in subsequent versions of H[τi]. In the following, the
non-definiteness window w is computed according to Definition 7.

The proof proceeds by mutual structural induction over ψ. In the base case,
we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

– Base case: true.
We begin with the satisfaction. We assume (H[τk],m, τ) |= true for an arbitrary
k ∈ [i,D] ∩ N+ and τ ∈ [0, τi − w] with wnd = 0, and show that this implies
(H[τi],m, τ) |=d true. As true is always satisfied, m in H[τi] definitely satisfies
true at τ . Hence, the implication to be true.
We proceed with the falsification. Based on the semantics of satisfaction, a
match m never satisfies ̸|= true. Therefore, the antecedent (H[τk],m, τ) ̸|= true
is false, making the consequent (H[τi],m, τ) |=d

F true true.
– Induction step: ψ = ¬χ.

We begin with the satisfaction. Let (H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d
F χ

for an arbitrary k ∈ [i,D] ∩ N+ and τ ∈ [0, τi − w] with w(¬χ) = w(χ).
By the semantics of negation and the satisfaction relation, (H[τk],m, τ) ̸|=
χ ⇔ (H[τk]m, τ) |= ¬χ. Similarly, (H[τi],m, τ) |=d

F χ ⇔ (H[τi],m, τ) |=d ¬χ.
Therefore, it also holds that (H[τk],m, τ) |= ¬χ⇒ (H[τi],m, τ) |=d ¬χ.
We proceed with the falsification. Assume (H[τk],m, τ) |= χ ⇒ (H[τi],m, τ)

|=d χ. Analogously to the satisfaction, (H[τk],m, τ) |= χ⇔ (H[τi],m, τ) ̸|= ¬χ
and (H[τk],m, τ) |=d χ ⇔ (H[τk],m, τ) |=d

F ¬χ. Therefore, (H[τk],m, τ) ̸|=
¬χ⇒ (H[τi],m, τ) |=d

F ¬χ.
– Induction step: ψ = ∃(n̂, χ).

Let the induction hypothesis be (H[τk], m̂, τ) |= χ ⇒ (H[τi], m̂, τ) |=d χ and
(H[τk], m̂, τ) ̸|= χ⇒ (H[τi], m̂, τ) |=d

F χ, where m̂ is a match for the pattern n̂,
k an arbitrary index in [i,D] ∩ N+, and τ ∈ [0, τi − w]. The non-definiteness
window w is given by w(∃(n̂, χ)) = w(χ).
We begin with the satisfaction. We assume that (H[τk],m, τ) |= ∃(n̂, χ) and
show that this implies (H[τi],m, τ) |=d ∃(n̂, χ). Since (H[τk],m, τ) |= ∃(n̂, χ),
there exists matches m and m̂ in H[τk] such that m̂ is compatible with m

and τ ∈ λm ∩ λm̂. The match m is present in H[τi] and, according to the
induction hypothesis, the match m̂ is also present in H[τi]. As the matches
are structurally the same, m̂ is also compatible with m in H[τi]. Moreover, as
there are no changes in λm, λm̂ for the period [0, τi], τ ∈ λm ∩ λm̂ over H[τi].
We also know that τ ≤ τi and, by the induction hypothesis, that m̂ satisfies χ
at τ . Therefore, by the semantics of the definite satisfaction relation for exists,
(H[τi],m, τ) |=d ∃(n̂, χ). We have shown that the implication is true.
We proceed with the falsification. We assume that (H[τk],m, τ) ̸|= ∃(n̂, χ) and
show that this implies (H[τi],m, τ) |=d

F ∃(n̂, χ). Since (H[τk],m, τ) ̸|= ∃(n̂, χ),
(i) either there exists no m̂ in H[τk] such that m̂ is compatible with m, or (ii)

Foundations for Query-based RM of Temporal Properties over RTMs 45

there exists m̂ compatible with m, but τ ̸∈ λm ∩ λm̂, or (iii) there exists m̂
compatible with m with τ ∈ λm ∩ λm̂ but m̂ falsifies χ at τ . If (i) is true,
it will be true in all future versions of H[τi], as matches cannot be found
retrospectively. If (ii) is true, the lifespan of λm̂ in the period [0, τi] will not
change in all future versions of H[τi]. Finally, if (iii) is true, we know from
the induction hypothesis that (m̂, τ) |=d

F χ also over H[τi] and that τ ≤ τi.
Therefore, in any case, (H[τi],m, τ) |=d

F ∃(n̂, χ). We have shown that the
implication is true.

– Induction step: ψ = χUIω.
We begin with the satisfaction. Let the induction hypothesis be (H[τk],m, τ) |=
χ⇒ (H[τi],m, τ) |=d χ and (H[τk],m, τ) |= ω ⇒ (H[τi],m, τ) |=d ω with k an
arbitrary index in [i,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness window
w is given by max(w(χ), w(ω)) + r(I).
We assume (H[τk],m, τ) |= χUIω and show (H[τi],m, τ) |=d χUIω. Since
(H[τk],m, τ) |= χUIω, there exists τ ′ such that τ ′ − τ ∈ I and (H[τk],m, τ

′) |=
ω, and for all τ ′′ ∈ [τ, τ ′) (H[τk],m, τ

′′) |= χ. From τ ∈ [0, τi − w] and
τ ′ ∈ [τ + ℓ(I), τ + r(I)], it follows that τ ′ ≤ τi −max(w(χ), w(ω)). Based on
this and the induction hypothesis, (H[τi],m, τ

′) |=d ω. Moreover, as τ ′ stems
from a period outside the non-definiteness window of ω, the decision at τ ′,
whether it concerns a match or not, will remain unaltered once made.
The decision at τ ′ as well as the preceding period [τ, τ ′) are also outside
the non-definiteness window of χ. Thus, all τ ′′ ∈ [τ, τ ′) stem from a period
covered by H[τi], and decisions for χ made in this period are definite. Therefore,
for all [τ + ℓ(I), τ + τ ′) (H[τi],m, τ

′′) |=d χ, and, by the definite semantics,
(H[τi],m, τ) |=d χUIω. We have shown that the implication is true.
We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d

F χ and (H[τk],m, τ) ̸|= ω ⇒ (H[τi],m, τ)

|=d
F ω.

We assume (H[τk],m, τ) ̸|= χUIω and show (H[τi],m, τ) |=d
F χUIω. Since

(H[τk],m, τ) ̸|= χUIω, it holds that for all τ ′ such that τ ′ − τ ∈ I either (i)
(H[τk],m, τ

′) ̸|= ω or (ii) there exists τ ′′ ∈ [τ, τ ′) such that (H[τk],m, τ
′′) |= χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
satisfaction, the decisions for all τ ′ and at τ ′′ stem from a period that is covered
by H[τi], and decisions made in this period regarding χ and ω are definite.
Therefore, the case will also hold over H[τi]. Therefore, (H[τi],m, τ) |=d

F χUIω.
We have shown that the implication is true.

– Induction step: ψ = χSIω.
We begin with the satisfaction. Let the induction hypothesis be (H[τk],m, τ) |=
χ⇒ (H[τi],m, τ) |=d χ and (H[τk],m, τ) |= ω ⇒ (H[τi],m, τ) |=d ω with k an
arbitrary index in [i,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness window
w is given by max(w(χ), w(ω)).
We assume (H[τk],m, τ) |= χSIω and show (H[τi],m, τ) |=d χSIω. Since
(H[τk],m, τ) |= χSIω, there exists τ ′ such that τ − τ ′ ∈ I and (H[τk],m, τ

′) |=
ω, and for all τ ′′ ∈ (τ ′, τ] (H[τk],m, τ

′′) |= χ. From τ ∈ [0, τi − w] and
τ ′ ∈ [τ − r(I), τ − ℓ(I)], it follows that τ ′ ≤ τi −max(w(χ), w(ω)). Hence, the

46 L. Sakizloglou et al.

decision at τ ′ can already be made over H[τi], and, moreover, as τ ′ stems from
a period outside the non-definiteness window of ω, the decision at τ ′, whether
it concerns a match or not, will remain unaltered once made. Therefore,
(H[τi],m, τ

′) |=d ω. The decision at τ ′ as well as the succeeding period (τ ′, τ]
is also outside the non-definiteness window of χ. Thus, all τ ′′ ∈ (τ ′, τ] stem
from a period covered by H[τi], and decisions for χ made in this period are
definite. Therefore, for all τ ′′ ∈ (τ ′, τ] (H[τi],m, τ

′′) |=d χ, and, by the definite
semantics, (H[τi],m, τ) |=d χSIω. We have shown that the implication is true.
We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d

F χ and (H[τk],m, τ) ̸|= ω ⇒ (H[τi],m, τ)

|=d
F ω.

We assume (H[τk],m, τ) ̸|= χSIω and show (H[τi],m, τ) |=d
F χSIω. Since

(H[τk],m, τ) ̸|= χSIω, it holds that for all τ ′ such that τ − τ ′ ∈ I either (i)
(H[τk],m, τ

′) ̸|= ω or (ii) there exists τ ′′ ∈ (τ ′, τ] such that (H[τk],m, τ
′′) |= χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
satisfaction, the decisions for all τ ′ and at τ ′′ stem from a period that is covered
by H[τi], and decisions made in this period regarding χ and ω are definite.
Therefore, the case will also hold over H[τi]. Therefore, (H[τi],m, τ) |=d

F χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows that Theorem 2 holds. ⊓⊔

B.3 Corollary 1: Period in trace with non-definite decisions

Following is the proof for Corollary 1 (see [47, p. 32]), that is, if ψ is an MTGC,
w is the non-definiteness window of ψ, H[τi] is a RTMH instance associated with
the time point τi, m is a match for a pattern n, and τ a time point in [0, τi], then
if (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ, then τ ∈ (τi − w, τi].

Proof. The proof follows from Theorem 2. The satisfaction relation and its
negation make a decision for every time point in [0, τi − w], i.e., the relation
does not support the value unknown; Theorem 2 shows that the decisions made
by the satisfaction relation and its negation for [0, τi − w] are equivalent to the
decisions made by the definite relations. Consequently, if no definite decision is
made for τ ∈ [0, τi], then τ ̸∈ [0, τi − w]. ⊓⊔

B.4 Theorem 3: Equality of definite spans and definite computations
for satisfaction and falsification

Following is the proof for Theorem 3 (see [47, Section A.3.4]), i.e., given a match
m over a RTMH H[τ] and an MTGC ψ, the definite satisfaction span Yd of m
for ψ over H[τ] is given by the definite satisfaction computation Zd of m for ψ
over H[τ] in Definition 8, that is, Yd(m,ψ) = Zd(m,ψ). Moreover, the definite
falsification span F of m for ψ over H[τ] is given by the definite falsification
computation F of m for ψ over H[τ] in Definition 8, that is, F(m,ψ) = F (m,ψ).

Foundations for Query-based RM of Temporal Properties over RTMs 47

Proof. The proof for the definite satisfaction span Zd proceeds almost identically
to the proof for Theorem 1 for Z in [47, Section A.3.1], i.e., by structural induction
over ψ, and therefore omitted. For true, conjunction, exists, until, and since in
Definition 8, inclusion can be shown in both directions—the proof for the negation
relies on a reasoning analogous to the one presented below for negation for the
definite falsification span.

The proof for the definite falsification F is based on the application of
F = R \ (Zd ⊎X) for each MTGL operator—which follows from R = Yd ⊎ F ⊎X.
The unknown span X for true is X = ∅, whereas for exists, by definition of the
RTMH H[τ], it is X = (τ,∞). If F is known, it can be used to compute Zd ⊎X.

– ψ = true: From Equation 8 in Definition 8, we have Zd(m, true) = R, therefore
F (m, true) = ∅.

– ψ = ¬χ: It holds that

F (m,¬χ) = Zd(m,¬χ) ⊎X(m,¬χ)

and
Zd(m,χ) = Zd(m,¬χ) ⊎X(m,¬χ)

Therefore,
F (m,¬χ) = Zd(m,χ) = Zd(m,χ)

– ψ = χ ∧ ω: Let each time point that does not definitely falsify the MTGC a
that χ encloses to be assumed to satisfy the a. In practice, this includes all
time points in Zd(m,χ)⊎X(m,χ) for a. Subtracting this maximal satisfaction
span from the time domain R yields the set of time points that definitely falsify
χ. Let the satisfaction span of ω be defined analogously. If the satisfaction
span of conjunction is computed based on these maximal satisfaction spans of
χ and ω, i.e., by (Zd(m,χ) ⊎X(m,χ)) ∩ (Zd(m,ω) ⊎X(m,ω)), the definite
falsification span of conjunction can be computed analogously.

F (m,χ ∧ ω) = R \
(
(Zd(m,χ) ⊎X(m,χ)) ∩ (Zd(m,ω) ⊎X(m,ω))

)
= R \

(
(R \ F (m,χ)) ∩ (R \ F (m,ω))

)
= F (m,χ) ∪ F (m,ω)

– ψ = ∃(n̂, χ): Let τ be the time point of the RTMH H[τ]. As Z(m, ∃(n̂, χ)) is
known and X(m, ∃(n̂, χ)) = (τ,∞), to obtain the falsification computation,
we can directly solve R \ (Zd ⊎X).

F (m, ∃(n̂, χ)) = R \
(
Zd(m, ∃(n̂, χ)) ∪ (τ,∞)

)
=
(
R \ (τ,∞)

)
∩
(
R \ Zd(m, ∃(n̂, χ))

)
= (−∞, τ] ∩

(
R \ Zd(m, ∃(n̂, χ))

)
– ψ = χUIω and 0 ̸∈ I: The computation for until relies on the reasoning

explained in the case of conjunction. The satisfaction span of until is computed
based on the maximal satisfaction spans of ω, i.e., Zd(m,ω)⊎X(m,ω), and χ,

48 L. Sakizloglou et al.

that is, JX
i is obtained by Zd(m,ω) ⊎X(m,ω) and Zd(m,χ) ⊎X(m,χ), thus

the until satisfaction span is similarly maximal. Therefore, complementing
this maximal satisfaction span yields all time points that definitely falsify
until. Therefore, we have:

F (m,χUIω) = R \

(⋃
i∈Zd(m,ω)∪X(m,ω), j∈JX

i

j ∩
(
(j+ ∩ i)⊖ I

))

– ψ = χUIω and 0 ∈ I: The reasoning is similar to the case where 0 ̸∈ I.
– ψ = χSIω and 0 ̸∈ I: The case proceeds analogously to the corresponding case

of until.
– ψ = χSIω and 0 ∈ I: The case proceeds analogously to the corresponding case

of until.

By showing that Yd(m,ψ) = Zd(m,ψ) and the equations for F (m,ψ), we have
shown that theorem holds.

B.5 Theorem 4: Equality of effective answer set and restricted
definite temporal validity answer set over trace

Following is the proof for Theorem 4 (see [47, p. 57]), which states that, if
ζ := (n, ψ) is a temporal query with ψ an MTGC, w is the non-definiteness
window of ψ, hHτD is a RTMH-trace with D ∈ [2,∞] ∩ N+, i is an index in
[k,D− 1] ∩ N+ such that τk ≥ w. Td

V,r(H[τi]) is the restricted definite temporal
validity answer set over H[τi] which has been obtained from the definite answer
set Td but contains (i) only pairs of matches with their temporal validity Vd with
Vd ̸= ∅ and (ii) Vd is intersected with [0, τi − w], then the effective answer set
Te(H[τi]) is equal to Td

V,r(H[τi]).

Proof. Based on the more general Theorem 2 which shows that, for τ ∈ [0, τi−w],
the satisfaction decision for τ in H[τi] is equivalent to definite satisfaction decision
for τ in H[τi]. The computations of V and Vd over H[τi] rely on the computations of
Z and Zd over H[τi], respectively. Theorem 1 in [47, Section A.3.1] and Theorem 3
show that satisfaction relation and definite satisfaction relation over H[τi] are
soundly reflected in Z and Zd over H[τi], respectively. ⊓⊔

References

[1] Gala Barquero, Javier Troya, and Antonio Vallecillo. “Improving Query
Performance on Dynamic Graphs”. In: Softw Syst Model 20.4 (Aug. 1, 2021),
pp. 1011–1041. issn: 1619-1374. doi: 10.1007/s10270-020-00832-3.

[2] Ezio Bartocci et al. “First International Competition on Runtime Verifi-
cation: Rules, Benchmarks, Tools, and Final Results of CRV 2014”. In:
Int J Softw Tools Technol Transfer 21.1 (Feb. 1, 2019), pp. 31–70. issn:
1433-2787. doi: 10.1007/s10009-017-0454-5.

Foundations for Query-based RM of Temporal Properties over RTMs 49

https://doi.org/10.1007/s10270-020-00832-3
https://doi.org/10.1007/s10009-017-0454-5

[3] Ezio Bartocci et al. “Introduction to Runtime Verification”. In: Lectures
on Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio
Bartocci and Yliès Falcone. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 1–33. isbn: 978-3-319-75632-5.
doi: 10.1007/978-3-319-75632-5_1.

[4] Ezio Bartocci et al. “Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications”. In: Lectures on
Runtime Verification. Ed. by Ezio Bartocci and Yliès Falcone. Vol. 10457.
Cham: Springer International Publishing, 2018, pp. 135–175. isbn: 978-3-
319-75631-8. url: http://link.springer.com/10.1007/978-3-319-75632-5_5.

[5] David Basin, Felix Klaedtke, and Eugen Zălinescu. “Algorithms for Mon-
itoring Real-Time Properties”. In: Acta Informatica 55.4 (June 1, 2018),
pp. 309–338. issn: 1432-0525. doi: 10.1007/s00236-017-0295-4.

[6] David Basin, Felix Klaedtke, and Eugen Zălinescu. “The MonPoly Moni-
toring Tool”. In: Kalpa Publications in Computing. RV-CuBES 2017. An
International Workshop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools. Vol. 3. EasyChair,
Dec. 14, 2017, pp. 19–28. doi: 10.29007/89hs.

[7] David Basin et al. “Monitoring Metric First-Order Temporal Properties”.
In: J. ACM 62.2 (May 6, 2015), 15:1–15:45. issn: 0004-5411. doi: 10.1145/
2699444.

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good, the
Bad, and the Ugly, But How Ugly Is Ugly?” In: Runtime Verification. Ed.
by Oleg Sokolsky and Serdar Taşıran. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2007, pp. 126–138. isbn: 978-3-540-77395-5.
doi: 10.1007/978-3-540-77395-5_11.

[9] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.Time: A
Guided Tour of the State of the Art and Research Challenges”. In: Softw
Syst Model 18.5 (Oct. 1, 2019), pp. 3049–3082. issn: 1619-1374. doi: 10.
1007/s10270-018-00712-x.

[10] Thomas Beyhl et al. “On the Operationalization of Graph Queries with
Generalized Discrimination Networks”. In: Graph Transformation. Ed. by
Rachid Echahed and Mark Minas. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 170–186. isbn: 978-3-
319-40530-8. doi: 10.1007/978-3-319-40530-8_11.

[11] Robert Bill et al. “On the Need for Temporal Model Repositories”. In:
Software Technologies: Applications and Foundations. Ed. by Martina Seidl
and Steffen Zschaler. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 136–145. isbn: 978-3-319-74730-9. doi:
10.1007/978-3-319-74730-9_11.

[12] Gordon Blair, Nelly Bencomo, and Robert B. France. “Models@ Run.Time”.
In: Computer 42.10 (Oct. 2009), pp. 22–27. issn: 1558-0814. doi: 10.1109/
MC.2009.326.

50 L. Sakizloglou et al.

https://doi.org/10.1007/978-3-319-75632-5_1
http://link.springer.com/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.29007/89hs
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-74730-9_11
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326

[13] Márton Búr. “Query-Based Runtime Monitoring in Real-Time and Dis-
tributed Systems”. PhD thesis. Canada: McGill University, 2021. url:
https://escholarship.mcgill.ca/concern/theses/w95055572.

[14] Márton Búr et al. “Distributed Graph Queries Over Models@run.Time for
Runtime Monitoring of Cyber-Physical Systems”. In: Int J Softw Tools
Technol Transfer 22.1 (Feb. 1, 2020), pp. 79–102. issn: 1433-2787. doi:
10.1007/s10009-019-00531-5.

[15] L. Catarinucci et al. “An IoT-Aware Architecture for Smart Healthcare
Systems”. In: IEEE Internet of Things Journal 2.6 (Dec. 2015), pp. 515–526.
issn: 2327-4662. doi: 10.1109/JIOT.2015.2417684.

[16] Federico Ciccozzi et al. “Model-Driven Engineering for Mission-Critical IoT
Systems”. In: IEEE Software 34.1 (Jan. 2017), pp. 46–53. issn: 1937-4194.
doi: 10.1109/MS.2017.1.

[17] Carlo Combi et al. “Modelling Temporal, Data-Centric Medical Processes”.
In: Proceedings of the 2nd ACM SIGHIT International Health Informatics
Symposium. IHI ’12. New York, NY, USA: Association for Computing
Machinery, Jan. 28, 2012, pp. 141–150. isbn: 978-1-4503-0781-9. doi: 10.
1145/2110363.2110382.

[18] Bruno Courcelle. “The Expression of Graph Properties and Graph Transfor-
mations in Monadic Second-Order Logic”. In: Handbook of Graph Grammars
and Computing by Graph Transformation: Volume I. Foundations. USA:
World Scientific Publishing Co., Inc., Feb. 1, 1997, pp. 313–400. isbn:
978-981-02-2884-2. doi: 10.1142/9789812384720_0005.

[19] Wei Dou, Domenico Bianculli, and Lionel Briand. “A Model-Driven Ap-
proach to Trace Checking of Pattern-Based Temporal Properties”. In:
Proceedings of the ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems. MODELS ’17. Austin, Texas:
IEEE Press, Sept. 17, 2017, pp. 323–333. isbn: 978-1-5386-3492-9. doi:
10.1109/MODELS.2017.9.

[20] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. “Fundamental Theory
for Typed Attributed Graph Transformation”. In: Graph Transformations.
Ed. by Hartmut Ehrig et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 161–177. isbn: 978-3-540-30203-2. doi:
10.1007/978-3-540-30203-2_13.

[21] Cindy Eisner et al. “Reasoning with Temporal Logic on Truncated Paths”.
In: Computer Aided Verification. Ed. by Warren A. Hunt and Fabio Somenzi.
Berlin, Heidelberg: Springer, 2003, pp. 27–39. isbn: 978-3-540-45069-6. doi:
10.1007/978-3-540-45069-6_3.

[22] Yliès Falcone et al. “A Taxonomy for Classifying Runtime Verification
Tools”. In: Int J Softw Tools Technol Transfer 23.2 (Apr. 1, 2021), pp. 255–
284. issn: 1433-2787. doi: 10.1007/s10009-021-00609-z.

[23] Robert France and Bernhard Rumpe. “Model-Driven Development of Com-
plex Software: A Research Roadmap”. In: Future of Software Engineering
(FOSE ’07). May 2007, pp. 37–54. doi: 10.1109/FOSE.2007.14.

Foundations for Query-based RM of Temporal Properties over RTMs 51

https://escholarship.mcgill.ca/concern/theses/w95055572
https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.1109/MS.2017.1
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1142/9789812384720_0005
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1109/FOSE.2007.14

[24] Antonio García-Domínguez et al. “Querying and Annotating Model Histo-
ries with Time-Aware Patterns”. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS). Sept. 2019, pp. 194–204. doi: 10.1109/MODELS.2019.000-2.

[25] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Improving Scalability
and Reward of Utility-Driven Self-Healing for Large Dynamic Architectures”.
In: ACM Trans. Auton. Adapt. Syst. 14.3 (Feb. 25, 2020), 12:1–12:41. issn:
1556-4665. doi: 10.1145/3380965.

[26] Holger Giese et al. “Metric Temporal Graph Logic over Typed Attributed
Graphs”. In: Fundamental Approaches to Software Engineering. Ed. by
Reiner Hähnle and Wil van der Aalst. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2019, pp. 282–298. isbn: 978-3-
030-16722-6. doi: 10.1007/978-3-030-16722-6_16.

[27] Annegret Habel and Karl-Heinz Pennemann. “Correctness of High-Level
Transformation Systems Relative to Nested Conditions”. In: Mathematical
Structures in Computer Science 19.2 (Apr. 2009), pp. 245–296. issn: 1469-
8072, 0960-1295. doi: 10.1017/S0960129508007202.

[28] E. N. Hanson, S. Bodagala, and U. Chadaga. “Trigger Condition Testing
and View Maintenance Using Optimized Discrimination Networks”. In:
IEEE Transactions on Knowledge and Data Engineering 14.2 (Mar. 2002),
pp. 261–280. issn: 1558-2191. doi: 10.1109/69.991716.

[29] Klaus Havelund, Moran Omer, and Doron Peled. “Monitoring First-Order
Interval Logic”. In: Software Engineering and Formal Methods. Ed. by
Radu Calinescu and Corina S. Păsăreanu. Cham: Springer International
Publishing, 2021, pp. 66–83. isbn: 978-3-030-92124-8. doi: 10.1007/978-3-
030-92124-8_4.

[30] Klaus Havelund and Doron Peled. “BDDs for Representing Data in Runtime
Verification”. In: Runtime Verification. Ed. by Jyotirmoy Deshmukh and
Dejan Ničković. Vol. 12399. Cham: Springer International Publishing, 2020,
pp. 107–128. isbn: 978-3-030-60508-7. doi: 10.1007/978-3-030-60508-7_6.

[31] Klaus Havelund and Doron Peled. “First-Order Timed Runtime Verification
Using BDDs”. In: Automated Technology for Verification and Analysis.
Ed. by Dang Van Hung and Oleg Sokolsky. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 3–24. isbn:
978-3-030-59152-6. doi: 10.1007/978-3-030-59152-6_1.

[32] Klaus Havelund and Doron Peled. “Runtime Verification: From Proposi-
tional to First-Order Temporal Logic”. In: Runtime Verification. Ed. by
Christian Colombo and Martin Leucker. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2018, pp. 90–112. isbn:
978-3-030-03769-7. doi: 10.1007/978-3-030-03769-7_7.

[33] Klaus Havelund et al. “Monitoring Events That Carry Data”. In: Lectures
on Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio
Bartocci and Yliès Falcone. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 61–102. isbn: 978-3-319-75632-
5. doi: 10.1007/978-3-319-75632-5_3.

52 L. Sakizloglou et al.

https://doi.org/10.1109/MODELS.2019.000-2
https://doi.org/10.1145/3380965
https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1109/69.991716
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/978-3-030-59152-6_1
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-319-75632-5_3

[34] Kerianne L. Hobbs et al. “Runtime Assurance for Safety-Critical Systems:
An Introduction to Safety Filtering Approaches for Complex Control Sys-
tems”. In: IEEE Control Syst. 43.2 (Apr. 2023), pp. 28–65. issn: 1066-033X,
1941-000X. doi: 10.1109/MCS.2023.3234380.

[35] Ron Koymans. “Specifying Real-Time Properties with Metric Temporal
Logic”. In: Real-Time Syst 2.4 (Nov. 1, 1990), pp. 255–299. issn: 1573-1383.
doi: 10.1007/BF01995674.

[36] Christian Krause et al. “An SQL-Based Query Language and Engine for
Graph Pattern Matching”. In: Graph Transformation. Ed. by Rachid Echa-
hed and Mark Minas. Vol. 9761. Cham: Springer International Publishing,
2016, pp. 153–169. isbn: 978-3-319-40530-8. doi: 10.1007/978-3-319-40530-
8_10.

[37] F. Laroussinie, N. Markey, and P. Schnoebelen. “Temporal Logic with
Forgettable Past”. In: Proceedings 17th Annual IEEE Symposium on Logic
in Computer Science. July 2002, pp. 383–392. doi: 10.1109/LICS.2002.
1029846.

[38] Oded Maler and Dejan Ničković. “Monitoring Properties of Analog and
Mixed-Signal Circuits”. In: Int J Softw Tools Technol Transfer 15.3 (June 1,
2013), pp. 247–268. issn: 1433-2787. doi: 10.1007/s10009-012-0247-9.

[39] Felix Mannhardt and Daan Blinde. “Analyzing the Trajectories of Patients
with Sepsis Using Process Mining”. In: RADAR+EMISA@CAiSE, Essen,
Germany, June 12-13, 2017. Ed. by Jens Gulden et al. Vol. 1859. CEUR
Workshop Proceedings. CEUR-WS.org, 2017, pp. 72–80. url: http://ceur-
ws.org/Vol-1859/bpmds-08-paper.pdf.

[40] Diego Marmsoler and Ana Petrovska. “Runtime Verification for Dynamic
Architectures”. In: Journal of Logical and Algebraic Methods in Program-
ming 118 (Jan. 1, 2021), p. 100618. issn: 2352-2208. doi: 10.1016/j.jlamp.
2020.100618.

[41] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. Society for Industrial and Applied Mathematics, Jan.
2009. isbn: 978-0-89871-771-6. doi: 10.1137/1.9780898717716.

[42] Doron Peled and Klaus Havelund. “Refining the Safety–Liveness Classifi-
cation of Temporal Properties According to Monitorability”. In: Models,
Mindsets, Meta: The What, the How, and the Why Not? Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday. Ed. by Tiziana
Margaria, Susanne Graf, and Kim G. Larsen. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 218–234. isbn:
978-3-030-22348-9. url: https://doi.org/10.1007/978-3-030-22348-9_14.

[43] Giles Reger and David Rydeheard. “From First-order Temporal Logic to
Parametric Trace Slicing”. In: Runtime Verification. Ed. by Ezio Bartocci
and Rupak Majumdar. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015, pp. 216–232. isbn: 978-3-319-23820-3. doi:
10.1007/978-3-319-23820-3_14.

[44] Arend Rensink. “Representing First-Order Logic Using Graphs”. In: Graph
Transformations. Ed. by Hartmut Ehrig et al. Lecture Notes in Computer

Foundations for Query-based RM of Temporal Properties over RTMs 53

https://doi.org/10.1109/MCS.2023.3234380
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-319-40530-8_10
https://doi.org/10.1007/978-3-319-40530-8_10
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1007/s10009-012-0247-9
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
https://doi.org/10.1016/j.jlamp.2020.100618
https://doi.org/10.1016/j.jlamp.2020.100618
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-319-23820-3_14

Science. Berlin, Heidelberg: Springer, 2004, pp. 319–335. isbn: 978-3-540-
30203-2. doi: 10.1007/978-3-540-30203-2_23.

[45] Patrice C Roy, Samina Raza Abidi, and Syed Sibte Raza Abidi. “Monitoring
Medication Adherence in Smart Environments in the Context of Patient
Self-Management: A Knowledge-Driven Approach”. In: Smart Technologies
in Healthcare. CRC Press, 2017, pp. 195–223. isbn: 978-1-315-14568-6. doi:
10.1201/9781315145686-8.

[46] John Rushby. “Critical System Properties: Survey and Taxonomy”. In:
Reliability Engineering & System Safety. Special Issue on Software Safety
43.2 (Jan. 1, 1994), pp. 189–219. issn: 0951-8320. doi: 10.1016/0951-
8320(94)90065-5.

[47] Lucas Sakizloglou. “Evaluating Temporal Queries over History-Aware Ar-
chitectural Runtime Models”. PhD thesis. Universität Potsdam, 2023. doi:
10.25932/publishup-60439.

[48] Lucas Sakizloglou, Matthias Barkowsky, and Holger Giese. “Keeping Pace
with the History of Evolving Runtime Models”. In: Fundamental Approaches
to Software Engineering. Ed. by Esther Guerra and Mariëlle Stoelinga. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2021, pp. 262–268. isbn: 978-3-030-71500-7. doi: 10.1007/978-3-030-71500-
7_13.

[49] Lucas Sakizloglou et al. “Incremental Execution of Temporal Graph Queries
over Runtime Models with History and Its Applications”. In: Softw Syst
Model 21.5 (Oct. 1, 2022), pp. 1789–1829. issn: 1619-1374. doi: 10.1007/
s10270-021-00950-6.

[50] Sven Schneider et al. “Formal Testing of Timed Graph Transformation
Systems Using Metric Temporal Graph Logic”. In: Int J Softw Tools Technol
Transfer 23.3 (June 2021), pp. 411–488. issn: 1433-2779, 1433-2787. doi:
10.1007/s10009-020-00585-w.

[51] Sven Schneider et al. “Optimistic and Pessimistic On-the-fly Analysis for
Metric Temporal Graph Logic”. In: Graph Transformation. Ed. by Fabio
Gadducci and Timo Kehrer. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 276–294. isbn: 978-3-030-51372-
6. doi: 10.1007/978-3-030-51372-6_16.

[52] Michael Szvetits and Uwe Zdun. “Systematic Literature Review of the
Objectives, Techniques, Kinds, and Architectures of Models at Runtime”.
In: Softw Syst Model 15.1 (Feb. 1, 2016), pp. 31–69. issn: 1619-1374. doi:
10.1007/s10270-013-0394-9.

[53] Gabriele Taentzer and Arend Rensink. “Ensuring Structural Constraints in
Graph-Based Models with Type Inheritance”. In: Fundamental Approaches
to Software Engineering. Ed. by Maura Cerioli. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005, pp. 64–79. isbn: 978-3-540-
31984-9. doi: 10.1007/978-3-540-31984-9_6.

[54] Dániel Varró et al. “Road to a Reactive and Incremental Model Trans-
formation Platform: Three Generations of the Viatra Framework”. In:

54 L. Sakizloglou et al.

https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1201/9781315145686-8
https://doi.org/10.1016/0951-8320(94)90065-5
https://doi.org/10.1016/0951-8320(94)90065-5
https://doi.org/10.25932/publishup-60439
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/978-3-540-31984-9_6

Softw Syst Model 15.3 (July 1, 2016), pp. 609–629. issn: 1619-1374. doi:
10.1007/s10270-016-0530-4.

[55] Danny Weyns and Radu Calinescu. “Tele Assistance: A Self-Adaptive
Service-Based System Exemplar”. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems. May 2015, pp. 88–92. doi: 10.1109/SEAMS.2015.27.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Foundations for Query-based RM of Temporal Properties over RTMs 55

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1109/SEAMS.2015.27
http://creativecommons.org/licenses/by/4.0/

	Foundations for Query-based Runtime Monitoring of Temporal Properties over Runtime Models

