
Comprehending Object State
via Dynamic Class Invariant Learning⋆

Software Technologies Research Group,
University of Bamberg, Bamberg, Germany

{jan.boockmann,gerald.luettgen}@swt-bamberg.de

Abstract. Maintaining software is cumbersome when method argument
constraints are undocumented. To reveal them, previous work learned
preconditions from exemplary valid and invalid method arguments. In
practice, it would be highly beneficial to know class invariants, too, be-
cause functionality added during software maintenance must not break
them. Even more so than method preconditions, class invariants are
rarely documented and often cannot completely be inferred automati-
cally, especially for objects exhibiting complex state such as dynamic
data structures.
This paper presents a novel dynamic approach to learning class invari-
ants, thereby complementing related work on learning method precon-
ditions. We automatically synthesize assertions from an adjustable as-
sertion grammar to distinguish valid and invalid objects. While random
walks generate valid objects, a combination of bounded-exhaustive test-
ing techniques and behavioral oracles yield invalid objects. The utility
of our approach for code comprehension and software maintenance is
demonstrated by comparing our learned invariants to documented in-
variant validation methods found in real-world Java classes and to the
invariants detected by the Daikon tool.

1 Introduction

Comprehending the behavior of a complex software component is challenging,
but necessary for component reuse and maintenance. The object-oriented pro-
gramming paradigm has enforced the principle of information hiding, which sep-
arates externally observable behavior from internal implementation. To make a
component reusable, it typically suffices to document its external behavior and
the constraints imposed on its method argument values. When following the prin-
ciples of defensive programming [4], a thorough input validation at the entry of
each method checks whether the constraints are satisfied. For components that
lack input validation, previous work has shown that appropriate preconditions
can be inferred automatically [2,8,27,30,33].

⋆ This research is supported by the German Research Foundation (DFG) under project
DSI2 (grant no. LU 1748/4-2).

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 143–1

9

4, 2024.
https://doi.org/10.1007/978-3-031-57259-3_7

Jan H. Boockmann(B) and Gerald Lüttgen

https://orcid.org/0000-0001-6816-8393
https://orcid.org/0000-0002-0925-4870
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_7&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

To make a component maintainable, however, information on its external
behavior alone is insufficient, because maintenance may require modifications
of the component’s implementation. Class invariants [19,20] capturing the con-
straints on the component’s program state exhibited at runtime are essential
for maintainers to ensure that their source code modifications, such as bug fix-
ing, refactoring, or implementing new functionalities, match the assumptions
implicitly encoded in the existing source code. A failure to do so may result in
unpredictable behavior or even system crashes. Despite this, class invariants are
rarely documented and checked even more rarely during input validation.

Approaches to dynamic assertion learning generalize from observations, e.g.,
object states, to synthesize assertions such as preconditions and class invariants.
Related tools include Daikon [8], Proviso [2], Hanoi [22], and EvoSpex [25].
Daikon observes program states during execution and uses templates to obtain
a set of candidate assertions, including class invariants, that hold at certain
program locations. Proviso learns preconditions that also consider complex data
types and uses a test generator as an oracle to detect invalid method arguments.
Hanoi infers representation invariants for data types in a functional programming
language. EvoSpex employs an evolutionary algorithm to learn postconditions
from (in)valid pre/post state pairs. Overall, the exploration of approaches to
dynamic class invariant learning for complex types remains relatively limited,
despite the potential benefits for software maintenance.

This paper proposes a dynamic analysis approach that learns a class invariant
using iterative refinements from (in)valid objects. We perform random walks in
object state spaces to construct valid objects and combine bounded-exhaustive
testing techniques [3,6,18] with behavioral oracles to create invalid objects. As or-
acles, one can either adapt the random walks or provide property-based tests [9].
We refine our candidate invariant by removing existing or introducing new as-
sertions, which are dynamically constructed along an assertion grammar. This
process iterates until all obtained (in)valid objects are classified correctly.

We have implemented our class invariant learning approach for Java in a pro-
totype tool, called Geminus. Our evaluation shows, for real-world Java classes
taken primarily from the the java.util package, that our learned class invari-
ants are at least as accurate as, and often surpass, those detected by Daikon
or documented in the code. Beyond software maintenance, class invariants also
support various software development activities, including software testing [13].

Organization Section 2 introduces the notions of class invariant and bounded-
exhaustive/property-based testing alongside a running example. Section 3 ex-
plains our class invariant learning approach and Section 4 evaluates it. Section 5
discusses related work, while Section 6 presents our conclusions and future work.

2 Foundations

This section reviews the concepts of class invariant in the context of the object-
oriented paradigm by means of a running example. We subsequently outline how
property-based and bounded-exhaustive testing relate to class invariants.

144 Jan H. Boockmann and Gerald Lüttgen

Comprehending Object State via Dynamic Class Invariant Learning 145

1 public class SimpleSquare {

2 //@ invariant w == h && w > 0;

3 private int w, h; // width and height

4

5 public SimpleSquare() { setLength(1); }

6 public void setLength(int length) {

7 if (length <= 0) { throw new IllegalArgumentException(); }

8 this.w = length;

9 this.h = length;

10 }

11

12 public int area() { return w*h; }

13 public int perimeter() { return 2*(w+h); }

14 public int aspectRatio() { return w/h; }

15

16 public SimpleRectangle toRect() {

17 return new SimpleRectangle(w, h);

18 }

19 }

Fig. 1: Running example Java class SimpleSquare.

Running Example The class SimpleSquare in Figure 1 models a square with a
non-zero positive length using the two integer attributes width (w) and height (h).
Other objects can interact with SimpleSquare by invoking its public methods to
set the length of the square or to compute its geometric properties, or to obtain
an equivalent object of class SimpleRectangle. Note that method setLength

performs thorough input validation and throws an IllegalArgumentException

if the provided method argument value is not strictly positive.

Class Invariants Objects play a fundamental role in object-oriented program-
ming. They are created via constructors, interact with other objects via method
calls, and are disposed by a destructor. Throughout method execution, an ob-
ject may call methods of other objects, including itself, or alter the accessible
attributes of other objects. Often, invoking a method results in a side-effect
or modification of the object’s state, either through modifying its primitive at-
tributes or by modifying the object state of a referenced object.

The notion of a class invariant in object-oriented programming has first
been explored in [19] and since been adapted by specification languages such
as JML [16]. Understanding class invariants is crucial during development and
maintenance, because they provide guarantees about the object state at the start
of a qualified method call [20] and the end of such a call. In contrast, the class
invariant may not hold for unqualified method calls, which the object invokes on
itself. For example, calling setLength in the constructor is considered unqualified.
Accordingly, the class invariant holds for all objects derived via a constructor or
via a qualified call invoked on an object that satisfies the invariant.

1 @Test public void traditionalTest() {

2 SimpleSquare s = new SimpleSquare();

3 s.setLength(5);

4 assert s.area() == 25;

5 }

6

7 @Test public void propertyBasedTest(SimpleSquare s) {

8 assert s.toRect().area() == s.area();

9 s.toRect().toSquare(); // implicitly checks absence of exception

10 }

Fig. 2: A traditional and a property-based tests for class SimpleSquare.

In the running example, the assertion that the width and height are equal and
strictly positive is a suitable class invariant. Accordingly, method aspectRatio

does not need to check that attribute h is non-zero to avoid a division-by-zero
exception, because this is implied by the invariant. Similarly, method toRect

can assume that constructing a new SimpleRectangle object always succeeds.

The set of reachable objects that a class invariant has to satisfy can be
constructed incrementally by performing random walks in the object state space.
A random walk starts at an object state derived from a constructor and continues
by invoking methods on the current object; this kind of state exploration is used
in the context of fuzz testing [17] and test suite generation [10,26]. Even for finite
object state spaces, an exhaustive exploration is often practically infeasible.

Property-Based Testing While traditional tests first establish a testing scenario,
property-based tests [9] are parameterized over inputs supplied by a test engine.
Property-based testing is primarily used in functional languages, e.g., in Haskell
using QuickCheck [5], but can also be applied to object-oriented programs.

Figure 2 depicts a traditional and a property-based test for our running
example. Note that the property-based test is parameterized over an object of
the class under test and checks that the obtained rectangle has the same area
as the former square. It also implicitly tests that the translation from rectangle
to square via method toSquare does not raise an exception.

Bounded-Exhaustive Testing Deriving a representative set of objects, e.g., for
property-based testing, is often a tedious and error-prone task when done man-
ually. Bounded-exhaustive testing [6,11,21] is a testing technique that automat-
ically tests a software for all valid inputs within specified size bounds.

While primitive types like integers are often sampled from a range of values,
complex object states usually require a create-and-test approach: a systematic
enumeration artificially assigns values to private and public attributes to create
all object states within a provided bound, and a manually specified predicate,
i.e., a class invariant, tests for validity and retains valid objects only.

146 Jan H. Boockmann and Gerald Lüttgen

weakening
via random walks

strengthening
via bounded-exhaustive testing

techniques & behavioral oracles

conflicting assertion analysis

invalid object integration
via grammar-based

assertion enumeration

A,O, Ō := ∅
found no
misclassified o

found a misclassified o
O := O ∪ {o}

identified conflict-
ing assertions Adel

A := A \Adel

found a mis-
classified ō
Ō := Ō ∪ {ō}

derived new mat-
ching assertion(s) Anew

A := A ∪Anew

found no mis-
classified ō
return I :=

∧
A

Fig. 3: Overview of our approach to dynamic class invariant learning.

3 Approach

This section introduces our approach to dynamic class invariant learning, which
is depicted in Figure 3. Each step either modifies the set of collected valid (O)
or invalid (Ō) objects, or the set of assertions (A) whose conjunction forms the
candidate class invariant (I). If an object is reachable, we consider it valid. If an
object is unreachable, we consider it invalid. The class invariant we aim to learn
classifies all reachable objects as valid and all unreachable objects as invalid.

The weakening step aims to refine the candidate class invariant I by finding
a valid object o that is classified as invalid by I. If successful, we remove the
conflicting, overly restrictive assertion(s) that caused the incorrect classification.
Previously collected invalid objects that are no longer classified as invalid due
to the removed assertions are reintegrated subsequently. If no valid object is
misclassified, we perform strengthening to find an invalid object ō that is mis-
classified. The invalid object integration step then derives a matching assertion
that correctly classifies an invalid object as invalid but all prior found valid
objects still as valid. If no ō is found, we return the candidate class invariant.

Because our approach learns from a finite set of objects, the learned class
invariant is only correct for the collected (in)valid objects, but not in general.
However, if no assertion can be generated to distinguish a valid from an invalid
object, the learned invariant correctly classifies only all identified valid objects,
but mistakenly classifies some invalid objects as valid.

The high-level weakening, strengthening, and invalid object integration steps
are generic and can be instantiated by different techniques. Our approach lever-
ages random walks to generate valid objects and combines bounded-exhaustive
testing techniques with behavioral oracles to obtain invalid objects. We derive
assertions to distinguish valid from invalid objects using a grammar. In contrast
to related approaches [25,30], our objects are guaranteed to be (in)valid.

Comprehending Object State via Dynamic Class Invariant Learning 147

Table 1: Intermediate states of our approach to class invariant learning in each
iteration, for the SimpleSquare running example.

it.
current

assertions
A

found
new
o/ō

removed
assertions

Adel

new
assertions

Anew

1 ∅ ō : 0 0 ∅ {false}

2 {false} o : 1 1 {false} {w = 1}

3 {w = 1} ō : 1 0 ∅ {w = h}

4 {w = 1, w = h} o : 2 2 {w = 1} {w > 0}

5 {w = h,w > 0} ⊥

Table 1 shows the execution state of our approach in each iteration when
learning class invariant w = h ∧ w > 0 for our running example SimpleSquare.
Valid objects such as 1 1 are indicated by a solid box, while invalid objects
such as 0 0 are shown in a dashed box. The remainder of this section uses this
example to illustrate the workings of our invariant learning approach.

3.1 A Triangle of Oracles

Our approach exploits the insight that an executable implementation, a testable
assumption, and an object form a closed loop of information. Assuming two
elements are correct one to allows constructing a test-based oracle to assess the
correctness of the third. This leads to the creation of three distinct oracles:

1. Implementation: Given a correct assumption and a valid object, any failure
upon testing the assumption indicates a faulty implementation.

2. Assumption: Given a correct implementation and a valid object, any failure
upon testing the assumption indicates an incorrect assumption.

3. Object : Given a correct implementation and a correct assumption, any failure
upon testing the assumption indicates an invalid object.

The implementation oracle is leveraged in software testing to detect faulty
implementations. It either encodes assumptions as traditional tests, which create
objects assumed to be valid by construction and checks assertions on them, or
as property-based tests, which evaluate properties on valid objects supplied by
the test engine. When learning a class invariant for a given implementation, one
can ignore the question of implementation correctness, because the invariant is
supposed to reflect the implementation. However, a learned invariant that does
not match the expectations may indicate a faulty implementation.

The assumption oracle can be employed to identify an incorrect invariant
that misclassifies valid objects as invalid when considering the invariant as the
assumption. By generating valid objects in our weakening step, we detect an
overly restrictive, i.e., unsound, invariant. Analogously, the second oracle can

148 Jan H. Boockmann and Gerald Lüttgen

be used to identify invariants that misclassify invalid objects as valid. If an ob-
ject is invalid, but the candidate invariant holds, the invariant is incomplete,
which allows our strengthening step to detect overly permissive invariants. We
consider an invariant/oracle sound if it classifies all valid objects as valid, and
complete if it classifies all invalid objects as invalid. The objects revealing an
incorrect candidate class invariant are added to the training set during weaken-
ing/strengthening, and the invariant is updated accordingly.

The object oracle can detect invalid objects if implementation and assump-
tion are correct. Invalid objects can be used by the assumption oracle to spot
overly permissive invariants. Providing assumptions to detect both valid and
invalid objects is challenging and equivalent to learning the class invariant.

3.2 Generating Valid Object States via Random Walks

The weakening step leverages the assumption oracle to assess whether the can-
didate class invariant misclassifies valid objects as invalid. To construct valid
objects, we perform random walks in object state spaces: any object derived via
a sequence of qualified method calls starting from a freshly constructed object is
valid. Because the implementation can be considered correct, a method invoca-
tion in a random walk may only throw expected exceptions, which are associated
with a failed input validation such as the IllegalArgumentException thrown
by method setLength. In contrast, unexpected exceptions are prevented by the
class invariant. For example, a division-by-zero exception cannot be thrown in
method aspectRatio, because the invariant guarantees that the height is non-
zero. In practice, all checked exceptions in Java are typically expected exceptions
and some unchecked exceptions are unexpected exceptions.

We parameterize the random walks using a set of builders and actions.
Builders construct fresh objects using the available constructors, and actions
invoke methods. Following the naming convention of [31] for methods, we use
the term observer/modifier action to denote an action that does not/does alter
the considered object’s state. In our example, a single builder invoking the zero-
argument constructor and a single action invoking method setLength with value
2 suffice. To enforce termination, we bound the random walk with respect to the
number of walks and the number of method calls per walk. To ensure deter-
ministic behavior, one may either randomly select a builder/action using a fixed
seed (like Randoop [26]) or exhaustively explore all builder/action combinations
up to a given depth (like EvoSpex [25]). Thus, not finding a valid object that is
misclassified as invalid by the candidate class invariant does not guarantee the
absence of one. The effectiveness of finding a misclassified object depends on the
object state coverage achieved by the random walk.

The candidate invariant before the second iteration (false) in Table 1 mis-
classifies 1 1 obtained directly from the constructor. In contrast, the invariant
at the start of the fourth iteration (w = 1 ∧ w = h) misclassifies 2 2 , which
is obtained after invoking setLength(2) on the freshly constructed object. No
valid object is misclassified as invalid for the invariant at the start of the fifth

Comprehending Object State via Dynamic Class Invariant Learning 149

Table 2: Accuracy of properties for detecting artificially created invalid
SimpleSquare objects (• detected, ◦ undetected)

invoked method/tested property 0 0 1 0 -1 -1 1 2 3 2

aspectRatio() • • ◦ ◦ ◦
toRect() • • • ◦ ◦
area()>0 • • ◦ ◦ ◦

perimeter()>0 • ◦ • ◦ ◦
aspectRatio()==1 • • ◦ • ◦

toRect().toSquare() • • • • •

iteration (w = h ∧ w > 0). Hence, this invariant is sound and, as we will see
later, it is also complete.

3.3 Detecting Invalid Objects via Behavioral Oracles

An object is considered invalid if it cannot be reached via a random walk. How-
ever, exhaustive state space exploration is impossible for infinite state spaces
which occur, e.g., when objects use references to establish unbounded structures
such as linked lists. Even for finite state spaces as exhibited by the running ex-
ample, an exhaustive exploration often remains practically infeasible. In general,
a partial exploration does not provide a sound oracle to determine if a supplied
object is unreachable. To detect invalid objects, we instead consider behavioral
oracles that exploit the behavior of the object under analysis exposed upon
method invocations. We consider two sound but possibly incomplete behavioral
oracles for detecting invalid objects: random walks and property-based tests.

Random Walks as Weak Oracles During the random walks used to generate
valid objects, any thrown expected exception indicates a failed input validation
and is ignored. Conversely, if an unexpected exception occurs during a walk
starting from an artificially created object, it implies that all objects along the
walk, including the initial object, are invalid. The use of random walks for de-
tecting invalid objects shares similarities with fuzz testing [17] for identifying
faulty implementations. In fuzz testing, a program is subjected to a range of
different input values to cause an observable error [38], indicating a bug in the
implementation. For a correct implementation, any unexpected exception indi-
cates an invalid object. While behavioral oracles based on random walk-based
are sound by construction for detecting invalid objects, they are rarely complete.

Table 2 shows the detection results of six properties for five invalid objects.
The first two properties resemble observer actions during a random walk. Method
aspectRatio throws a division-by-zero exception if the height is zero, thus de-
tecting the first two invalid objects. Method toRect creates a new rectangle
with the same width and height as the current square. The constructor of class

150 Jan H. Boockmann and Gerald Lüttgen

SimpleRectangle (not shown) validates the input width and height and throws
an exception if argument values are not strictly positive, thus subsuming the
aspectRatio method in terms of its detection capabilities. However, it fails to
detect objects whose strictly positive width and height differ.

Property-based Tests as Strong Oracles Property-based tests [9] are a stronger
behavioral oracle when compared to random walks. Not only can they detect
invalid objects that throw unexpected exceptions, but they can also interpret
the absence of an exception and method return values as an indication of object
invalidity. Because property-based tests operate at a behavioral level, they do not
require knowledge about internal implementation details. Information regarding
expected behavior can be found in the documentation of the class under analysis
and (formal) specifications, e.g., for abstract data types [12]. Because property-
based tests are assumed to be sound but incomplete, a passing property-based
test suite does not guarantee the validity of the object under analysis. However,
a single failed test is sufficient to deem the object invalid.

The last four properties in Table 2 resemble candidate property-based tests.
We may assume that the expected behavior of class SimpleSquare is that the
area and the perimeter must be greater than zero and that the aspect ratio
must be equal to one. In addition, the translation from a square to a rectangle
and back to a square should be possible without raising an exception. Observe
that the area property detects invalid objects with either the width, height or
both equal to zero. The perimeter property detects those invalid objects where
the sum of width and height is not strictly positive. Note that the aspect ratio
property, in addition to its corresponding observer action, detects some states
(due to integer division) where w and h differ. The last property subsumes its
associated observer action and detects all invalid objects.

3.4 Generating Invalid Objects via Bounded-Exhaustive Testing
Techniques

By considering invalid objects, we can not only check if the invariant is com-
plete, i.e., sufficiently restrictive, but also automatically identify equivalent as-
sertions [1,28]. While misclassified valid objects found during weakening widen
the scope, misclassified invalid object found during strengthening narrow it.

Acquiring a representative set of invalid objects is a non-trivial task. Existing
assertion learning approaches primarily derive possibly invalid objects by exe-
cuting a mutated program [15,23,30] or by mutating valid program states [25,29].
Nevertheless, these approaches often assume the derived object state to be in-
valid without conducting further validation. Consequently, the quality of the
learned assertion is compromised if a valid object state is mistakenly labeled as
invalid. Using generators for complex test inputs from bounded-exhaustive test-
ing (BET), such as Korat [3,21], enables the artificial creation of a large number
of (in)valid object states. We combine these generators with behavioral oracles,
and contrary to the conventional practice in BET of retaining only valid objects,
we retain only those objects that are classified as invalid. Behavioral oracles can

Comprehending Object State via Dynamic Class Invariant Learning 151

also be applied to objects constructed using program or state mutation; however,
we favor the complex test input generators from BET because they produce a
larger and more representative set of invalid objects.

The five invalid object states displayed in Table 2 are included in the output of
a bounded-exhaustive object state generator when supplied with a lower/upper
bound of -1/3 on integer values. The invalid objects 0 0 and 1 0 are suitable
for strengthening the candidate invariant.

3.5 Invalid Object Integration

Our approach generates new assertions on-the-fly in order to integrate so far
misclassified invalid objects and classify them correctly. Each assertion is evalu-
ated in the context of an object of the class under study. The following assertion
grammar suffices for our running example:

Int ::= 0 | 1
Bool ::= true | false | Int = Int | Int > Int

Int ::=+ w | h

The first two rule fragments reason about integer and boolean values, while
the last fragment provides access to the attributes of a SimpleSquare object.
Terminals such as “1” or “>” denote constants or operators, and non-terminals
such as Int are types. Symbol ::=+ indicates that we supplement a non-terminal
with new rules.

The invalid object integration step is performed after strengthening or weak-
ening. In the former case, a single invalid object is provided, while in the latter
case there may be multiple or no invalid objects. In case of a single misclassified
invalid object, we search for an assertion that classifies the said object as invalid,
but does not classify any previously collected valid object as invalid. For multiple
invalid objects, we iteratively search for a suitable assertion.

Our invalid object integration step can be substituted with any model learn-
ing approach that accepts valid and invalid object states as input. While neural
networks [24] and support vector machines [30] generally achieve high accuracy,
their black-box nature makes them less ideal for program comprehension. In con-
trast, decision tree models [2] offer interpretability, but their internal disjunctive
encoding is disparate to how developers express class invariants in code, usu-
ally as a sequence of assert statements. Hence, we favor conjunctive models for
modeling class invariants in the context of comprehending object states, because
they are interpretable and align with how invariants are phrased in practice.

Caching Suitable Assertions An unsuitable assertion either incorrectly detects
a valid object or does not detect the candidate invalid object. Because our ap-
proach only adds objects and never removes existing ones, an assertion that
incorrectly detects a valid object is not only unsuitable to integrate the cur-
rently misclassified invalid object but also for any future one. In contrast, an

152 Jan H. Boockmann and Gerald Lüttgen

1 1 0 0 1 0 1 -1 -1 -1

aspectRatio()

𝑤 = ℎ

Fig. 4: The behavioral oracle aspectRatio() and the assertion w = h both
detect the invalid object 1 0 , but classify other objects differently.

assertion that satisfies all valid objects and the misclassified invalid object may
still be suitable in the future.

Our caching mechanism only stores assertions that satisfy all valid objects.
For example, after observing 1 1 we store the assertion true in the cache, but
we do not store false.

Preventing Equivalent Assertions Our approach only adds assertions to distin-
guish invalid from valid objects, which prevents the generation of equivalent
assertions. This strategy exploits observational equivalence [1,28], which creates
equivalence partitions among assertions based on the values to which they eval-
uate. Because our approach only adds an assertion if the existing assertions
cannot distinguish an invalid object from the valid objects, the added assertion
is observationally inequivalent to any existing assertion. This property remains
true because we only add (in)valid objects, thus refining this notion of equiva-
lence. For example, false and w=1 are considered to be equivalent with respect
to 0 0 , but are inequivalent when also considering 1 1 .

Observational equivalence cannot be used for approaches that only consider
valid objects [8,27,34], because all suitable assertions are deemed equivalent.
Instead, these approaches require static analysis to detect equivalent assertions.

Inexpressive Assertion Grammars If the assertion grammar for the example in
Figure 4 would only be capable of generating the assertion w = h , then the
invalid object 0 0 cannot be integrated. This invalid object is said to be indis-
tinguishable from the valid objects such as 1 1 with respect to the employed
assertion grammar. Because our collected objects are proven (in)valid, indistin-
guishability can only be resolved by increasing the grammar’s expressiveness.
Instead, we continue learning but label the class invariant as approximate, which
ensures that it is overly permissive and, thus, remains sound. Note that once
the candidate class invariant becomes approximate, it remains so. However, an
overly permissive invariant is still useful for program comprehension, because a
subsequent manual invariant refinement only needs to add assertions.

Outperforming the Behavioral Oracle Our approach does not learn an invariant
from a single complete oracle, utilizes two sources of sound information: behav-
ioral oracles for invalid objects and random walks for valid objects. This can
result in invariants that improve upon the accuracy of the underlying behavioral

Comprehending Object State via Dynamic Class Invariant Learning 153

oracle. For example, the oracle aspectRatio() in Figure 4 detects the invalid
object 1 0 , which can be integrated by adding the assertion w = h to the
candidate class invariant. Note that this assertion also detects the invalid object
1 -1 that is not detected by the oracle.

Qualities of Learned Class Invariants The quality of our learned class invariants
depends on the expressiveness of the assertion grammar, the accuracy of the be-
havioral oracle, and the object state coverage achieved by the random walk for
generating valid objects and the bounded-exhaustive object state generator for
generating potential invalid objects. While an inexpressive assertion grammar
may be detected during learning, an incomplete oracle or an insufficient ob-
ject state coverage cannot be detected. Accordingly, no soundness/completeness
guarantees can be given for a learned non-approximate class invariant except
that it correctly classifies all collected (in)valid objects. Approximate class in-
variants classify some of the collected invalid objects as valid, which still aids
comprehension in the presence of an inexpressive assertion grammar.

Learning a complete invariant that also correctly classifies so far unseen ob-
jects is only possible if the assertion grammar is sufficiently expressive, the
behavioral oracle is complete, and the object state coverage is sufficient, e.g.,
exhaustive for finite object state spaces.

4 Evaluation

To evaluate our class invariant learning approach, we have implemented the
prototype tool Geminus for Java. Our bounded-exhaustive object state generator
uses the Java Reflection API to modify the internal object state and prevents the
generation of symmetric object states in the style of [21]. Our grammar-based
assertion generator performs an explicit top-down enumeration and generates
strings representing native Java expressions, which allows for a simple grammar
definition. We use the Java JShell to dynamically compile these strings into
executable lambda expressions at runtime.

Our experiments focus on the following research questions:

RQ1 How do random walks and property-based tests compare to a ground-truth
class invariant in terms of detecting invalid objects?

RQ2 What is the disparity between the class invariant learned by Geminus and
the employed behavioral oracle?

RQ3 How does the accuracy of the class invariant(s) learned by Geminus, de-
tected by Daikon, and documented as invariant validation methods differ?

4.1 Benchmark Composition

Our benchmark contains several dynamic data structures, whose implementa-
tions exhibit complex invariants. In addition, the corresponding classes are one of
the few in the Java collections framework that contain state validation methods.

154 Jan H. Boockmann and Gerald Lüttgen

From the evaluation examples of Daikon [8], we pick StackAr and QueueAr,
which were adapted from [37] and provide an array-based implementation of
a stack and queue, respectively. The majority of our dynamic data structures
originate from the Java collections framework java.util. Class ArrayList and
legacy class Vector both provide a linear collection via an array-based implemen-
tation. In addition, class LinkedList provides Deque/Queue functionalities via a
linkage-based implementation, while class ArrayDeque uses an array-based im-
plementation. Class PriorityQueue handles comparable elements via an array-
based priority heap, and class BitSet offers a memory-efficient bit vector.

For verification, a class invariant needs to be strong enough to prove an
assertion. In our learning setting, we search for a class invariant that correctly
classifies all reachable objects as valid and all unreachable objects as invalid.
Depending on the verification task, the class invariant required for this may be
weaker than the invariant we aim to learn. Accordingly, the manually specified
ground-truth invariants for evaluating each benchmark item must be as strong as
possible. Thus, the number of benchmark items is primarily limited by the cost
of manually specifying these strong class invariants. Evaluating our approach on
further data structures, including Maps and Sets, is left for future work.

To evaluate our approach, we have instantiated a random walk and bounded-
exhaustive generator for each benchmark item and have written property-based
tests using the provided documentation. We configure the assertion grammar
to include binary operators among integers (+, -, ==, !=, >=, >), object iden-
tity, range null checks in arrays, and the ternary operator (c?b:true) to encode
implications. Extending the grammar with additional operators, such as mul-
tiplication or division among integers, is straightforward and may improve the
expressiveness of the grammar. However, the increase of assertions expressible
in the grammar may lead to timeouts during assertion synthesis. For our exper-
iments, we limit assertion generation to a maximum of 75 000 assertions.

4.2 Evaluation Results

Our results in Table 3 show the number of valid (val.) and invalid (inv.) objects
produced by the bounded-exhaustive generator for our ground-truth invariant,
which contains A assertions. Because random walks (RW) and property-based
tests (PBT) are sound, i.e., all objects classified as invalid are guaranteed to be
invalid, we only report false-negatives (FN), i.e., the number of invalid objects
that remain undetected. As a behavioral oracle, our random walks have a walk
length and a walk count of 50. Increasing the walk length and count may improve
detection accuracy, but at the cost of increased computation time.

Our evaluation results in Table 4 report on the accuracy of the class invariant
learned by Geminus using random walks or property-based tests as oracle, the
class invariant detected by Daikon in its default configuration, and the invariant
validation method documented in the source code (Doc). Geminus and Daikon
receive the same set of valid objects derived from deterministic random walks
with both a walk length and a walk count of 500, respectively. Analogously
to using random walks as oracles, increasing the walk length and count may

Comprehending Object State via Dynamic Class Invariant Learning 155

Table 3: Accuracy comparison in detecting invalid objects using manually writ-
ten ground-truth class invariants, random walks, and property-based tests; best
results are highlighted in bold.

Item
Ground-truth RW PBT

val. inv. A FN FN

SimpleSquare 10 431 2 90 0

StackAr 4097 4095 3 0 0

QueueAr 322 10 678 13 3 078 152

PriorityQueue 1918 154 954 8 63 149 36 708

BitSet 2047 40 961 6 19 099 18 434

ArrayList 4083 38 925 4 16 398 16 398

Vector 4083 38 925 4 16 398 16 398

LinkedList 4 38 335 4 4 0

ArrayDeque 385 345 727 12 169 593 0

further improve the object state space coverage in terms of valid objects, but
at the cost of increased computation time. In addition, Geminus derives invalid
objects from the bounded-exhaustive object state generator using its respective
oracle. We only report false-positives (FP) for Daikon, because the invariants
learned by Geminus classify all valid object as valid in our experiments. We
report the computation time (t) in seconds. All experiments were conducted on
an Apple MacBook Air M2 with 16 GB RAM.

Regarding threats to validity, we manually examined the source code of the
benchmark items to define the ground-truth class invariant. To mitigate the risk
of specifying an overly restrictive invariant, we validated it against the objects
visited by our random walk. To address threats to internal validity that may
arise from random walks, we fixed the random number generator’s seed to ensure
that the same objects are generated during each walk. Furthermore, we excluded
probabilistic data structures like skip lists [32] from the benchmark to ensure
identical internal object states.

4.3 Oracle Accuracy Comparison

When used as a behavioral oracle, random walks detect numerous invalid object
states in our experiments. They exhibit comparable accuracy to property-based
tests for benchmark items StackAr, ArrayList, and Vector. Additionally, ran-
dom walks identify a significant portion of invalid objects for LinkedList. The
majority of unexpected exceptions arise from null dereferencing or accessing out-
of-bounds indices in arrays. Random walks cannot assess whether the retrieved
elements from a PriorityQueue are in the correct order. The documentation
states that retrieving the first element from an ArrayDeque throws an exception

156 Jan H. Boockmann and Gerald Lüttgen

Table 4: Comparing the accuracy in detecting invalid objects using the class in-
variant learned by Geminus, detected by Daikon, and invariant validation meth-
ods documented in the code; best results are highlighted in bold.

Item
Geminus+RW Geminus+PBT Daikon Doc

FN t A O Ō FN t A O Ō FN FP t A FN A

SimpleSquare 0 3 2 2 2 0 4 2 1 2 1 0 7 2 – –

StackAr 0 6 2 3 4 0 5 2 3 4 0 0 7 4 – –

QueueAr 2 229 7 4 13 12 542 93 15 39 50 2 513 0 9 9 – –

PriorityQueue 62 545 31 2 4 5 9 277 298 3 11 11 112 462 0 32 6 – –

BitSet 18 434 11 2 3 4 18 434 9 2 3 4 55 2036 45 3 0 3

ArrayList 16 398 10 2 3 4 16 398 10 2 3 4 16 398 0 53 3 7 181 2

Vector 16 398 21 2 3 4 16 398 21 2 3 4 16 398 0 49 4 7 181 2

LinkedList 0 15 10 4 29 0 15 10 4 29
0 4 26 16 729 1

LinkedList* 0 10 2 3 2 0 10 2 3 2

ArrayDeque 98 966 74 5 6 9 0 60 8 23 24 169 593 0 23 7 30 079 7

if the structure is empty, but random walks cannot detect cases where the queue
is considered empty, yet a retrieval does not throw an exception.

The property-based tests fail to identify some invalid objects for five items.
BitSet, ArrayList, and Vector implementations nullify unused array elements
to aid garbage collection, which does not affect functional behavior. However,
our tests, which focus on functional behavior, cannot detect objects violating
this property. Random walks can also only uncover faults related to functional
behavior. In the case of StackAr, where the ground-truth class invariant is lim-
ited to functional aspects only, both our tests and the random walks detect all
invalid objects. For PriorityQueue, polling the first element involves a sift-down
operation, partially repairing an invalid object state. In contrast, a QueueAr with
a capacity of zero is considered both empty and full simultaneously, leading any
method to return immediately, and concealing the remaining state. This is a
known debugging scenario [38], where a bug can lead to an invalid object state
without necessarily causing an observable error.

Regarding RQ1, our benchmark in Table 3 leads to the conclusion that
property-based tests outperform random walks in terms of accuracy. Further-
more, we observed that the remaining undetected invalid objects either do not
affect functional behavior or are partially repaired during method invocation,
rendering their detection challenging.

4.4 Disparity between Learned Invariants and Leveraged Oracles

Using random walks as behavioral oracles, Geminus learns and often surpasses
the accuracy of the oracles in our experiments. Although our random walks do

Comprehending Object State via Dynamic Class Invariant Learning 157

not detect all invalid objects for class SimpleSquare (see Table 2), Geminus still
manages to learn the correct class invariant. The accuracy of the learned class
invariant depends on the assertion grammar and the order in which candidate
assertions are generated. For SimpleSquare, assertions w = h and w > 0 are
generated before assertions w ≥ 1 and h ≥ 1, which would also resolve all
misclassified objects found by the random walk oracle.

Using property-based tests as the oracle, Geminus learns an approximate
class invariant for class PriorityQueue and ArrayDeque. The current asser-
tion grammar is not sufficiently expressive to generate a parametrized assertion
such as queue[(i-1)/2].compareTo(queue[i])<=0, which is required for item
PriorityQueue. Nevertheless, the learned invariant is more accurate than the
underlying oracle. In contrast, Geminus learns a less accurate class invariant for
QueueAr. While the assertion grammar is expressive enough to generate a suit-
able assertion with multiple conditions that resolves the indistinguishability, the
current assertion limit is insufficient in this case.

Regarding RQ2, our benchmarks in Tables 3 and 4 demonstrate Geminus’s
ability to learn a class invariant that outperforms the oracle, resulting in a lower
number of false-negatives. Both cases of approximate invariants are due to the
inability of the assertion grammar to generate suitable assertions. To gener-
ate parametrized assertions, the assertion grammar needs to be extended with
lambda expressions. To better support assertions with multiple conditions, which
would pave the way for analyzing more complex Java projects, we plan to re-
place our conjunctive assertion model with a conjunctive normal form model for
model training (cf. Section 6).

4.5 Comparing Geminus, Daikon, and Invariant Validation Methods

Daikon [8] generates assertions using templates and retains only those assertions
that hold for valid objects. It performs equally well for simple data structures
like StackAr, but it generates less accurate class invariants for other benchmark
items. For SimpleSquare, it identifies the incorrect invariant w = h ∧ w ≥ 0,
which fails to detect 0 0 . While [20] excludes unqualified calls, Daikon con-
siders them, which may result in learning an overly permissive invariant. In
contrast, Geminus considers qualified calls only and learns the correct invariant.

The invariants learned by Geminus may produce false-positives, but never
did so in our experiments. The invariants documented in the state validation
methods also produce no false-positives, as anticipated. However, Daikon does
report false-positives for BitSet and LinkedList. For BitSet, this is due to
the random walk configuration inadequately representing the object state space,
which leads Daikon to retain the overly restrictive assertion words[] elements

>= 0, encoding that all array elements are greater than or equal to zero. Because
Geminus solely adds assertions to detect previously undetected invalid objects,
it learns the correct invariant in this example. While this mechanism proves
advantageous when dealing with unrepresentative valid objects, Geminus relies
on a representative set of invalid objects.

158 Jan H. Boockmann and Gerald Lüttgen

The LinkedList class uses a doubly-linked list structure with prev and next

attributes. Daikon detects assertions aiding program comprehension, but it lacks
the necessary guards to avoid false-positives. While Daikon only considers valid
objects and thus does not require an additional oracle to detect invalid ob-
jects, it may learn overly permissive invariants. For example, Daikon identi-
fies the doubly-linked style through the first == first.next.prev assertion.
However, it overlooks the need for a guard to prevent null dereferencing. Iden-
tifying necessary assertions containing guards is a challenging task when only
valid objects are available. Considering invalid objects assists Geminus in finding
the necessary assertions, like first != last ? first == first.next.prev :

true. Despite its recursive structure, Geminus learns an invariant that accurately
detects all invalid objects. This is possible because the bounded-exhaustive ob-
ject state generator only covers object states for LinkedList, including up to
three list nodes. Note that linkage-based classes exhibit large object state spaces
even for a small number of linked elements, which is due to reference aliasing.
While the documented validation method accurately characterizes the case of an
empty list, it imposes an overly permissive constraint for non-empty lists, namely
first.prev == null && last.next == null. The crucial constraint that the
previous attribute of the next node is the current node is not documented.

The linearization [7] technique maps a linkage-based structure to an array
representation. We can enrich our grammar with the closure abstraction to store
the objects that are reachable from a given object, using a specific attribute
in an array. While the linearization in [7] is used to reason about the values
stored in a list, this closure abstraction allows one to characterize the double
linkage structure by expressing that the closure from the first element via the
next attribute is reverse to the closure from the last element via the prev

attribute. In LinkedList*, Geminus uses this grammar to learn an invariant
that generalizes to lists of arbitrary length.

The invariant validation methods for BitSet, ArrayList, and Vector require
null elements at the next free array location, while our ground-truth checks all re-
maining locations. Both constraints do not affect the functional behavior and are
thus not detectable by our oracles. In practice, invariants ensuring a functionally
equivalent behavior typically suffice. Similarly, ArrayDeque requires elements in
the queue to be different from null. It concludes from a null value when fetching
the first/last element that the queue is empty. The documentation mentions that
all non-live elements in the array are null, but this is only partially checked in
their checkInvariantsmethod, leading to numerous undetected invalid objects.

Regarding RQ3, our benchmark in Table 4 demonstrates that Geminus
learns more accurate invariants when using the more accurate property-based
tests as oracle, instead of the random walk oracle. Moreover, it often outperforms
Daikon in terms of accuracy. Unlike Daikon, our tool identifies necessary guards
for complex object states most of the time, avoiding overly permissive or incorrect
invariants. Notably, Geminus achieves greater accuracy than the documented
validation methods, especially for the complex object states of LinkedList or
ArrayDeque.

Comprehending Object State via Dynamic Class Invariant Learning 159

5 Related Work

This section contrasts our dynamic class invariant learning to related dynamic
assertion learning approaches.

Daikon [8] exhaustively instantiates its assertion templates and retains only
those assertions that hold for all observed states at desired program locations.
In contrast, Geminus uses the first assertion that suffices to detect a so far
misclassified invalid object. Because Daikon considers valid objects only, it relies
on static analysis to prune overly permissive, equivalent, or redundant assertions.
In contrast, Geminus employs invalid objects to exclude such assertions, which
allows us to consider a much larger set of candidate assertions.

PIE [27] learns preconditions and loop invariants from (in)valid objects and
uses a feature grammar to construct assertions in conjunctive normal form on-
the-fly; however, Valiant’s algorithm [36] limits PIE to small formulas. While PIE
requires a postcondition to correctly label the set of predefined program states
during learning, Geminus uses behavioral oracles to detect invalid objects.

Alearner [30] derives preconditions and uses a test suite to detect invalid
method inputs. While Geminus keeps the object graph of each (in)valid example,
Alearner only stores an abstraction, which limits precondition expressiveness and
hinders manual inspection of training data. Alearner uses program mutation to
obtain potentially invalid object states, but does not validate this assumption.

OASIs [15] assesses soundness and completeness of an assertion located
within the program. Similar to our random walks, OASIs generates execution
scenarios to identify overly restrictive assertions. It uses mutation testing to
deem an assertion overly permissive; however, this technique cannot be applied
to class invariants, because they cannot be mapped to a single program location.
GAssert [35] uses OASIs to evaluate the quality of an assertion and enhance it
for soundness, completeness, and assertion size using an evolutionary learning al-
gorithm. Its evolutionary technique can be an alternative to our grammar-based
assertion enumeration, but necessitates defining evolutionary operators.

Proviso [2] addresses, like Geminus does, complex object states, but learns
preconditions from observer methods. In contrast, Geminus learns class invari-
ants from private attributes. While Proviso uses a test generator to obtain
(in)valid argument values, invalid object states cannot be derived in this way. If
no distinguishable feature can be constructed, Proviso relabels valid objects as
invalid. Geminus’ objects are guaranteed to be (in)valid.

Hanoi [22] and Geminus both learn invariants from (in)valid objects. While
Hanoi’s notion of constructible value bears similarity with random walks, their
invalid objects are not proven invalid and must be recomputed after finding a
new so far misclassified valid object. Hanoi learns representation invariants for
types in a functional language and constructs a single definition that captures
the recursive structure of the type. In contrast, Geminus iteratively refines a set
of assertions to learn the invariant of a class in an object-oriented language.

EvoSpex [25] employs an evolutionary algorithm, but learns postconditions
from (in)valid pre/post state pairs. Invalid pairs are obtained via state mutation,
which does however not necessarily yield invalid states. Geminus solves this

160 Jan H. Boockmann and Gerald Lüttgen

problem for class invariants using behavioral oracles, and only considers thereby
proven invalid states. While Geminus utilizes Java expressions, EvoSpex encodes
assertions in the Alloy language [14]. The assertion enumeration component in
Geminus is language agnostic and can be replaced with, e.g., Alloy.

SpecFuzzer [23] tackles the problem that inferred specifications often contain
equivalent assertions. It uses Daikon to remove overly restrictive assertions and
then applies program mutation to derive possibly invalid states in order to con-
struct equivalence partitions among the remaining assertions. Geminus prevents
the generation of equivalent assertions, similar to SpecFuzzer, via observational
equivalence reduction [1,28]. While equivalence partitions can be constructed
without knowing whether a state is valid or invalid, guaranteed to be invalid
states allow us to assess whether an invariant is sufficient. Geminus generates
new assertions until a suitable assertion that detects an invalid state is found.

6 Conclusions

To ensure that modifications to legacy software conform to existing assumptions,
it is essential to make implicit guarantees explicit, e.g., in the form of method pre-
conditions and class invariants. However, class invariants encoding object state
assumptions are rarely documented and almost never checked automatically.

In this paper, we presented a dynamic analysis for class invariant learning
that automatically derives (in)valid objects and distinguishes between them by
grammar derived assertions. We leverage random walks in object state spaces
to find valid objects and a combination of complex test input generators from
bounded-exhaustive testing with behavioral oracles to find invalid objects. In
this setting, random walks can even be reused as behavioral oracles. Our pro-
totype tool Geminus improves upon related tools such as Daikon by learning
invariants for complex classes, such as dynamic data structures included in the
java.util package, resulting in a higher accuracy in detecting invalid objects.
Considering invalid objects, too, allows Geminus to prevent the generation of
equivalent assertions, thereby leading to concise invariants without the need for
static assertion equivalence checks.

The capabilities of dynamic class invariant learning approaches primarily rely
on finding so far misclassified (in)valid objects and training a suitable invariant
model. While finding execution paths that result in a representative set of valid
objects is well understood in the context of software testing, finding represen-
tative invalid objects is studied less and should be in the focus of future work.
Sampling object states while executing a mutated program is likely a source for
potentially invalid objects worth to be explored. Our conjunctive assertion model
struggles to scale with respect to invariants containing multiple guards per as-
sertion. Future work should focus on crafting heuristics for learning formulas in
conjunctive normal form to model complex class invariants with multiple guards.

Data-Availability Statement The source code of Geminus, the benchmark
items, the evaluation results and instructions for reproduction are available on-
line via DOI 10.5281/zenodo.10514765.

Comprehending Object State via Dynamic Class Invariant Learning 161

https://doi.org/10.5281/zenodo.10514765

References

1. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification (CAV). LNCS, vol. 8044,
pp. 934–950. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 67

2. Astorga, A., Madhusudan, P., Saha, S., Wang, S., Xie, T.: Learning stateful precon-
ditions modulo a test generator. In: McKinley, K.S., Fisher, K. (eds.) Conference on
Programming Language Design and Implementation (PLDI). pp. 775–787. ACM
(2019). https://doi.org/10.1145/3314221.3314641

3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: Frankl, P.G. (ed.) International Symposium on Software Testing
and Analysis (ISSTA). pp. 123–133. ACM (2002). https://doi.org/10.1145/566172.
566191

4. Cheng, D.Y., Deutsch, J.T., Dutton, R.W.: “Defensive programming” in the rapid
development of a parallel scientific program. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 9(6), 665–669 (1990), https://doi.org/10.1109/43.55196

5. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: Odersky, M., Wadler, P. (eds.) International Conference on
Functional Programming (ICFP). pp. 268–279. ACM (2000). https://doi.org/10.
1145/351240.351266

6. Coppit, D., Yang, J., Khurshid, S., Le, W., Sullivan, K.J.: Software assurance by
bounded exhaustive testing. IEEE Trans. Software Eng. 31(4), 328–339 (2005).
https://doi.org/10.1109/TSE.2005.52

7. Ernst, M.D., Griswold, W.G., Kataoka, Y., Notkin, D.: Dynamically discovering
program invariants involving collections. In: University of Washington Department
of Computer Science and Engineering technical report UW-CSE-99-11-02, (Seattle,
WA), November 16, 1999. Revised March 17, 2000. (2000)

8. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.01.015

9. Fink, G., Bishop, M.: Property-based testing: A new approach to testing for as-
surance. ACM SIGSOFT Softw. Eng. Notes 22(4), 74–80 (1997). https://doi.org/
10.1145/263244.263267

10. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented
software. In: Gyimóthy, T., Zeller, A. (eds.) Symposium on the Foundations of Soft-
ware Engineering and European Software Engineering Conference (FSE/ESEC).
pp. 416–419. ACM (2011), https://doi.org/10.1145/2025113.2025179

11. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test
generation through programming in UDITA. In: Kramer, J., Bishop, J., Devanbu,
P.T., Uchitel, S. (eds.) International Conference on Software Engineering (ICSE).
pp. 225–234. ACM (2010), https://doi.org/10.1145/1806799.1806835

12. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software valida-
tion. Commun. ACM 21(12), 1048–1064 (1978), https://doi.org/10.1145/359657.
359666

13. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P.J., Lüttgen, G., Simons, A.J.H.,
Vilkomir, S.A., Woodward, M.R., Zedan, H.: Using formal specifications to sup-
port testing. ACM Comput. Surv. 41(2), 9:1–9:76 (2009), https://doi.org/10.1145/
1459352.1459354

162 Jan H. Boockmann and Gerald Lüttgen

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1109/43.55196
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/TSE.2005.52
https://doi.org/10.1109/TSE.2005.52
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1806799.1806835
https://doi.org/10.1145/359657.359666
https://doi.org/10.1145/359657.359666
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/1459352.1459354

14. Jackson, D.: Alloy: A language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019), https://doi.org/10.1145/3338843

15. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: Oasis: Oracle assessment
and improvement tool. In: Tip, F., Bodden, E. (eds.) International Symposium on
Software Testing and Analysis (ISSTA). pp. 368–371. ACM (2018), https://doi.
org/10.1145/3213846.3229503

16. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006). https://doi.org/10.1145/1127878.1127884

17. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
The art, science, and engineering of fuzzing: A survey. IEEE Trans. Software Eng.
47(11), 2312–2331 (2021). https://doi.org/10.1109/TSE.2019.2946563

18. Marinov, D., Khurshid, S.: Testera: A novel framework for automated testing of
Java programs. In: International Conference on Automated Software Engineering
(ASE). p. 22. IEEE Computer Society (2001). https://doi.org/10.1109/ASE.2001.
989787

19. Meyer, B.: Eiffel: A language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988). https://doi.org/10.1016/0164-1212(88)90022-2

20. Meyer, B.: Class invariants: concepts, problems, solutions. CoRR abs/1608.07637
(2016). https://doi.org/10.48550/arXiv.1608.07637

21. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for gen-
erating structurally complex test inputs. In: International Conference on Soft-
ware Engineering (ICSE). pp. 771–774. IEEE Computer Society (2007). https:
//doi.org/10.1109/ICSE.2007.48

22. Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of rep-
resentation invariants. In: Donaldson, A.F., Torlak, E. (eds.) International Con-
ference on Programming Language Design and Implementation (PLDI). pp. 1–15.
ACM (2020). https://doi.org/10.1145/3385412.3385967

23. Molina, F., d’Amorim, M., Aguirre, N.: Fuzzing class specifications. In: Interna-
tional Conference on Software Engineering (ICSE). pp. 1008–1020. ACM (2022),
https://doi.org/10.1145/3510003.3510120

24. Molina, F., Degiovanni, R., Ponzio, P., Regis, G., Aguirre, N., Frias, M.F.: Training
binary classifiers as data structure invariants. In: Atlee, J.M., Bultan, T., Whittle,
J. (eds.) International Conference on Software Engineering (ICSE). pp. 759–770.
IEEE / ACM (2019), https://doi.org/10.1109/ICSE.2019.00084

25. Molina, F., Ponzio, P., Aguirre, N., Frias, M.F.: Evospex: An evolutionary algo-
rithm for learning postconditions. In: International Conference on Software Engi-
neering (ICSE). pp. 1223–1235. IEEE Computer Society (2021), https://doi.org/
10.1109/ICSE43902.2021.00112

26. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: International Conference on Software Engineering (ICSE). pp. 75–
84. IEEE Computer Society (2007), https://doi.org/10.1109/ICSE.2007.37

27. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Krintz, C., Berger, E.D. (eds.) Conference on Programming
Language Design and Implementation (PLDI). pp. 42–56. ACM (2016). https:
//doi.org/10.1145/2908080.2908099

28. Peleg, H., Polikarpova, N.: Perfect is the enemy of good: Best-effort program syn-
thesis. In: Hirschfeld, R., Pape, T. (eds.) European Conference on Object-Oriented
Programming (ECOOP). LIPIcs, vol. 166, pp. 2:1–2:30. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.2

Comprehending Object State via Dynamic Class Invariant Learning 163

https://doi.org/10.1145/3338843
https://doi.org/10.1145/3213846.3229503
https://doi.org/10.1145/3213846.3229503
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1016/0164-1212(88)90022-2
https://doi.org/10.1016/0164-1212(88)90022-2
https://doi.org/10.48550/arXiv.1608.07637
https://doi.org/10.48550/arXiv.1608.07637
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2

29. Pham, L.H., Sun, J., Le, Q.L.: Compositional verification of heap-manipulating
programs through property-guided learning. In: Lin, A.W. (ed.) Asian Symposium
on Programming Languages and Systems (APLAS). LNCS, vol. 11893, pp. 405–
424. Springer (2019), https://doi.org/10.1007/978-3-030-34175-6 21

30. Pham, L.H., Thi, L.T., Sun, J.: Assertion generation through active learning. In:
Duan, Z., Ong, L. (eds.) International Conference on Formal Engineering Methods
(ICFEM). LNCS, vol. 10610, pp. 174–191. Springer (2017). https://doi.org/10.
1007/978-3-319-68690-5 11

31. Ponzio, P., Bengolea, V.S., Brida, S.G., Scilingo, G., Aguirre, N., Frias, M.F.: On
the effect of object redundancy elimination in randomly testing collection classes.
In: Galeotti, J.P., Gorla, A. (eds.) International Workshop on Search-Based Soft-
ware Testing (ICSE). pp. 67–70. ACM (2018), https://doi.org/10.1145/3194718.
3194724

32. Pugh, W.W.: Skip lists: A probabilistic alternative to balanced trees. In: Dehne,
F.K.H.A., Sack, J., Santoro, N. (eds.) Workshop on Algorithms and Data Struc-
tures (WADS). LNCS, vol. 382, pp. 437–449. Springer (1989), https://doi.org/10.
1007/3-540-51542-9 36

33. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: Ryder, B.G., Zeller,
A. (eds.) International Symposium on Software Testing and Analysis (ISSTA). pp.
295–306. ACM (2008), https://doi.org/10.1145/1390630.1390666

34. Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduction. In:
Enea, C., Piskac, R. (eds.) International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI). LNCS, vol. 11388, pp. 24–47. Springer
(2019), https://doi.org/10.1007/978-3-030-11245-5 2

35. Terragni, V., Jahangirova, G., Tonella, P., Pezzè, M.: Evolutionary improvement
of assertion oracles. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). pp. 1178–1189. ACM (2020), https://doi.
org/10.1145/3368089.3409758

36. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984),
https://doi.org/10.1145/1968.1972

37. Weiss, M.A.: Data structures and algorithm analysis in Java, vol. 2. Addison-
Wesley (2007)

38. Zeller, A.: Why programs fail - A guide to systematic debugging, 2nd ed. Academic
Press (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

164 Jan H. Boockmann and Gerald Lüttgen

https://doi.org/10.1007/978-3-030-34175-6_21
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1145/3194718.3194724
https://doi.org/10.1145/3194718.3194724
https://doi.org/10.1007/3-540-51542-9_36
https://doi.org/10.1007/3-540-51542-9_36
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/1968.1972
http://creativecommons.org/licenses/by/4.0/

	Comprehending Object Statevia Dynamic Class Invariant Learning

