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Abstract. We introduce Ultimate TestGen, a novel tool for automatic
test-case generation. Like many other test-case generators, Ultimate Test-

Gen builds on verification technology, i.e., it checks the (un)reachability
of test goals and generates test cases from counterexamples. In contrast
to existing tools, it applies trace abstraction, an automata-theoretic ap-
proach to software model checking, which is implemented in the suc-
cessful verifier Ultimate Automizer. To avoid that the same test goal is
reached again, Ultimate TestGen extends the automata-theoretic model
checking approach with error automata.
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1 Test-Generation Approach

Verification technology has been successfully used in the past to automatically
generate test cases [12,14,7,1]. Most existing approaches follow a similar prin-
ciple. Mainly, they perceive reaching an (uncovered) test goal as a property
violation and construct test cases from counterexamples [6]. To build a test
suite, they repeatedly check the reachability of still uncovered goals and prove
their unreachability or generate test cases from counterexamples that testify the
reachability of (uncovered) test goals. To improve the performance of the reach-
ability analysis after detecting the reachability of a test goal, many approaches
reuse previous information, e.g., continue the reachability analysis but exclude
property violations caused by already covered test goals. Also, our new test-case
generator Ultimate TestGen, which is implemented in Java, follows this basic
principle.

To analyze the reachability of test goals, Ultimate TestGen relies on trace
abstraction [11], an automata-theoretic approach to software model checking,
which performs counterexample-guided abstraction refinement (CEGAR) [9] and
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Fig. 1. Overview of the test-case generation approach of Ultimate TestGen

which is implemented in Ultimate Automizer. Figure 1 shows the overview of
the test-case generation process performed by Ultimate TestGen. Components
highlighted in gray are added to the verification process of Ultimate Automizer
and enable test-case generation.

The test-case generation process starts with the encoding of the test goals
into the program. To this end, we insert an assert(false); statement after each
test goal (either a branch or a call to reach_error()). Thereafter, we translate
the program with the assertions into an automaton A, which becomes the ini-
tial abstraction. This initial abstraction represents all possible counterexamples,
i.e., the initial automaton accepts a syntactical program path iff it reaches an
assert statement (i.e., a violation). Next, we iteratively refine the automaton
abstraction until it becomes empty.

If the abstraction still accepts a counterexample path π, we select an arbitrary
counterexample path π from the abstraction and check its feasibility. To check
the feasibility of π, Ultimate TestGen encodes the path into a formula and
checks its satisfiability with an SMT solver. Ultimate TestGen relies on the
SMT solvers Z3 [13], CVC4 [3], and MathSAT5 [8]. However, during the check
we must ensure that an assert statement introduced to cover an earlier test goal
does not prohibit reaching later test goals. Therefore, the feasibility check ignores
the assert statements added during test goal encoding.

If the counterexample is spurious, i.e., the formula is unsatisfiable, we use
the proof of unsatisfiability to generate an interpolant automaton Ar [10]. The
interpolant automaton accepts the counterexample path π and other (counter-
example) paths that are infeasible due to a similar reason. We use the interpolant
automaton to refine the abstraction and, thus, exclude infeasible paths, which
are accepted by the interpolant automaton, from the counterexample search.

If the counterexample is feasible, i.e., the formula is satisfiable, we generate
a test case from a model of the formula [6]. To this end, we identify the calls to
the __VERIFIER_nondet calls and retrieve their values from the model. Then,
we export the identified values into a test case in the exchange format3 used by

3 https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp23/doc/Format.
md
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Test-Comp [5]. The values are exported in the same order as their corresponding
calls occur in the counterexample path π. In addition, we generate an error
automaton that accepts all counterexample paths that end in the same test
goal as the current counterexample π. We use the error automaton to refine the
abstraction and exclude paths from the counterexample search that reach test
goals that are already covered.

The last step is the refinement of the abstraction A. This step excludes the
paths determined irrelevant because they are known to be infeasible or may not
reach uncovered test goals. To this end, we substract the interpolant automaton
and error automaton, respectively from the existing abstraction. Hence, each
step ensures that the abstraction considered in the next step considers fewer
counterexample paths and, thus, guarantees progress of the test-case generation.

2 Discussion of Strengths and Weaknesses

For a comparison of Ultimate TestGen with the other participants of Test-
Comp 2024, we refer to the competition report [5].

Ultimate TestGen checks the reachability of every test goal and generates
a test case for every goal that it proved reachable. Due to this goal-oriented pro-
cedure, it creates relatively small test suites. In addition, if Ultimate TestGen
completes the test-case generation process (i.e., result done), we can confidently
determine that any test goal not addressed by a test case is indeed unreachable.

Nevertheless, proving the reachability of certain test goals can be hard and
requires expensive SMT solver calls. When studying the results for the cate-
gory cover-error, we observe that Ultimate TestGen runs out of resources
(time or memory) for many software systems tasks as well as tasks in the cat-
egories XCSP, Sequentialized, ProductLines, ECA. In addition to the resource
issue, we observe that sometimes our tests are not confirmed by the validator,
which seems to be a bug of the translation of the counterexamples into the test
cases. Still, there also exist categories like loops, heap, arrays, and fuzzle in
which Ultimate TestGen performs rather well.

Looking at the cover-branches category, we observe that for many software
systems tasks as well as for certain float tasks, we already fail to construct the
automaton from the program because required C features are yet not supported
by the program to automaton translation. In these cases, the test-case generation
procedure does not even start. In addition, Ultimate TestGen has problems in
detecting the feasibility of error traces for Linux device driver tasks because
large string literals are not precisely encoded. For other task categories like AWS,
Sequentialized, ProductLines, Hardware, Fuzzle, ECA, and Combinations,
we observe that reaching the test goals is expensive and Ultimate TestGen
runs out of resources (time, memory) before covering a significant amount of
test goals. While we have seen the resource issue for the cover-error category,
too, the Hardness tasks reveal another issue with our test-case exporter, which
makes Ultimate TestGen crash. The reason for the crash is that our test-case
exporter failed to translate values from the SMT-LIB [2] FloatingPoint format
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back to certain C types such as ulong. Note that the C types float and double
were not an issue. Still, there exist task categories like e.g., loops, control-flow,
bitvectors, or XCSP for which Ultimate TestGen performs well and achieves
high coverage values.

3 Setup and Configuration

Ultimate TestGen is part of the Ultimate framework4, which is licensed un-
der LGPLv3. To execute Ultimate TestGen in the version submitted to Test-
Comp 2024 [4], one requires Java 11 and Python 3.6 and must invoke the fol-
lowing command.

./Ultimate.py –spec <p> –file <f> –architecture <a> –full-output

where <p> is a Test-Comp property file, <f> is an input C file, and <a> is the
architecture (32bit or 64bit). During execution of the command, the generated
tests are saved as .xml files in the exchange format for test cases required by
Test-Comp [5]. In Test-Comp 2024, we use the above command to participate
with Ultimate TestGen in both Test-Comp categories: cover-error (i.e., bug
finding by covering the call to reach_error) and cover-branches (i.e., code
coverage).

Data Availability The Test-Comp 2024 version of Ultimate TestGen is avail-
able online on Zenodo [4] and on GitHub5. Its corresponding benchmark defini-
tion file is available on GitLab6.
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