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Abstract. The correct operation of safety-critical cyber-physical sys-
tems is crucial. However, such systems often feature a large variability
of start configurations, an intractably large state space, a high degree
of uncertainty, or inherently unsafe behavior. A model of the expected
system behavior starting in the current state can be used by look-ahead
controllers to derive control decisions to avoid paths to safety violations
when possible. However, the computational effort for deriving and ana-
lyzing the future system behavior is exponential in the look-ahead.
In this paper, we employ Graph Transformation Systems (GTSs) for the
modeling of expected system behavior. We then combine design-time and
run-time control synthesis based on Supervisory Control Theory (SCT)
achieving an exponential cost-reduction for a given controller look-ahead.
For a fixed required reaction time of controllers, much longer look-aheads
may therefore be employed. To illustrate and evaluate our approach, we
consider a system where shuttles must avoid collisions with ambulances
at level crossings.

Keywords: cyber-physical systems, self-adaptive systems, supervisory control,
model-predictive control, runtime verification, bounded model checking

1 Introduction

Cyber-physical systems in which software components operate in a physical en-
vironment often encompass complex concurrent behavior. The development or
synthesis of such control software achieving a given set of goals while also ensur-
ing the satisfaction of a given safety-specification is crucial. In model-predictive
control, a model of the expected system behavior is employed to obtain look-
ahead controllers. Such controllers derive control decisions based on the set of all
behavior sequences of a chosen look-ahead length starting in the current state.
However, the set of such behavior sequences is exponential in the look-ahead
length limiting the look-ahead to values allowing admissible reaction times.

As a running example, we consider a variation of the RailCab system from
[38, 30]. In this system, shuttles navigate on a large-scale track topology, which
intersects with a road topology at level crossings. Ambulances, which can be
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monitored by shuttles with a certain degree of uncertainty, navigate on the road
topology and may traverse level crossings. The shuttle control to be derived,
must avoid collisions with ambulances when possible by adjusting the speed of
the shuttle taking potential ambulance behavior into account. To focus on our
approach and to simplify our presentation, we reduce the possible number of
steps of actors in the system model by employing a small topology fragment
with one level crossing, a single shuttle, and one ambulance.

Besides run-time efficiency, controller synthesis approaches for cyber-physical
systems must solve an array of further problems. P1 (Sets of Start States): The
start state of the system is often not precisely known requiring the consideration
of a large or even infinite set of start states. These start states may differ in
rigid components but also in the number, the state, and the interconnection
of active components. For our running example, the underlying rigid topology
and the location of shuttles and ambulances on this topology may vary greatly.
P2 (State space explosion): Even when selecting a single start state, the state
space of the system is often intractably large or even infinite because all steps of
all components must be captured in the system model. P3 (Uncertainty): The
uncontrolled part of the system can often not be modeled faithfully at design
time due to uncertainty. For example, uncertainty arises due to behavioral or
configuration adaptation as well as from unknown, unreliable, or unpredictable
components/actors (such as humans) performing additional steps that cannot be
foreseen at design time or fail to perform such steps [45]. P4 (Unsafe Systems):
Avoidance of unsafe states is not always feasible due to uncertainty or in contexts
where unsafe states cannot be avoided by control at all.

For the modeling of the expected future system behavior, we employ Graph
Transformation Systems (GTSs), which can be used when system states can
be captured by graphs and when the steps of the involved components can
be captured using local graph modifications. In the past, various GTS-variants
have been developed and employed for the modeling, design, and analysis of such
systems in an abundance of publications such as [19, 20, 21, 18, 29, 22, 30, 49,
48, 33] focusing on different system aspects and requirements.

To accommodate for these problems (discussed in more detail in the sub-
sequent section), we propose a model-driven approach based on GTSs and the
MAPE-K control framework where we employ a sliding window technique consid-
ering actor-specific state fragments to reduce the computational effort (problems
P1 and P2) and combine design-time control synthesis with run-time control syn-
thesis as a look-ahead extension technique to efficiently obtain best-effort control
(to tackle problems P3 and P4). Both, at design-time and run-time, we employ
an extension of Supervisory Control Theory (SCT) with priorities for the syn-
thesis of controllers where the uncontrolled system is modeled using an extension
of GTSs with controllability notions.

This paper is structured as follows. In section 2, we discuss our conceptual
approach in the context of the MAPE-K framework including the sliding win-
dow technique. In section 3, we consider related work. In section 4, we present
our extension of SCT with priorities. In section 5, we integrate controllability
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Fig. 1. Overview of MAPE-K-based approach

notions into the GTS framework and present our running example. In section 6,
we discuss control synthesis at design-time. In section 7, we discuss control syn-
thesis at run-time based on the design-time results. In section 8, we evaluate our
approach for a larger case study. Finally, in section 9, we conclude the paper and
provide an outlook on future work.

2 MAPE-K Closed-Loop Approach

Software being executed in a cyber-physical system on a device often follows (at
least implicitly) the MAPE-K closed-loop design [53, 1] depicted in Figure 1a
developed for systems with a high degree of complexity, uncertainty, and dy-
namicity. Such software interacts with its context in that system via sensors and
effectors and keeps a Runtime Model (RTM) to store its local state across its
looped executions. It executes (a) the monitoring phase to react to sensor infor-
mation by updating the RTM accordingly, (b) the analysis phase to determine
the impact of the most recent events on its options to achieve its control goals, (c)
the planning phase to derive a control plan satisfying suitable quality standards,
and (d) the execution phase to send events to the effectors to implement the
steps of the derived control plan. Ideally, such a MAPE-K control architecture
adapts to unexpected situations at run-time in an ad-hoc manner.

In our approach, the RTM (see Figure 1b) contains (a) a Bounded Forward
State Space (BFSS) from the current system state s (derived and maintained



at run-time) and (b) a Bounded Backward State Space (BBSS) from unsafe
states us (derived at design-time). Both of theses state spaces are (similarly
to bounded model checking [50]) derived from the GTS capturing the expected
system behavior. Moreover, the RTM contains the controllers derived from these
two state spaces, which capture for each depicted state the exiting steps that the
shuttle may perform. At run-time the controller obtained from the BFSS and
the BBSS are combined by attempting to identify boundary graphs of the BBSS
in the leaf states of the BFSS. For a BFSS and BBSS of depth n and k, this
combination grants an effective look-ahead of n+k to the controller. Clearly, the
look-ahead should be maximized (taking other aspects such as required response
time into account) to provide the controller synthesis procedure with as much
information as possible to avoid the execution of overly conservative behavior
(such as unnecessarily slowing down the shuttle). Not employing a BBSS only
constructing a BFSS of depth n+ k to achieve the same look-ahead n+ k would
be exponentially more expensive and, moreover, this additional cost would be
incurred at run-time whereas at least the BBSS is obtained in our approach at
design-time rendering its cost of construction negligible.

In our approach, the four MAPE phases are as follows.
• Monitor phase: when the controller is informed via its sensors about a state

change from the BFSS root s to state s′, it selects s′ as the new root of the
BFSS. Unless the step to s′ was not expected due to uncertainty, s′ is already
one of the successors of s contained in the BFSS.

• Analysis phase: States of the BFSS unreachable from s′ are removed and the
GTS model is used to re-extend the BFSS to the chosen depth n. To identify
states to be avoided, all leaf states of the BFSS are checked for occurrences of
unsafe boundary states of the BBSS. Finally, the run-time controller is then
adjusted to the modified BFSS by selecting steps to be prevented that would
lead to the states to be avoided.

• Planning phase: The controller can then plan the execution of any controllable
step exiting the new root state s′ of the BFSS (in the running example, these
steps are the steps of the shuttle) or let the plant perform the next step.1

• Execute phase: If a step has been selected in the planning phase, this step is
send for execution to the corresponding effector (in the running example, a
hardware controller of the shuttle will receive and implement such a signal).

The worst-case controller response time depends on the time required for (a)
the full reconstruction of the BFSS and the corresponding controller synthesis
thereon (upon an occurrence of an unexpected step) and (b) the identification
of leaf states of the BFSS containing unsafe boundary states of the BBSS. The

1 The absence of such controllable steps does not indicate a problem as the controller
may just not need to change the behavior of the agent (e.g., the shuttle may already
be driving at the desired speed) but, in the considered time-abstract setting, the
absence of any step implies that no control strategy guaranteeing the avoidance of
unsafe states could be obtained. In this case, fallback behavior such as not modeled
emergency maneuvers or decisions by the environment on uncontrollable events may
still result in the avoidance of unsafe states.
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usage of the BBSS exponentially reduces the computational effort for (a) as
discussed but, regarding (b), it also requires that the leaf states of the BFSS
need to be checked against a potentially large number of unsafe boundary states
instead of only the unsafe states. In our evaluation in section 8, we measure and
further discuss these effects for a considered case study.

As mentioned in the introduction already, we employ a sliding window ap-
proach reducing the size of the BFSS and BBSS to be constructed. Instead of
assuming that each agent maintains a perspective on the entire system state, we
adopt the technique from [30] where, in a compositional approach, agent-specific
scopes are used. On the one hand, this greatly reduces the number of steps (and
thereby the size of the BFSS and BBSS) as only a small number of agents will
be typically in the view range of an agent. On the other hand, a smaller view
range may result (closely related to the look-ahead) in an overly conservative
controller behavior. Besides mitigating the effect of state space explosion, this
sliding window approach has the additional advantage that start states must
only be determined for each actor individually and not globally. Intuitively, each
system step must be followed by suitable postprocessing to update the reached
state to the view range of the actor. These postprocessing steps are part of the
system model and therefore define changes in the context of the agent to which
the controller must suitably respond. In our evaluation in section 8, we further
discuss this sliding window technique as we abstract from it in our running
example to focus on controller synthesis via BFSS and BBSS.

3 Related Work

Model checking [2] is often inadequate for complex systems due to the state
space explosion problem and uncertainty. Bounded Model Checking (BMC) [50,
24, 25] has been devised to reduce analysis costs providing, however, weaker
guarantees and no support for uncertainty.

When formal fully-automatic verification is infeasible, Runtime Verification
also called Runtime Monitoring [28] is an approach for monitoring the system’s
states and steps at run-time for notable behavior such as violations of invari-
ants that require a manual or automatic response. However, without look-ahead
capabilities, potential near-future unsafe states cannot be detected. Therefore,
some RV approaches such as [45, 23, 15, 32, 52, 16] integrate a behavioral model
describing expected future evolutions of the system. In [45], the expected future
evolutions of a Timed Automata (TA) are analyzed at run-time using BMC. In
[15], Deterministic Timed Markov Chains modeling the system are analyzed at
design-time to obtain expressions on step-probabilities that will become available
at run-time to make probability-maximizing decisions at run-time by evaluat-
ing the expressions at run-time instead of performing computationally expensive
analysis. In [23], a run-time statistical model checking component has been inte-
grated into a self-adaptive system. However, these approaches also rely on BMC
and thereby suffer from state space explosion and in some cases such as [45, 15]
also from being unable to react to uncertain events.
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The approach of k-induction [26, 11] that has been adopted for variants of
GTSs in [47, 48, 3] establishes state invariants by symbolically applying GT rules
backwards from unsafe states to accumulate context capturing why and how the
symbolic violation could be reached. This approach is thereby a symbolic version
of backward BMC. We use a similar approach in this paper tackling the problem
of a large number of undesirable backward steps constructed by k-induction.

A combination of forward and backward BMC similar to our approach for
the analysis of Hybrid Automata in [54] applies depth first search forward and
backward in parallel to find paths to unsafe states for Hybrid Automata with
complex state space structure.

SCT as established in [40, 41, 39] for capturing, analyzing, and synthesizing
supervisory control when the controllers, the plants, and their closed loops are
given by regular languages over events (see also [27, 46] for an in-depth intro-
duction and a discussion of derived approaches) has to our knowledge not been
combined with event-priorities. However, priorities have been used to combine
supervised modules preventing blocking situations in [6, 7]. Also, approaches
in the Model Predictive Control domain (see [51] for a survey) employ mod-
els to predict the future system behavior as in our approach but focus usually
on continuous time systems minimizing costs as in [4, 5] and have not been
combined with SCT to the best of our knowledge. Besides the approach to dis-
tinguish between controllable and uncontrollable events as customary in SCT,
other approaches of identifying actions of different actors and capturing inter-
actions among such actors in the GT domain include [9] but also SCT for TA
(related to [45] above) has been considered in [43, 42]. [35, 36, 34, 33] where
a safety constraint has already been violated due to uncertainty or adversarial
effects requiring the derivation and execution of recovery mechanisms.

4 Priority-aware Supervisory Control Theory

We recall SCT as introduced in the seminal work of Ramadge and Wonham [40,
41, 39] in which the closed loop is given by the event-synchronizing composition
of controller and plant. To provide the essentials of this approach in our notation
and to extend this approach with the concept of event priorities, we introduce a
variant of Labeled Transition Systems (LTSs) extending finite automata thereby
capturing regular languages over an event alphabet as considered in standard
SCT. In such an LTS, events are grouped into controllable and uncontrollable
events (cf. the MAPE-K closed-loop in Figure 1a), which are executed by the
controller (e.g., signals to effectors) and the plant (e.g., signals from sensors). The
controller may restrict the execution of controllable events in the closed-loop.

We aim at controller synthesis such that event-prevention ensures that the
closed-loop avoids undesirable states (this notion is formalized below as non-
blockingness) and no steps executing uncontrollable events have been prevented
at the model level (this notion is formalized below as controllability) while
not preventing event executions unnecessarily to retain the highest possible
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degree of freedom for further control steps.2 We equip events with a prior-
ity as motivated in the next section by our running example: steps executing
(un)controllable events are then only enabled when no steps executing higher-
priority (un)controllable events are enabled (i.e., priorities are checked within
the two groups of controllable and uncontrollable events separately).

Definition 1 (Labeled Transition System (LTS)). A Labeled Transition
System (LTS) Γ contains the following components.
• states(Γ ) contains all states and its subsets start(Γ ), safe(Γ ), and unsafe(Γ )

contain the start, safe, and unsafe states.
• events(Γ ) contains the controllable and uncontrollable events eventsC(Γ ) and

eventsUC(Γ ).
• prio(Γ ) : events(Γ ) N assigns a priority to each event.
• steps(Γ ) ⊆ states(Γ )× events(Γ )× states(Γ ) is a set of event-labelled steps.
Moreover, Γ1 is a sub-LTS of Γ2, written Γ1 ≤ Γ2, when the components of
Γ1 are contained in the corresponding components of Γ2 and the reversed LTS
rev(Γ ) is obtained by reversing steps(Γ ) and swapping start(Γ ) and unsafe(Γ ).

The priority-resolved LTS is obtained by omitting all controllable/uncontrol-
lable steps disabled by higher-priority controllable/uncontrollable steps. Only
the paths through this priority-resolved LTS can actually be observed.

Definition 2 (Priority-resolved LTS). For an LTS Γ and a set of events E,
Γ ′ = resPrio(Γ,E) is the largest sub-LTS of Γ such that for all (s, e1, s1) ∈
steps(Γ ′) with e1 ∈ E there is no (s, e2, s2) ∈ steps(Γ ′) with e2 ∈ E and
prio(Γ ′)(e2) > prio(Γ ′)(e1). Then, the priority-resolved LTS of Γ is given by
resPrio(Γ ) = resPrio(resPrio(Γ, eventsUC(Γ )), eventsC(Γ )).3

A controller ΓC to be synthesized for a given plant ΓP is a sub-LTS of ΓP and,
hence, the event-synchronizing closed loop of ΓC and ΓP is just ΓC .

The notion of controllability requires that the controller cannot prevent un-
controllable events that the plant can execute.

Definition 3 (Controllability). A plant ΓP and a controller ΓC ≤ ΓP satisfy
controllability, if every path π of resPrio(ΓC) that can be extended by resPrio(ΓP )
with a step executing an uncontrollable event u ∈ eventsUC(ΓP ) can be extended
by resPrio(ΓC) with a step executing u as well.

The notion of non-blockingness requires the liveness property that the closed
loop may eventually reach a safe state from any of its states. In our approach,
we define unsafe states as those violating a state invariant and safe states as
those not having paths to any unsafe states.

Definition 4 (Non-blockingness). A plant ΓP and a controller ΓC ≤ ΓP

satisfy non-blockingness, if every path π of resPrio(ΓC) can be extended to a
state in safe(ΓP ).
2 Note that controllers can only force certain events in a given state in this framework

when all events executable from that state are controllable (differing from, e.g., [55]).
3 Note that, in general, resPrio(Γ ) ̸= resPrio(Γ, events(Γ )).
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For the case of controllers and plants generating regular languages considered
here, admissible controllers satisfying controllability and non-blockingness are
closed under arbitrary unions [40, 41, 39, 27, 46]. Desired controllers are therefore
defined as those admissible controllers that result in the largest closed loops in
terms of sets of executable event sequences. Admissible controllers are also closed
under arbitrary union in the presence of event priorities because the union of
controllers will result in a controller that favors the highest priority steps from
any of the controllers and, moreover, LTSs are memoryless (beyond their current
state) implying that choosing higher priority steps from different controllers can
not lead to states not traversable using any of the controllers. However, only the
priority resolved versions of synthesized controllers for which the classic results
from [40, 41, 39, 27, 46] readily apply are to be used anyway.

Following SCT, the first controller candidate is the plant LTS Γ . This candi-
date is then incrementally refined by preventing events enforcing controllability
and non-blockingness least-restrictively until an admissible controller control(Γ )
is obtained (closedness under arbitrary union also implies that the order in which
violations of controllability and non-blockingness are resolved is insignificant).
Note that this fixed-point procedure supports also cyclic LTSs in general (in
which, as usual, loops may delay the visiting of safe states indefinitely as op-
posed to [55]). To handle the case with priorities, we resolve priorities among
uncontrollable events before applying the fixed-point procedure and resolving
priorities of remaining controllable steps afterwards to obtain the priority-aware
controller pControl(Γ ).

Definition 5 (Priority-Aware Controller). An LTS Γ induces the LTS Γ ′ =
control(Γ ) by adapting Γ as follows:4
• steps(Γ ′) is the largest subset of steps(Γ ) such that for each (s, e1, s1) ∈

steps(Γ ′) (non-blockingness) there is some path from s1 to a state in safe(Γ ′)
using steps in steps(Γ ′) and (controllability) when (s1, u2, s2) ∈ steps(Γ ) is
a step using an uncontrollable event u2 from eventsUC(Γ ) then (s1, u2, s2) is
also a step in steps(Γ ′).

Moreover, pControl(Γ ) = resPrio(control(resPrio(Γ, eventsUC(Γ ))), eventsC(Γ ))
is the priority-aware controller for Γ .

As an example for controller synthesis, consider the LTS in Figure 2 representing
an uncontrolled plant and the priority-aware controller synthesized for it.5 First,
to resolve blocking at s4, the controllable priority 2 event c2 from s0 is prevented
enabling the priority 1 event c1 from s0. Second, to resolve blocking at s3, the un-
controllable event uc3 from s1 is prevented. Third, to resolve non-controllability
at s1, the controllable priority 1 event c1 from s0 is prevented enabling the pri-
ority 0 event uc1 from s0. The resulting controller will only contain the path
from s0 to s2 executing the event uc1. Note that maintaining the steps of all
priorities in the LTS simplifies controller synthesis since the effect of preventing
controllable events (such as c2 and c1) becomes apparent immediately without
4 For brevity, we omit here the removal of unreachable states from Γ ′.
5 When resolving priorities among uncontrollable events and later among controllable

events no steps are removed in this example.
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uc1
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uc2 uc3

Fig. 2. Example of controllability and non-blockingness. The unsafe states {s3, s4} are
given in red with dotted border, the safe state s2 is given in green with exiting arrow
symbol, the remaining orange states have paths to unsafe states, the start state s0
has an entering arrow symbol, the bold steps execute the uncontrollable events uci, the
non-bold steps execute the controllable events ci, the dashed steps have been prevented,
the event c2 has priority 2, the event c1 has priority 1, the other events have priority 0,
and only the boxed event uc1 can be executed since the steps executing {c1, c2} have
been prevented.

the need to derive such steps intermittently for then enabled steps (e.g., only
the step executing c2 was enabled initially due to its priority) decoupling LTS
generation and control synthesis.

Note that control(resPrio(Γ )) ̸= resPrio(control(Γ )) in general because first
resolving the priorities restricts the possible controllers to be synthesized. For
example, first resolving priorities in Figure 2 would remove the step with the
event uc1, which would otherwise be the only remaining step.

5 Control-oriented Graph Transformation

We first introduce control-oriented GTSs before discussing the modeling of our
running example using this formalism.

To ease presentation, we employ the simple class of typed directed graphs
(short graphs) (see [12, 13, 14] for details). In our running example, we employ
the type graph TG from Figure 3a, which can be understood to be a simple
UML class diagram, and graphs, which can be understood to be simple UML
object diagrams. In visualizations of graphs such as Figure 3b, types of nodes are
indicated by their names (i.e., Si and Ti are nodes of type Shuttle and Track),
names of edges are omitted, types of edges are only given when required to avoid
ambiguity (the only edge types with equal source and target node types are fast ,
slow , and halt). We denote monomorphisms (monos) from graph H to graph H ′

mapping nodes and edges injectively by f :H H ′.
To introduce control-oriented GTSs, we first introduce GT rules used to

derive GT steps between graphs. A Graph Transformation (GT) rule ρ consists
of two monos ℓ : K L and r : K R describing the removal and addition of
elements and a set N of monos ni : L Ni of Negative Application Conditions
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(NACs) describing forbidden extensions of L.6 We use the abbreviation lhs(ρ) =
L later on. In visualizations of GT rules (see Figure 3), we use an integrated
notation in which L, K, and R are given in a single graph where graph elements
marked with ⊖ are from L−K and will be deleted, graph elements marked with
⊕ are from R−K and will be created, and where all other graph elements are in
K and will be preserved. When NACs are present, they are given on the left side
of the ▷ symbol. For example, consider the GT rule in Figure 3c which preserves
the ambulance and shuttle nodes A1 and S1, removes the edge from S1 to A1,
creates an edge from A1 to S1, and is only applicable when A1 has no edge to
some road node R1.

We now introduce our novel notion of control-oriented GTSs. Such a GTS
S contains a set start(S) of start graphs, a set unsafe(S) of unsafe graphs rep-
resenting violations of invariants, a set rules(S) of GT rules with the subsets of
controllable and uncontrollable GT rules rulesC(S) and rulesUC(S), and a map-
ping prio(S) assigning a natural number as a priority to each GT rule. Note that,
similarly as in our presentation of SCT in section 4, we assign priorities to GT
rules and group them into controllable/uncontrollable GT rules capturing which
steps can/cannot be prevented by the controller to be synthesized.

GT steps G σ G′ from a graph G to a graph G′ are labeled with a pair
σ = (ρ,m) consisting of a GT rule ρ and a match m : lhs(ρ) G identifying
an occurrence of lhs(ρ) in G. The match m must satisfy the requirement that
there is no NAC ni : lhs(ρ) Ni contained in ρ for which some m′

i : Ni G
satisfying m′

i ◦ ni = m exists. The graph G′ is then constructed from G via the
usual Double Pushout (DPO) diagram (see [12, 13, 14] for a details).

A GTS induces a forward LTS by deriving GT steps from already included
graphs and adds these steps as well as their target states in the resulting LTS.
Note that we merely propagate the priorities of the GT rules into the constructed
LTS instead of enforcing them by excluding lower-priority steps when higher-
priority steps are present.

Definition 6 (Forward LTS of a GTS, BFSS). A GTS S induces the unique
LTS Γ = JSK as follows:
• states(Γ ) contains start(Γ ) and the target states of all steps in steps(Γ ).
• start(Γ ) contains the graphs from start(S).
• safe(Γ ) ⊆ states(Γ ) contains the graphs from which unsafe(Γ ) can’t be reached.
• unsafe(Γ ) ⊆ states(Γ ) contains the graphs G into which a mono t : H G

from some graph H ∈ unsafe(S) exists.
• eventsC(Γ ) and eventsUC(Γ ) contain the step labels σ = (ρ,m) of the steps in

steps(Γ ) where ρ ∈ rulesC(S) and ρ ∈ rulesUC(S).
• prio(Γ )(ρ,m) = prio(S)(ρ) assigns the priority of the used GT rule ρ.
• steps(Γ ) is the least relation containing all GT steps from states in states(Γ ).
Moreover, the BFSS of depth n, denoted JSKn, is the largest sub-LTS of JSK in
which all paths starting in start(Γ ) through distinct states have length ≤ n.

6 Our approach is orthogonal to the use of more expressive notions of application
conditions such as nested graph conditions [18, 14, 10].
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(f) GT rule ρa moving the am-
bulance to the next road.

(v1 , v2 ) ∈ {
(fast , fast),
(slow , fast),
(fast , slow),
(slow , slow),
(halt , slow)}

S1

T1

T2

⊖⊖⊖

⊕⊕⊕

v1 ⊖⊖⊖

v2 ⊕⊕⊕

A1

⊕⊕⊕

⊖⊖⊖

(g) GT rules ρff , ρsf , ρfs, ρss, and ρhs resulting
in a fast or slow shutle on the next track.

v ∈ {slow , halt}

S1

v ⊖⊖⊖

halt ⊕⊕⊕

A1

⊕⊕⊕

⊖⊖⊖

(h) GT rules ρsh and ρhh resulting in
a halted shuttle on the same track.

GT rules controllable? priority SFE SFU Figure

ρacp no 0 yes yes Figure 3c
ρace no 0 yes no Figure 3d
ρacu no 0 no yes Figure 3e
ρa no 0 yes yes Figure 3f
ρfs, ρss, ρhs yes 1 yes yes Figure 3g
ρff , ρsf yes 2 yes yes Figure 3g
ρsh ρhh yes 0 yes yes Figure 3h

(i) Overview of the GT rules used in the GTSs SFE and SFU.

Fig. 3. Details on the running example.
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We now discuss the modeling of our running example, which is a simplification
of the case study considered in our evaluation in section 8. We model shuttles
driving on a track topology where subsequent tracks are connected using next
edges as in Figure 3b. The driving speed of each shuttle is either fast, slow, or halt
(as marked using fast , slow , or halt loops). Level crossings (where track and road
topology intersect) are indicated by the node type Crossing and are connected to
the corresponding track and road segments. Ambulances may appear and drive
on the road topology including the level crossings.

The graph in Figure 3b represents the current view of the shuttle on the
system state. The ambulance A1 is not yet connected to a road meaning that it
can be ignored by the shuttle at this point. Ambulance and shuttle perform steps
alternatingly by switching the directed edge between them in each step to ensure
a certain level of fairness since the system would otherwise be fundamentally
unsafe as the shuttle could not rule out collisions anymore. The edge from the
ambulance to the shuttle indicates that the shuttle will perform the next step.

Shuttles may maintain their speed (events ff, ss, and hh) or switch between
fast and slow (events fs and sf) as well as between slow and halt (events sh and
hs), modeling the stopping and acceleration distance. These seven driving speed
transitions are controllable for the shuttle controller but all steps of ambulances
are uncontrollable. To allow the shuttle to make timely control decisions, an
ambulance detection mechanism informs the shuttle when ambulances are two
roads ahead of an upcoming level crossing (i.e., an ambulance would be detected
in Figure 3b when it enters the road R2). We derive shuttle control assuming
that this detection mechanism is reliable but analysis will reveal partial robust-
ness against unreliability in situations where ambulances are detected first on
the closer road segments R1 or even R0. Note that shuttle and ambulance per-
forming steps alternatingly will result in violations of non-blockingness when the
controller prevents all controllable steps of the shuttle in a given state, which is
thereby implicitly excluded as well.

We use GT rule priorities to model that the shuttle prefers faster driving
speeds over slower driving speeds. Therefore, without preventing any steps, the
shuttle will maintain its fast speed.

We now discuss the GT rules used in these GTSs in more detail. Again,
shuttle and ambulance steps alternate as implemented by switching the direction
of the edge between them in every GT rule. When its the ambulances turn, the
GT rules ρace, ρacu, and ρacp are applicable when the ambulance has no edge to
some road segment yet and the GT rule ρa is used otherwise. The GT rule ρace
models the expected creation of the ambulance by creating an edge from the
ambulance to the road R2 in Figure 3b (the three NACs check that A1 is not
yet on R1, that A1 is not yet on some other road, and that the matched road
R1 has no predecessor). The GT rule ρacu models the unexpected creation of the
ambulance by creating an edge from the ambulance to an arbitrary road unless
this road is at the level crossing with a shuttle being already located there as
well (the three NACs check that A1 is not yet on R1, that A1 is not yet on some
other road, and that S1 is not on a track connected by a crossing to R1). The
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GT rule ρacp models the case that the ambulance is not yet created meaning that
ambulance detection is postponed (the NAC checks that the ambulance is not
yet on a road). Lastly, the GT rule ρa models the moving of a detected ambulance
to the next road segment (by removing the edge from A1 to the current road
segment R1 and creating such an edge to the road segment R2 reached). When
its the shuttles turn, the GT rules ρff , ρfs, ρsf , ρss, ρsh, ρhs, and ρhh are used. The
GT rules ρsh and ρhh do not move the shuttle to the next track while the other
GT rules do so. Here, the movement of the shuttle is implemented as for the GT
rule ρa by deleting and creating an edge and the driving speed transitions are
encoded by deleting and creating the driving speed loop at the shuttle.

In our running example, we first consider the GTS SFE with expected am-
bulance detection: for this GTS, we employ the graph from Figure 3b as start
graph, use 10 of the 11 GT rules from Figure 3, split GT rules into controllable
and uncontrollable GT rules, and employ priorities as listed in Figure 3i. In
particular, when its the ambulances turn, each enabled GT rule has the same
priority 0 making all steps derivable using the GT rules ρace and ρacp viable.
When its the shuttles turn, GT rules setting the speed to halt, slow, and fast
have priorities 0, 1, and 2 favoring a faster driving speed. Also, the GT rules for
slowing down or remaining halted (ρfs, ρsh, and ρhh) cannot be prevented as this
would lead to a violation of non-blockingness as discussed. Additionally, we con-
sider a second GTS SFU in which ambulances are possibly detected closer or on
the level crossing: this GTS differs from SFE by replacing the GT rule ρace with
ρacu for detecting an ambulance, which may result in up to four steps detecting
the ambulance on any of the four road segments.

In the considered GTSs, only a finite number of graphs can be reached and,
in the remainder, we represent each graph using an element of {✘, 0, 1, 2,✔}
× {0, 1, 2, 3, 4,✔} × {f, s, h} × {s, a} where (a) ✘ means that the ambulance has
not been detected yet, 0–2 is the distance of the ambulance to the crossing, and
✔ means that the ambulance has advanced beyond the crossing, (b) 0–4 is the
distance of the shuttle to the crossing and ✔ means that the shuttle has advanced
beyond the crossing, (c) f, s, and h is the driving speed of the shuttle, and (d) s
or a means that the shuttle or the ambulance performs the next step. The start
graph from Figure 3b is therefore represented by ✘4fs as the ambulance has not
yet been detected, the shuttle is four tracks away from the level crossing, the
shuttle is in fast driving speed, and the shuttle will perform the next step.

The 6 unsafe graphs in {0}×{0}×{f, s, h}×{s, a} of the considered GTSs SFE

and SFU all contain a shuttle and an ambulance on the level crossing but differ
in the three possible driving speeds of the shuttle and the two cases of which
entity performs the next step. While we specify the set of all unsafe states in our
GTS by providing it explicitly, unsafe states could also be identified using ad-
vanced approaches such as nested graph conditions, Linear Temporal Logic [37],
Computation Tree Logic [8, 2], or Metric Temporal Graph Logic [49].

The controller to be synthesized should force the shuttle to drive fast un-
less an ambulance is present, in which case the controller should ensure that the
shuttle reaches the track T1 with slow speed and then halts there until the ambu-
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lance has passed the level crossing. The controller synthesized by our integrated
approach results in this controller as discussed subsequently.

6 Design-time Control-synthesis

We now discuss design-time control synthesis based on (a) BBSS generation
from unsafe states and (b) control synthesis based on SCT together resulting in
an LTS with unsafe boundary to be avoided at run-time to avoid unsafe states
and a safe boundary for which the LTS is a controller avoiding unsafe states.

For our running example, we start the BBSS generation using only two unsafe
states X0 = {00sa, 00fa} for presentation purposes. We depict the obtained BBSS
in Figure 4, which is constructed by adding up to k steps backwards from X0.
From all additional states X1, unsafe states in X0 can be reached by construction;
to derive viable alternative steps avoiding unsafe states, we include all missing
forward steps from states in X1 to additional states X2. The states X2 are by
construction safe states (indicated by the exiting arrow symbol) of the resulting
LTS from which unsafe states in X0 cannot be reached (within k steps). The
start states of the constructed backward LTS are the last states traversed on each
backward path (indicated by the entering arrow symbol). These start states will
be grouped into the safe and unsafe boundary in the next step.

We construct a controller from the BBSS given in Figure 4 by applying
SCT. First, the two unsafe states 00sa and 00fa violate non-blockingness. To
make these states unreachable, all five steps with one of them as a target are
prevented resulting in a violation of non-blockingness at 01fs. To make this
state unreachable, the step (11fa, a, 01fs) is prevented resulting in a violation
of controllability at 11fa. To make this state unreachable, all three steps with
11fa as target are prevented. Due to event-priorities, only the boxed events can
be actually executed. Intuitively, the depicted controller ensures that, in the
presence of an ambulance approaching the upcoming level crossing, the shuttle
will avoid collisions, e.g., by halting in state 01ha. When the ambulance is created
unexpectedly closer to the crossing using ρacu in SFU, the controller obtained
here will fail since it would enter track T1 with fast speed when no ambulance
is detected reaching state ✘1fa and then not be able to halt in front of the level
crossing when the ambulance is then unexpectedly detected on the level crossing
in the next step reaching state 01fs.

Technically, we construct the BBSS for a given GTS relying on a secondary
GTS called the backward GTS : We generate the BFSS for the backward GTS
(according to Definition 6), reverse the obtained LTS (according to Definition 1),
and then add the missing forward steps to safe states as explained above. For
our running example, we employ the backward GTSs SBE and SBU, which can be
obtained from their forward counterpart GTSs SFE and SFU by reversing their
GT rules (see, e.g., [14, Lemma3.14] for rule reversal based on the L operation)
and switching the sets of unsafe and start graphs. The reason for using a back-
ward GTS is a reduced size of the BBSS, since (not simply using rule reversal)
modeling the backward GTS separately (while still ensuring that it agrees with
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Fig. 4. Design-time controller synthesis based on BBSSs. We reuse the notation from
Figure 2 for start states, unsafe states, safe states, potentially unsafe states, steps
executing controllable/uncontrollable events, and prevented steps. The depicted BBSS
of depth 3 and the resulting synthesized controller for the GTS SBE (or the GTS SBU)
based for brevity on only two of the six unsafe states. The two unsafe states can be
avoided resulting in an empty unsafe boundary.

the forward GTS as discussed in the next section) as in the case study consid-
ered in section 8 allows to enforce known system invariants (such as a minimum
distance between level crossings or upper bounds of shuttles in certain areas) to
reduce the number of derived steps.

Definition 7 (Backward LTS of a GTS, BBSS). A (backward) GTS S
induces the LTS Γ = JSKback by adapting Γ ′ = rev(JSK) as follows:
• states(Γ ) contains states(Γ ′) and the safe states safe(Γ ).
• safe(Γ ) contains the target graphs of all steps in steps(Γ )− steps(Γ ′).
• steps(Γ ) contains steps(Γ ′) and all GT steps from states in states(Γ ′).
Moreover, the BBSS of depth k, denoted JSKbackk , is the largest sub-LTS of JSKback
in which all paths through distinct states ending in unsafe(Γ ) have length ≤ k.

We now apply the procedure pControl to the BBSS to derive the design-time
controller. The unsafe boundary for which no suitable control could be derived
is then given by all start states without an outgoing step and the safe boundary
is given by the remaining start states (for which a controllable path to a safe
state could be established).

Definition 8 (Design-time Controller). If S is a (backward) GTS and k ∈
N, then Γ = pControl(JSKbackk ) is the design-time controller with unsafe boundary
uBoundary(S, k) = {s ∈ start(Γ ) | ∄(s, e, s′) ∈ steps(Γ )}.

The design-time controller for the BBSS in Figure 4 is constructed for k = 3 and
has an empty unsafe boundary. However, when using k = 2 (removing the states
in the first row and the safe states in the second row), we obtain a design-time
controller with safe boundary {11ha, 11sa} and unsafe boundary {11fa}.

As a further example, consider Figure 5 in which the uncontrollable event
acu is used by the GTS SFU for an unexpected shuttle detection leading to a non-
empty unsafe boundary {✘1fa}. In comparison, the controller obtained for SFE
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Fig. 5. Design-time controller synthesis with unexpected shuttle detection

not assuming unreliable ambulances detection as in the step (✘1fa, acu, 01fs)
is robust by also avoiding (according to Figure 4) the state 01fs preceding a
collision in Figure 5. Moreover, this controller is robust against ambulances ap-
pearing unexpectedly directly on the crossing using the step (✘2fa, acu, 02fs)
unless the shuttle is already closer via step (✘1fa, acu, 01fs). Also, when an am-
bulance appears one track ahead of the crossing, either no collision occurs (af-
ter step (✘2fa, acu, 12fs)) or the ambulance crashes into the shuttle (after step
(✘1fa, acu, 11fs)).

7 Run-time Control-synthesis

At run-time, we employ a given (forward) GTS SFS to derive the run-time con-
troller as follows. First, we adapt SFS into S′

FS by using the current state of the
system as the unique start state and add uBoundary(SBS, k) to the set of unsafe
states. Second, we construct the BFSS of depth n (which is assumed to be main-
tained throughout system execution as described in section 2) for S′

FS. Third, we
apply SCT to obtain the least-restrictive controller.

Definition 9 (Run-time Controller). If S is the GTS obtained from the for-
ward GTS as the adjustment to the current system state and the unsafe boundary
of the design-time controller and n ∈ N, then Γ = pControl(JSKn) is the run-time
controller with leaf set leafs(S, n) = {s ∈ states(Γ ) | ∄(s, e, s′) ∈ steps(Γ )}.

We now discuss in more detail how our run-time control synthesis obtains an
effective look-ahead of n + k steps towards unsafe states given by the n steps
of Γ and the k steps of the design-time BBSS.7 To this end, we first define a
simulation relation to capture when a backward GTS such as SBE and SBU for
our running example is correct w.r.t. a forward GTS such as SFE and SFU for
our running example. Since we do not consider the step labels (containing the
GT rules or matches applied in these steps), we can understand this simulation

7 Our presentation also covers the special case where the backward GTS used at
design-time is obtained by reversing the rules of the run-time GTS but also applies
to backward GTSs that are designed for improved design-time efficiency and appli-
cability (as mentioned before Definition 7, in relation to k-induction discussed in
section 3, and as elaborated in section 8).
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to be a weak simulation in which one step of the forward GTS is simulated
(backwards) by the backward GTS using any number of GT steps.
Definition 10 (Simulation Relation for GTS-based LTSs). Given two
LTSs Γ and Γ ′ induced from GTSs according to Definition 6 and Definition 7.
A set R of morphisms f1 : G′

1 G1 from states G′
1 ∈ states(Γ ′) to states G1 ∈

states(Γ ) is a simulation relation from Γ to Γ ′, if for every (G2, σ,G1) ∈ steps(Γ )
capturing the forward GT span (g2 :D1 G2, g1 :D1 G1) there is a sequence
of GT steps (G′

2, σ
′
n , G

′
2,n−1), . . . (G

′
2,1, σ

′
1 , G

′
1) ∈ steps(Γ ′) that can be combined

(using an iterated E-concurrent GT rule, [12, Theorem 3.26]) into the backward
GT span (g′2 :D

′
1 G′

2, g
′
1 :D

′
1 G′

1) such that d1 : D′
1 D1 and f2 : G′

2 G2

exist satisfying f2 ∈ R, f2 ◦ g′2 = g2 ◦ d1, and f1 ◦ g′1 = g1 ◦ d1.
G1D1G2

G′
1D′

1G′
2

g1g2

g′1g′2

f2 d1 f1= =

The following theorem then states that the existence of such a simulation relation
R from the forward GTS to the backward GTS containing at least all embeddings
of unsafe states V into the graphs reachable in the forward GTS within k steps
is sufficient to ensure that any safety violation of the forward GTS within n to
n + k steps is detected by checking the states reachable by n steps in JSFSKn
against the start states of JSBSKbackk . Note that Theorem 1 does not exclude
spurious violation paths in terms of path pairs (π1, π2) that are not composable
to a path π of SFS due to application conditions in GT rules used in π1 or π2.
Moreover, note that paths to unsafe states of length at most n steps are detected
by constructing JSFSKn already.
Theorem 1 (Violation Detection). Given a forward GTS SFS, a backward
GTS SBS, and an unsafe graph V contained in unsafe(SFS) and unsafe(SBS),
every violation detected in JSFSKn+k in terms of some path π of length > n from
start(SFS) to a graph containing V is correspondingly detected by the combined
technique using JSFSKn and JSBSKbackk by two paths π1 of length n from start(SFS)
to a graph containing B and π2 of length ≤ k from some B′ (for which some
b : B′ B exists) to the graph V whenever there is a simulation relation R from
JSFSKk to JSBSKbackk containing every mono f : V G into states G of JSFSKk.

Proof (sketch). By induction on k, we derive the existence of an embedding of
the last graph B of π2 into the last graph of π1 ensuring that steps in π reaching
a violating graph can be mimicked backwards via the simulation relation.

This theorem thereby ensures that the system has an effective look-ahead of
n+k steps at run-time towards unsafe states allowing it to derive suitable control
decisions to avoid such unsafe states (if possible for that effective look-ahead).

8 Evaluation

As a case study, we now consider a more complex variation of the running ex-
ample, including additional track features such as junctions, explicit modeling
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Fig. 6. Evaluation results. Look-ahead for “forward to collision”, effective look-ahead
for “forward to unsafe boundary”, and depth of BBSS for “backward from collision”.

of monitoring and signals (traffic lights for shuttles and ambulances). The used
GTSs modeling this case study ensure that the sliding window perspective of the
controlled shuttle is enforced by removing track and road segments behind the
shuttle and enlarging the track/road topology forwards, potentially also includ-
ing junctions, level crossing, and further components in a way to be expected by
the shuttle. While we simply used the reversed rules for the backward GTSs in
the running example, this would generate here for our case study, as for typical
applications of the related approach of k-induction, a large number of unreal-
istic track topologies that would need to be singled out using other techniques
such as structural constraints reducing the applicability and performance of our
approach at design-time. Applying Theorem 1, we constructed a backward GTS
with 31 GT rules by hand such that all steps of the forward GTS with 34 GT
rules can be mimicked by at most two backward steps while minimizing the
overapproximation of additional track topologies that are never reachable in the
forward GTS. We used the tool Groove [17, 44] and provide the documented
model files an explanation of our evaluation steps online.8

We evaluated the efficiency of our integrated approach in terms of consumed
time by comparing it to the case where only a BFSS is constructed at run-
time.9 First, we use Groove to construct BFSSs of the forward GTS (for different
bounds) thereby simulating the case where our approach is not used. Second, we
use Groove to construct BBSSs of the backward GTS (for different bounds) also
acquiring the unsafe boundary graphs thereby simulating the design-time aspect
of our approach. Finally, we use Groove to construct the BFSS of the forward
GTS (for different bounds) using the unsafe boundary graphs as target graphs
(which means that the overhead of attempting to match the unsafe boundary
graphs is included in our measurement) thereby simulating the run-time aspect
of our approach. Generating the entire BFSS (for a given bound) instead of
only adjusting it to the last observed step means that we consider the worst-
case situation in which the entire BFSS is to be reconstructed due to, e.g., an
unexpected step of the system. According to Figure 6 (forward to collision),
the BFSS construction requires exponential run-time. In particular, collisions
8 https://github.com/OpenAcademicProject/Running-Example-of-Railway-

Transportation-System
9 System: 64-bit Win10, Intel Core i7-6700HQ, 40GB RAM, Groove 5.8.1
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are detected at depth 13 requiring 188min, indicating that only using a BFSS
may incur inacceptable costs at run-time. According to Figure 6 (backward to
collision), the BBSS grows much slower compared to the BFSS because of (a) our
usage of a separate backward GTS and (b) the restriction of considering paths
that definitely lead to unsafe states. Hence, increasing the bound k for this BBSS
is more advantageous compared to increasing the bound n for the BFSS in this
scenario. Lastly, according to Figure 6 (forward to unsafe boundary), the first
member of the unsafe boundary is found at run-time in the BFSS at depth 8
requiring 8 s with an effective look-ahead of 13 (as the depth 7 BBSS captures 5
forward steps of the forward GTS), which is 1423 times faster. We conclude from
our evaluation that the goal of shifting computation time (and memory costs)
from run-time to design-time is achieved by a factor of 1423 for the case study.

We note that applying our approach using a value k > 0 can increase the
run-time cost. This would be the case when the forward/backward GTSs are
constructed and the values of n and k are selected such that the time required
for checking the leaf states of the run-time controller against the unsafe boundary
of the design-time controller exceeds the time saved by generating at run-time
a BFSS of depth n instead of n+ k. This may be the case when, e.g., the BBSS
contains a large number of infeasible paths (in the sense that the forward GTS
cannot exhibit (instantiations of) them for the considered start states) resulting
in an unsafe boundary containing a large number of states that can never be
matched. While this issue did not arise for the case study considered here where
run-time cost was decreased by a factor of 1423, this issue can be mitigated when
it arises by employing assumed state invariants (capturing infeasibility of paths)
to exclude states from the BBSS following the approaches in [47, 48, 3].

9 Conclusion and Future Work

In this paper, we presented a novel control-theoretic approach to run-time control
for Graph Transformation Systems (GTSs) with priorities modeling large-scale
systems with the threat of unexpected events. For the actor to be controller, we
combine controllers synthesized at design-time and run-time with look-aheads
n and k to obtain combined controllers with look-ahead n + k. An evaluation
based on a shuttle transportation system shows a decrease of run-time compu-
tation cost by a factor of 1423 compared to using only run-time controllers with
the same look-ahead suggesting that our approach successfully shifts a large
amount of run-time computation cost to design-time. Moreover, we exemplified
the robustness of the devised controlled system against unexpected events.

In the future, we will extend our approach to Interval Probabilistic Timed
Graph Transformation Systems [31] to model cyber-physical systems and the
steps of the contained actors more precisely, incorporate techniques to minimize
checking time against unsafe boundary nodes, and combine k-induction with
hand-coded backward GTSs to obtain small Bounded Backward State Spaces
(BBSSs) that are correct w.r.t. the forward GTS by design.
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