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Abstract. An OS microkernel can be extended by implementing ser-
vices upon it. A service could introduce an object that references a kernel
object, and implement a group of functions that invokes the functions
for manipulating the kernel object. We consider the scenario where the
microkernel has been verified with machine-checkable proofs, while the
services remain to be verified. Moreover, the verification of the micro-
kernel is not performed with the verification of subsequent extension in
mind. We address the problem of how to build sufficiently on the ver-
ification results for the microkernel, in achieving the verification of the
services. Our methodology consists of enhancements to the verification
framework for the microkernel, and the design of invariants for establish-
ing the connection between the service-level objects and the kernel-level
objects. Using the methodology, we have conducted a substantial formal
verification of a group of services extending the inter-task communication
functionalities of the preemptive microkernel µC/OS-II. Our verification
uncovers dormant bugs and provides a level of correctness assurance for
the services that is above what is achievable through extensive testing.

1 Introduction

Microkernels provide the most fundamental functionalities of operating systems
such as task management, inter-task communication, and interrupt handling.
Microkernels are relatively small in size and simple in structure. Compared with
monolithic kernels, errors in microkernel-based systems are more likely to occur
outside of the kernel. Thus, these errors are less likely to crash the entire system.
A preemptive microkernel allows a task to be interrupted at any point of execu-
tion, as long as interrupts are enabled in the CPU. During interrupt handling,
a higher-priority task can be switched to. This mechanism permits the timely
processing of urgent workloads, increasing the responsiveness of the system.
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On the downside, the possibility of preemption results in a great number of
inter-dependencies between tasks. This adds to the difficulty in correctly design-
ing and implementing the microkernel. Out of concern for correctness, substantial
efforts have been dedicated to achieving the formal verification of preemptive mi-
crokernels (e.g., [28]). These verification efforts lay a solid foundation for assuring
the correctness of the software systems based on preemptive microkernels.

Since a microkernel only provides the core functionalities in abstracting and
managing system resources, the extension of the functionalities for a microkernel
is often required in a given application scenario. The functionality of a kernel
object Oknl can be extended in the following way. Firstly, a data structure is
introduced — an instance Osrv of this data structure contains a reference to Oknl,
while maintaining some additional attributes. Secondly, the operations that can
be performed on Osrv are implemented. In these operations, checks and updates
are performed on the additional attributes in Osrv, and the operations for Oknl

are invoked to complete the checks and updates on the internal attributes. The
extension provides a service to the user. We shall refer to Osrv as a service object.

For instance, the mutexes in a microkernel might not support modes of oper-
ations such as recursive and non-recursive modes. This feature can be introduced
in an extension of the microkernel, providing a modes-aware mutex service to
the user. Firstly, a service-level mutex object can be introduced. Secondly, the
mode of a mutex can be tracked by an attribute of this service object. Thirdly,
in an operation that tries to obtain a service-level mutex that the current task
already owns, the attribute is checked before deciding whether to invoke the
kernel function for obtaining the mutex or not.

In safety-critical scenarios, the correctness of the services that extend the
microkernel can be as important as the correctness of the microkernel itself. A
reliable way to ensure the correctness of the services is formal verification. If the
microkernel itself has been formally verified, the formal specifications and proofs
for the functions of the microkernel could be used as a basis for this verification.

The formal verification of the services can still be non-trivial. This is true es-
pecially if the tasks executing the service functions (e.g., the function for obtain-
ing a modes-aware mutex) can be preempted. In this case, it can be non-trivial
even to ensure that a service object in use always references a corresponding ker-
nel object that has been properly allocated and initialized. For the verification of
the services, another problem is how to achieve good reuse of the specifications
and proofs for the underlying microkernel. Moreover, if the proofs for the micro-
kernel have been developed using a verification framework, it would be good to
sufficiently leverage this verification framework, as opposed to requiring a great
amount of modification to the verification framework.

In this article, we address the aforementioned challenges in the formal verifi-
cation of OS services (in the above sense) that extend a preemptive microkernel.
Specifically, we consider the case where refinement verification has been per-
formed for the microkernel, using a variant of concurrent separation logic [9]
called CSL-R [28, 27]. This is the program logic used in the first formal verifica-
tion of a practical preemptive microkernel with machine-checkable proofs.
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Fig. 1: The connection between service objects and kernel objects

The main contributions of this article include:

1. enhancements to the verification framework of CSL-R to support the com-
positional specification of the functions implementing the OS services

2. a design of invariants dependent on auxiliary variables for reasoning about
the connection between service objects and their underlying kernel objects

3. results obtained by applying the extended verification framework and the
invariants design to achieve the formal verification of inter-task synchroniza-
tion and communication services that extend the corresponding functionali-
ties of the preemptive microkernel µC/OS-II [3]

Specifically, the enhancements to the verification framework of CSL-R en-
ables the integration of the specifications for the kernel functions as components
for the specifications of service functions. The connection between the service
objects and their underlying kernel objects is shown to satisfy structural prop-
erties that are generic to the specific purposes and contents of the services. The
verification of the inter-task synchronization and communication services is per-
formed in an industrial verification project in the aerospace domain, while these
services also constitute a module of a system to be more widely used in other
safety-critical scenarios. We devise the specification of each service function and
prove that the specification is refined by the code of the function. The develop-
ment is performed in the Coq proof assistant [1]. This verification is a substantial
effort, in which we have uncovered problems in extensively tested code.

2 Challenges in Verifying an OS Service

We assume a service object (e.g., a service-level task, semaphore, or message
queue) is implemented as a struct in C. The service object obj contains a pointer,
obj.ptr, to a potential kernel object of the underlying microkernel. The service
object contains a number of attributes that are managed outside of the micro-
kernel. Moreover, we assume that all the service objects of the same kind are
organized in the array obj arr. This array is illustrated in the upper part of Fig. 1.

We consider a kernel object to be active, if the kernel object has been allocated
and initialized. An active kernel object is expected to be in a consistent state.
The set of active kernel objects is illustrated in the lower part of Fig. 1.

A desired integrity requirement about the connection between the service
objects and the underlying kernel objects is:
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Requirement 1 If a service object is fully created, then the service object ref-
erences a kernel object that is in a consistent state.

This requirement is reflected by the arrow without a cross over it in Fig. 1. If
the requirement is not met, then an operation on a service object could trigger
an operation on an inconsistent kernel object. Hence, the proper completion of
the kernel operation with correct results cannot be guaranteed.

Another desired integrity requirement about the connection between the ser-
vice objects and the underlying kernel objects is:

Requirement 2 Each kernel object is referenced by at most one service object.

This requirement is reflected by the arrow with a cross over it in Fig. 1. If a kernel
object can be referenced by two or more service objects, then it is difficult to
guarantee that all these service objects are consistent with the kernel object. An
operation on one of these service objects would update the service object and
the kernel object consistently. But this update could break the consistency of
another service object with the kernel object.

Fig. 2: The function service obj create

It can be nontrivial to ascertain the
satisfaction of Requirement 1 and Re-
quirement 2 in a preemptive setting.
Consider the function service obj create
in Fig. 2. This function is used to create
service objects. The dotted boxes reflect
the areas of critical regions, in which the
task executing the function cannot be
preempted. Line 2 searches for an index
idx in obj arr using the internal function
get free obj. This index identifies an ar-
ray element that corresponds to an un-
used service object. Line 3 checks if the
return value of get free obj is a valid in-
dex for obj arr. If not, then the entries of obj arr are used up, and the func-
tion service obj create returns. Otherwise, obj arr[idx].ptr gets the special value
Dummy at line 4. This value signals that the array entry obj arr[idx] is reserved —
it cannot be used by a different task attempting to create a service object. Then,
the critical region is exited. Afterwards, the kernel function kernel obj create for
creating a kernel object is invoked at line 5. Here, katt is the attribute value
used to initialize the kernel object. The function returns the pointer to the ker-
nel object that is allocated and initialized — NULL in case no kernel object can
be allocated. This pointer is assigned to the kernel object pointer in the service
object obj arr[idx] at line 6. Then, it is checked whether the pointer is not NULL.
The function service obj create returns if the kernel object pointer is NULL. Oth-
erwise, the data attributes of the created service object obj arr[idx] are initialized
at line 8. The index idx for this created service object is then returned.

If Requirement 1 is to be satisfied, the following condition related to the
function service obj create in Fig. 2 should be met.
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Condition 1 After the completion of the assignment p<-kernel obj create(katt),
the pointer p points to an active kernel object if p is not NULL.

This condition guarantees that the pointer assigned to obj arr[idx].ptr points to
an active kernel object — thus a kernel object in a consistent state. This helps
ensure that the service object obj arr[idx] references a kernel object that is in a
consistent state, once the service object is fully created. However, Condition 1
might not hold, since the data located at the return address of kernel obj create
could be modified by preemptive tasks. Hence, dedicated reasoning is required
to ascertain that the potential modification of data does not break Condition 1.

If Requirement 2 is to be satisfied, the following condition should be met.

Condition 2 After the completion of the assignment p<-kernel obj create(katt),
no service object already references the kernel object pointed to by p.

If Condition 2 is not met, then the service object obj arr[idx] could start to
reference the created kernel object, along with some other service object that
originally referenced the same kernel object. It appears that the potential kernel
object that is allocated in a call to kernel obj create must be free before the
allocation. Given the code of service obj create, it is unlikely that a free kernel
object would get referenced from a service object. However, the joint effects of all
the functions supporting the creation, deletion, and use of the service object are
more complicated than suggested by this observation. Hence, dedicated formal
reasoning is required to ascertain the satisfaction of Condition 2.

In the remainder of the article, we will discuss how to ascertain the satis-
faction of Condition 1 and Condition 2, thereby ascertaining the satisfaction of
Requirement 1 and Requirement 2, in a refinement verification of OS services.
A key ingredient of our methodology is the formulation of invariant conditions
dependent on auxiliary variables in a separation logic (see Section 5).

Ultimately, the ability to show that Requirement 1 and Requirement 2 are
fulfilled supports the formal verification of the service functions against their
specifications. We will also discuss how to compose these specifications from
the formal specifications of the underlying kernel functions (see Section 4). This
enables the reuse of the specifications and proofs for the kernel functions, as
previously developed in the formal verification of the microkernel.

3 Refinement Verification of OS Microkernels

To facilitate the understanding of our technical development, we briefly introduce
the verification framework for the concurrent separation logic CSL-R [28, 27], as
well as the formal verification of an OS microkernel using this framework.

3.1 The Big Picture

Through the refinement verification of an OS microkernel, a simulation is estab-
lished between the execution of a concrete system and the execution of an ab-
stract system. The concrete system consists of client programs, kernel functions,
and interrupt handlers. The abstract system contains the same client programs
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Fig. 3: Execution of a microkernel and simulation by a specification

as the concrete system. In addition, the abstract system contains the specifica-
tions for the kernel functions and the interrupt handlers. These specifications
are in the form of abstract programs, as opposed to concrete C or assembly code.

An example of the simulation between the concrete system and the abstract
system is illustrated in Fig. 3. In this figure, the concrete system runs two tasks.
Task 1 calls the kernel function f with the list vl of argument values. This
function executes a series of steps in a critical region. Then, it needs to wait on
an event for a given time period. Hence, it calls the function sched() to trigger re-
scheduling. Suppose task 2 is scheduled for execution. After several steps taken
by task 2, a tick interrupt comes. The arrival of the interrupt is illustrated by
 . After the interrupt is handled, the system looks for the highest-priority task
that is ready for execution. Suppose task 1 has become ready and it is executed
for another time. Task 1 then finishes the kernel function f and returns to user
code. In the aforementioned scenario, task 2 is preempted by task 1.

The kernel function f is specified using the abstract program ωf as given by

ωf vl := γ1LvlM; sched; γ2LvlM

Here, γ1 and γ2 represent two atomic steps of execution. Each step has vl as the
list of input values. In addition, sched is a primitive for the scheduling operation.
Moreover, γ1, sched, and γ2 are sequentially composed. We will give further
details about the language in which ωf vl is expressed in Section 3.2.

Part of the simulation between the concrete system and the abstract system
is concerned with the simulation of the execution steps for the function f. The
abstract statement ωf vl is executed in the abstract system after the function f is
called with the list vl of arguments. The concrete execution steps in the critical
region are simulated by the atomic step γ1. Furthermore, the concrete execution
steps for sched() are simulated by the execution step of sched. In addition, the
concrete execution steps taken by task 1 after it is resumed are simulated by the
atomic step γ2. The simulation between the concrete system and the abstract
system is required to preserve a global invariant. The global invariant is used to
relate the states of the two systems — further details will be given in Section 3.3.

The simulation of the concrete system by the abstract system is established
by reasoning about each kernel function separately. This reasoning is performed
using the rules of the CSL-R logic. For the kernel function f, the goal of the
reasoning is to establish the correspondence between the concrete code of f and
the abstract program ωf . The reasoning goes forward (in the sense of [16]) in
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the concrete code of f, performing symbolic execution of the abstract statement
ωf vl at appropriate points. Thus, the goal is turned into establishing the cor-
respondence between the remainders of f and the remainders of ωf vl , i.e., the
abstract statements γ1LvlM; sched; γ2LvlM, sched; γ2LvlM, and γ2LvlM.

3.2 The Specification of Kernel Functions

As illustrated in Section 3.1, a kernel function is specified using a mathematical
function ω. This function maps each list vl of argument values to an abstract
statement 𝕤. This abstract statement is expressed using the values in vl . The
syntax for abstract statements is given below.

𝕤 ::= γLvlM | sched | end v̂ | 𝕤1; 𝕤2 | 𝕤1 + 𝕤2
v̂ ::= Some v | None

where v ∈ Val , vl ∈ Val∗, γ ∈ Val∗ ×AState ×Val? ×AState

Here, Val is the set of values, Val∗ is the set of value lists, and Val? is the
set of optional values. An optional value is represented by the meta-variable
v̂. Furthermore, AState is the set of abstract states. In the atomic operation
γLvlM, γ relates the list vl of input values and an initial abstract state to an
optional output value and a resulting abstract state. Furthermore, end v̂ signals
the completion of execution for an abstract statement. In addition, 𝕤1; 𝕤2 is a
sequential composition. Lastly, 𝕤1 + 𝕤2 is a nondeterministic choice.

An abstract state Σ ∈ AState captures as mathematical objects the memory
content that is relevant to the abstract programs of the kernel functions. For
example, a C struct s with the members s.a and s.b in the memory can be
abstractly represented as a pair (a, b) in the abstract state. Overall, an abstract
state could contain the representations of typical kernel objects such as kernel-
level tasks, semaphores, mutexes, and message queues. The formal semantics of
the abstract statements is defined based on reads and updates of the abstract
state. We omit the definition of this semantics here.

3.3 Invariants and Fractional Permission

In a concurrent separation logic, the well-formedness of global resources is ex-
pressed using a global invariant. Examples of these global resources include the
kernel data structures for tasks, synchronization objects, etc. In a concurrent
separation logic that supports refinement verification, the global invariant I is
interpreted over a concrete state and an abstract state. Thus, I can be used to
assert the well-formedness of the global resources in concrete and abstract rep-
resentations and the relation between the two. Hence, if the struct s mentioned
in Section 3.2 is global, then I can be used to assert the well-formedness of s
in the memory, the well-formedness of the tuple (a, b) in the abstract state, and
the fact that a and b properly represent the memory values of s.a and s.b.

In reasoning about a kernel function, the global invariant I can be asserted
to hold after entering a piece of code that has exclusive access to the global
resources (e.g., a critical region in which a task cannot be preempted). The aux-
iliary information provided by this assertion of I can be used in the subsequent
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γierrL·M +( γiokLvidxM ; ωkcre [vkatt,vcre] ; ( γcerrLvidx,vcreM + γcokLvidx,vcre, vsattM ))

1 2(b)

2(a)
choice between 1 and 2 choice between a and b

Fig. 4: The abstract statement for service obj create

reasoning. The well-formedness of the global resources may be temporarily bro-
ken in the code, but it must be re-established at the point where exclusive access
to the global resources is given up. At this point (e.g., where a critical region is
exited), I must be shown to hold again. Intuitively, a critical region consumes
well-formed global resources and gives back well-formed global resources again.

Consider an auxiliary variable that represents the current program location
for a task. If the global invariant is formulated to depend on such a variable, then
the variable should be treated as a global resource. However, the variable is then
modifiable at any point outside of a critical region, by another task that preempts
the current one. Nonetheless, the current program location of a task should not
be modifiable by a different task. This is where fractional permission [8] can be
employed to facilitate verification using a concurrent separation logic.

More concretely, an auxiliary variable x can be introduced for a task t, such
that t has 1

2 permission, and the global invariant has 1
2 permission, over x. A

task is allowed (by the program logic) to read a variable, as long as the task
has 1

2 permission over the variable. On the other hand, a task is allowed to
modify a variable, only if the task has full permission over the variable. Hence,
the task t is allowed to modify the variable x, when the other 1

2 permission over
x is obtained from the global invariant, e.g., in a critical region. The variable x
cannot be modified by any preemptive task t′. This is because t′ is allowed to
obtain at most 1

2 permission over the variable from the global invariant.

4 Compositional Specification of Service Functions

4.1 Composing Service Specification from Kernel Specification

To enable the refinement verification of the function service obj create in Fig. 2,
the function should be specified using an abstract statement. This abstract state-
ment should reflect the following cases about the execution of service obj create.

1. the execution of service obj create could fail, in case there is no usable service
object in the system, or

2. service obj create could obtain an index vidx for a usable service object, at-
tempt at kernel object creation as implemented in kernel obj create, obtain
the return value vcre from kernel obj create, and then proceed as follows:
(a) if vcre is the address of a newly allocated and initialized kernel object,

then service obj create sets the kernel object pointer in the vidx-th service
object to vcre, sets the data attribute in this service object to the given
attribute value vsatt, and returns the index value vidx

(b) if vcre is NULL, then service obj create returns an invalid index value
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We intend to formulate the abstract statement for service obj create using
the specification language presented in Section 3.2. A potential formulation is
given in Fig. 4. At the top level, this abstract statement is a nondeterministic
choice between the part expressing the meaning of item 1 and item 2 above. The
meaning of item 1 is expressed using the atomic operation γierr. The meaning of
item 2 is expressed with two sequential compositions. Here, the atomic operation
γiok is used to express the operation of obtaining vidx. Furthermore, ωkcre is the
abstract program for kernel obj create. In addition, the nondeterministic choice
between γcerr and γcok is used to express a choice between the sub-items 2(b)
and 2(a) above. This particular choice is deterministic because of the conditions
about vcre as expressed in 2(a) and 2(b). The correspondence between the in-
formal expression of the functional requirements for service obj create and the
formal counterpart is illustrated by the annotations in Fig. 4.

The specification of service obj create in Fig. 4 is composed of the abstract
program for kernel obj create. This compositional aspect enables the reuse of the
specification for the functions of the underlying microkernel. This reuse implies
that the formal proofs for these kernel functions (as developed in verifying the
microkernel) can also be reused. However, a technical problem was encountered
with specifications like the one in Fig. 4. The function service obj create has
two formal parameters (see Fig. 2). According to the CSL-R framework, if the
abstract program of the function service obj create is ωscre, then the result of
calling the function with the arguments vkatt and vsatt in the abstract system is
the abstract statement ωscre [vkatt, vsatt]. This cannot be the abstract statement
in Fig. 4, because the additional parameters vidx and vcre are not introduced.

To solve the aforementioned problem, we modify the semantics of the speci-
fication language such that a call to a function could nondeterministically result
in an abstract statement ω (vl++vl ′), where ω is the mathematical function rep-
resenting the abstract program for the callee, vl is a list that contains exactly the
actual arguments for the callee, and vl ′ is an arbitrary list of values. Intuitively,
the list vl ′ can be used to accommodate the intermediate values generated in
the abstract program. For the above example with service obj create, we define
ωscre such that ωscre ([vkatt, vsatt]++vl ′) yields the abstract statement in Fig. 4.
We use the first value of vl ′ for vidx, and use the second value of vl ′ for vcre.

With this abstract statement, we intend to express that the atomic operation
γiok identifies a specific index vidx — the vidx-th service object is unused in the
abstract state from which the operation is performed. Afterwards, the atomic
operation γcok initializes exactly the vidx-th service object. However, vidx is
arbitrary if it is the first value of the arbitrary list vl ′. How to ensure that vidx

is the index found by γiok at the point where the operation γcok is performed?

We solve this problem by permitting the execution of an abstract statement
to reach an error state. From the error state no further execution of the abstract
statement is permitted. We adjust the refinement condition to express that the
concrete system should be simulated by the abstract system unless the abstract
system is in an error state. In the abstract program for service obj create, we
define the atomic operation γiok such that an error state results if the parameter
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Fig. 5: Simulation for service obj create in the extended verification framework
(potential preemption before/after atomic operations omitted)

vidx is not equal to the found index (see Fig. 5). Hence, if γcok is executed to
simulate the concrete execution of service obj create, the previous execution of
γiok could not have ended up in an error state. Thus, vidx as used in γcok is equal
to the index of the unused service object found by γiok.

By admitting the error states in the abstract computation, and extending the
notion of refinement in CSL-R correspondingly, we permit using the output of
operations in the subsequent abstract computation. In particular, this enables
the compositional specification of the service functions — where the abstract
programs of the kernel functions may produce results that are used in the ab-
stract programs of the service functions. For sound reasoning about the new
notion of refinement, we have also introduced new rules into the program logic.
Formally, we have re-established the soundness of the verification framework.

Remark 1. In the µC/OS-II microkernel, the computation result of a critical re-
gion is rarely passed to another critical region via local variables or return values
of functions. Correspondingly, it is unnecessary to capture the output value of
an operation and pass this value to another operation in the abstract program of
a function. Hence, the CSL-R framework for the verification of µC/OS-II was not
originally designed to accommodate additional parameters like vidx and vcre.

4.2 Expressing Assumptions about the User

A second use of the error states in the abstract computation (as discussed in
Section 4.1) is to support the expression of assumptions about user data in the
formal specification of the service functions.

For an example of these assumptions, consider a variant of the service func-
tion service-obj-create in Fig. 2 that works properly only if the argument satt
satisfies a well-formedness condition. More concretely, suppose satt is intended
to be a pointer to a struct. This struct contains several attributes for initializ-
ing the service object. However, the C language does not provide a feature to
check whether satt really points to a well-formed struct that contains these at-
tributes (like instanceof in Java). Hence, this check might not be implemented
in the code of this variant of service obj create. Then, service obj create should
be verified under the assumption that satt points to the right type of struct.

The above assumption can be naturally expressed in the pre-condition for a
function, if the function is to be verified using an ordinary Hoare-style program
logic. However, a service function is specified using an abstract program instead
of pre/post-conditions in a refinement verification. Then, the assumption should
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be expressed in this abstract program. We express such an assumption in the
definition of an atomic operation in the abstract program. More concretely, this
atomic operation gives the error state if the assumed condition about user data
is not satisfied. With our adjusted definition of simulation, the abstract system
is required to simulate the concrete system only if the abstract system is not in
an error state (see Section 4.1). This corresponds to the meaning of assumptions
— the refinement of the abstract programs by the concrete code is only required
if the assumptions about user data are satisfied.

5 Reasoning about Service-Kernel Connection

Through refinement verification of an OS service, we establish the simulation
between the execution of the service functions and the execution of their abstract
programs (see Section 4.1). This simulation preserves the global invariant.

We express Requirement 1 and Requirement 2 (see Section 2) in the global
invariant to show that the satisfaction of both requirements is preserved in the
simulation. As explained in Section 2, the establishment of Condition 1 and
Condition 2 is supportive of showing the fulfillment of Requirement 1 and Re-
quirement 2. The two conditions can be established if they are also formulated in
the global invariant, and are shown to be preserved in the simulation. However,
these two conditions involve the program location that is local to a task, as well
as a task-local pointer to a kernel object. These parameters cannot be directly
expressed in the global invariant. In this section, we explain how to capture the
program location and the kernel object pointer for each task using auxiliary
variables with fractional permission (Section 5.2). We then present a design of
invariant conditions that depends on these auxiliary variables (Section 5.3). We
are able to show that Condition 1 and Condition 2 are preserved by the execution
of each service function, with the help of the invariant conditions.

The satisfaction of Condition 1 and Condition 2 depends on the way each
service function affects the connection between a service object and its underly-
ing kernel object. Hence, we will first present a series of code patterns for service
functions that capture a proper way to handle this connection (Section 5.1).

5.1 Creation, Deletion, and Use of Service Objects

We assume that the service functions for creating, deleting, and using a ser-
vice object possess the code patterns in Fig. 6. The scope of critical regions
is represented by the dashed boxes. A line with the content Check cond repre-
sents a conditional that checks the condition cond. A return from the function is
triggered if the check fails. Before each return from inside a critical region, the
critical region is exited first. A line in the non-bold face represents an assignment
to an auxiliary variable. These assignments will be explained later.

Creation of Service Objects. The function service obj create is used to create
a service object. The code pattern of this function is shown in Fig. 6a. This code
pattern is the same as in Fig. 2, except for containing two extra assignments
to auxiliary variables. In addition, the code pattern for the underlying kernel
function kernel obj create is given in the upper part of Fig. 6b.
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(a) creation of service objects (b) kernel obj. creation/deletion

(c) use of service objects (d) deletion of service objects

Fig. 6: The patterns for creation/deletion/use of service/kernel objects

Deletion of Service Objects. The function service obj delete (Fig. 6d) is used
to delete a service object. The deleted service object is the one represented by
the array element obj arr[idx]. Here, idx is the argument of the function. The
function first checks to ensure that idx is within the array bound for obj arr.
Then, the function remembers the kernel object pointer obj arr[idx].ptr in the
local variable p. Afterwards, the function checks if the pointer p is neither NULL
nor Dummy. If so, then obj arr[idx] should represent a valid service object. The
function then sets obj arr[idx].ptr to NULL. Finally, the function invokes the kernel
function kernel obj delete (Fig. 6b) to free the kernel object pointed to by p.

Use of Service Objects. The function service obj oper (Fig. 6c) outlines the
general pattern for an operation on a service object. First, the validity of the
index for the target service object is checked. Then, it is checked whether the
attribute value of the service object satisfies the conditions for performing the
intended operation. Next, it is checked whether the pointer to the kernel object
obj arr[idx].ptr is valid. If so, the kernel function kernel obj oper performing the
corresponding operation on the underlying kernel object is invoked.
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5.2 Auxiliary Variables with Fractional Permission

We introduce an auxiliary variable, ptr, for each task. This auxiliary variable
reflects the value of the local pointer p at key program locations in the func-
tions of Fig. 6. We employ fractional permission for ptr. Half of the permission
over ptr is given to the global invariant. Hence, ptr can be read in the global
invariant. Half of the permission over ptr is retained by the task for which ptr
is introduced. Hence, ptr can be used to reflect the value of a local pointer.

Via built-in mechanisms of CSL-R, we ensure that whenever a task enters
a service function, the value of ptr is NULL. This captures that the task is not
working with a kernel object when entering a service function. When the task
running a service function gets hold of a kernel object via p, we set ptr of the
task to the value of p. For service obj create, this is at the end of the critical
region in the underlying kernel function kernel obj create — when the kernel
object has just been created. For service obj delete and service obj oper, this is at
the end of their first critical regions. We reset ptr to NULL when the task loses
hold of the kernel object. For service obj delete, this is at the end of the critical
region in the kernel function kernel obj delete — when the kernel object has just
been freed. For service obj create and service obj oper, this is at their end.

We introduce an auxiliary variable, loc, for each task. This auxiliary variable
reflects the current program location of the task. We employ fractional permis-
sion for loc. Half of the permission over loc is given to the global invariant.
Hence, this variable can be read in the global invariant. Half of the permission
over loc is retained by the task for which loc is introduced. Hence, the program
location of each task cannot be modified by a different task.

Via built-in mechanisms of CSL-R, we ensure that whenever a task enters a
service function, the value of loc is Loc normal. This reflects that the task is
not at a special program location concerning object creation or deletion when
entering a service function. When a task running a service function starts to
work with a kernel object, we distinguish between the cases for object creation
and object deletion, by setting loc to different values. We set loc to Loc cre

for object creation (see Fig. 6b). We set loc to Loc del for object deletion (see
Fig. 6d). We reset loc to Loc normal when the task stops working with the
underlying kernel object. If the service function executed is service obj oper, then
loc remains at the value Loc normal through the execution of the function.

5.3 Invariant Conditions Dependent on Auxiliary Variables

Via the auxiliary variables, loc and ptr, we are able to formalize Condition 1
and Condition 2. The formulation of these conditions is simpler if the abstract
representations of data are used instead of the concrete counterpart. We use
locmp to represent a function from each task identifier to an optional value
of the auxiliary variable loc for the task. We use ptrmp to represent a function
from each task identifier to an optional value of the auxiliary variable ptr for the
task. We also introduce the abstract representations of the service objects and the
kernel objects. We use sobjmp to represent a function that maps each index value
i to an optional tuple. The tuple represents the service object obj arr[idx] if idx
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sobj kobj aux (locmp, ptrmp, sobjmp, kobjmp, fkobjs) :=

∀t, a : ptrmp(t) = Some (Vptr a) ⇒

(
locmp(t) = Some Loc cre∧

kobjmp(a) ̸= None ∧ ¬obj ref (sobjmp, a) ∧ ¬ptr in fkobj pool(a, fkobjs)

)

∨

(
locmp(t) = Some Loc del∧

kobjmp(a) ̸= None ∧ ¬obj ref (sobjmp, a)

)

∨

(
locmp(t) = Some Loc normal∧

( kobjmp(a) ̸= None ∨ ptr in fkobj pool(a, fkobjs) )

)


where obj ref (sobjmp, a) := ∃i, att : sobjmp(i) = Some (KObj a, att)

and ptr in fkobj pool(a, fkobjs) means a is the address of some free kernel object

cre del mut ex (locmp, ptrmp) :=

∀t1, t2, a : (locmp(t1) ∈ { Loc cre, Loc del} ∧ ptrmp(t1) = Some (Vptr a)) ⇒
(locmp(t2) ∈ { Loc cre, Loc del} ∧ ptrmp(t2) = Some (Vptr a)) ⇒
t1 = t2

1 2 3

4 5

6 7

Fig. 7: The invariant conditions sobj kobj aux and cre del mut ex

has the value i. More concretely, we have sobjmp(i) = Some (KObj a, att) if the
value of obj arr[idx].ptr is a, and the value of obj arr[idx].att is att . Furthermore,
we use kobjmp to represent a function that maps the address of each active kernel
object to the abstract representation of the kernel object. Hence, the expression
kobjmp(a) ̸= None means that there is an active kernel object at the address a.

We devise the condition sobj kobj aux (locmp, ptrmp, sobjmp, kobjmp, fkobjs)
as shown in Fig. 7. We make this condition a part of the global invariant. Ac-
cording to this condition, if a task with the identifier t is working with the kernel
object at the address a (i.e., ptrmp(t) = Some (Vptr a)), then the task could be
at a special program location for object creation, at a special program location
for object deletion, or not at one of these special program locations. These three
cases are reflected by a disjunctive normal form in sobj kobj aux .

The Use of the Invariant Condition sobj kobj aux. The invariant con-
dition sobj kobj aux becomes available to the reasoning task after each critical
region is entered. The contents of the parameters locmp, ptrmp, sobjmp, kobjmp,
and fkobjs correspond to the concrete data they represent. The specific parts 1 -
9 can be exploited depending on the values of the auxiliary variables.

We are able to capture Condition 1 and Condition 2 in Section 2 using
sobj kobj aux . If a task t has just completed the assignment p<-kernel obj create(
katt) in the function service obj create, then the task is at a special program
location for object creation (i.e., locmp(t) = Some Loc cre). Hence, Condition 1
in Section 2 is captured by the condition 1 in Fig. 7. Furthermore, Condition 2
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in Section 2 is captured by the condition 2 in Fig. 7. Condition 2 is expressed
using the predicate obj ref . The definition of this predicate is given below the
definition of sobj kobj aux in the upper part of Fig. 7.

We next explain the use of the condition 4 . When a task is in the function
kernel obj delete (hence at Loc del), the task resets the members of the kernel
object pointed to by p to their initial values. Condition 4 says that p points
to an active kernel object. This helps ensure the safety of the dereferencing
operation on p. The condition 6 ∨ 7 serves an analogous purpose. When a task
is in the function kernel obj oper (hence at Loc normal), the task dereferences
the pointer p to access the members of the kernel object. The condition 6 ∨ 7

says that p points to a kernel object that is either active or in the pool of the
free kernel objects. Thus, the safety of the dereferencing operation is ensured.
Here, the disjunction of 6 with 7 is necessary. This is because before the task
enters kernel obj oper, the task can be preempted by another task. The latter
task could invoke service obj delete, obtain the pointer to the kernel object, and
free the kernel object in kernel obj delete. This deletion does not cause trouble
to the execution of kernel obj oper — a sensible design of kernel obj oper would
check whether the kernel object to be used has been freed. This check can be
implemented using a data member of kernel objects.

The Proof Obligations for sobj kobj aux. Since sobj kobj aux is specified
as a part of the global invariant, a proof obligation in the verification of the
service functions is to establish sobj kobj aux where a critical region is exited.
Further invariant conditions are supplied for fulfilling this proof obligation.

Suppose a task with identifier t is about to return to the service func-
tion service obj create from the kernel function kernel obj create. There, we have
locmp(t) = Some Loc cre. In addition, if the local pointer p has the value a,
then we have ptrmp(t) = Some (Vptr a). Hence, condition 1 in sobj kobj aux
requires that there be an active kernel object at the address a. Consider a poten-
tial case where the task t is preempted by a different task t′, which happens to be
entering the function kernel obj delete, with the address a as the value for the pa-
rameter p. At the point where t′ exits from the critical region in kernel obj delete,
condition 1 cannot be established for t. This is because the kernel object at a
would have been freed by the task t′ — this kernel object is no longer active.

To show that the aforementioned scenario involving the tasks t and t′ is
impossible, we introduce another condition, cre del mut ex , into the global in-
variant (see bottom part of Fig. 7). The condition says that the actual accesses
of the special program locations marked by Loc cre and Loc del are mutually
exclusive, among all the accessing tasks that deal with the same kernel object
at some address a. Consider the point where task t′ enters the critical region
in kernel obj delete. The task is then at the program location Loc del. If task
t is about to return from kernel obj create, the task is at the program location
Loc cre. Hence, the kernel object dealt with by t cannot be the kernel object
that is dealt with by t′, according to the invariant condition cre del mut ex .
While task t′ is in the critical region of kernel obj delete, no other task can exe-
cute. Hence, the kernel object dealt with by t cannot be the kernel object dealt
with (deleted) by t′, when task t′ exits the critical region of kernel obj delete.
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The Proof Obligations for cre del mut ex. Since cre del mut ex is speci-
fied as a part of the global invariant, a proof obligation in the verification of the
service functions is to establish cre del mut ex where a critical region is exited.

For instance, when a task t exits from the critical region in service obj delete,
the task gets to the program location Loc del. Hence, it should be ascertained
that there is no other task at the program location Loc cre, and working with
the kernel object pointed to by the local pointer p in service obj delete. Consider
the point where task t has just completed the assignment p<-obj arr[idx].ptr
in the aforementioned critical region. There, the kernel object Oknl pointed
to by p is referenced from a service object. From 2 in the invariant condi-
tion sobj kobj aux , if a task t′ is at the program location Loc cre and working
with a kernel object O′

knl, this O′
knl is not referenced from any service object.

Hence, O′
knl must be different from Oknl. Since the other tasks do not execute

while the task t is in a critical region, there is still no task at Loc cre and
working with the kernel object Oknl, when the task t exits from the critical
region in service obj delete. In addition, conditions 3 and 5 in the definition
of sobj kobj aux are also used to establish the condition cre del mut ex where
some of the critical regions are exited. We do not expand on the details.

Summary of Invariant Design. The invariant conditions dependent on aux-
iliary variables enable the establishment of structural integrity properties about
the connection from service objects to kernel objects. This provides a solid foun-
dation for formally verifying the service functions (if they are implemented with
the expected code patterns) based on a microkernel that is already verified in
CSL-R. We provide the formalized code, formal specifications, and correctness
proofs for the functions in Fig. 6 as part of the accompanying artifact.

6 Experimental Evaluation

We apply our methodology in the formal verification of a group of inter-task
synchronization and communication services implemented as an extension to the
preemptive microkernel µC/OS-II. These services are developed by a separate
group of people for safety-critical usage scenarios (e.g., in aerospace vehicles,
self-driving cars, etc). The services provide functions for manipulating mutexes,
semaphores, and message queues. These service objects extend the corresponding
kernel objects of µC/OS-II. For instance, a service-level mutex can be recursive
or non-recursive, a service-level semaphore can be binary or counting, and a
service-level message queue can be blocking or non-blocking. This fine-grained
distinction of object types is not supported by the corresponding kernel objects
of µC/OS-II. We discuss some key aspects of our formal verification below.

Application of the Methodology. Almost all the interface functions for the
inter-task synchronization and communication services invoke the underlying
functions of µC/OS-II to complete operations on kernel objects. This invocation
is usually performed outside of critical regions. For instance, the service function
could be pthread mutex lock for obtaining a service-level mutex, and the corre-
sponding kernel function of µC/OS-II would be OSMutexPend. We are able to
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compose the specifications of the service functions from the specifications of the
corresponding kernel functions in the extended CSL-R verification framework
(see Section 4.1). In addition, the service objects are often initialized with point-
ers to dedicated structs containing attribute values. Our extension to the CSL-R
framework also enables us to express the assumption that each of these pointers
points to a well-formed struct of the appropriate type.

Almost all the service functions are implemented following the code patterns
in Fig. 6. For each kind of service (for mutexes, semaphores, and message queues),
we use the method in Section 5 to establish the structural properties about the
connection between service objects and kernel objects. A complication arises
because µC/OS-II has a common pool for kernel objects of different kinds. On
the other hand, each kind of service object is represented using a different struct,
and organized in a separate array. In the verification, we establish that each kind
of service object in use references a kernel object of the same kind, and each
kernel object is referenced by at most one service object of the same kind.

Verification Efforts. The source code for the interface functions and the
newly implemented internal functions totals 1561 lines. Our proof code for these
functions totals approximately 49k lines. The statistics about the lines of source
code and the lines of proof code for our verification of the interface functions
for the mutex service are given in Table 1. The corresponding statistics for the
verification of the other two services are omitted for space reasons. The overall
ratio between the verified code and the verification code is about 1:31. This
ratio is on par with that in the formal verification of µC/OS-II [28, 27]. Owing to
the compositional specification of the service functions, we did not need to re-
develop the proofs for the microkernel. Hence, we were able to devote more efforts
to establishing the structural properties of the connection between the service
level and kernel level, which made the verification of the services possible. It
took approximately 3 person years to complete the verification. This included
6 person months for extending the CSL-R framework as well as designing and
stabilizing all the invariants that connect the service level and the kernel level.

Table 1: The statistics about the formal proofs for the mutex service

Service Function
Source
LOC

Proof
LOC

Service Function
Source
LOC

Proof
LOC

pthread mutex init 76 1986 pthread mutexattr init 60 1150

pthread mutex destroy 33 605 pthread mutexattr destroy 21 506

pthread mutex lock 99 2514 pthread mutexattr gettype 36 654

pthread mutex trylock 96 2457 pthread mutexattr settype 38 705

pthread mutex timedlock 106 2765 pthread mutexattr getprioceiling 38 726

pthread mutex unlock 97 2563 pthread mutexattr setprioceiling 39 732

Problems and Fixes. Through formal verification, we uncovered several prob-
lems in the code of the inter-task synchronization and communication services.
This code had been extensively tested before our verification started. The most
common cause for the uncovered problems is the absence of big enough criti-
cal regions that ensure the uninterruptible execution of code. The problem with
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the most complicated cause is: If four tasks create and delete service objects
concurrently, service objects that are out-of-sync with their corresponding ker-
nel objects can be brought into existence. For instance, a service-level mutex
could start to reference a kernel-level message queue, and a binary service-level
semaphore could start to reference a kernel-level semaphore with a value of 10.
We uncovered part of the problems after realizing that the services could not be
shown to preserve some of the conditions in the global invariant — but these
conditions captured the required or intended behaviors of the services.

We reported the uncovered problems to the developers of the OS services.
They performed three main types of modifications to the code. The first was
enlarging a critical region. The second was adjusting the order of operations.
The third was introducing dedicated mechanisms to avoid races over global re-
sources. An example modification to the code was the following. The initial
implementation of the service function mq delete invoked the kernel function
OSQDel before it set the pointer from a service queue to the underlying kernel
queue to NULL. This order was later reversed such that it agreed with the code
pattern of service obj delete in Fig. 6d. The reason for this reversion was that
the original order was found to cause the existence of service objects that are
inconsistent with their underlying kernel objects in a highly concurrent setting.

7 Related Work

Our focus is the formal verification of functional correctness for OS services,
building on the verification results for an underlying OS kernel. However, our
methodology is also applicable if the service functions are implemented inside the
kernel. Hence, one type of related work is the formal verification of OS kernels.

In the literature, there are several developments about the formal verification
of OS kernels at the implementation level. The seL4 operating system is formally
verified in terms of functional correctness and information security [21, 20]. In the
Verisoft project, an operating system kernel encompassing assembly code and
device drivers is formally verified [5, 4]. CertikOS [18, 17] is a formally verified
concurrent OS. It is carefully organized in layers to facilitate verification. The
commercial preemptive microkernel µC/OS-II is formally verified in terms of the
functional correctness of the API functions [28, 27]. In [11], queue data structures
for inter-process communication are verified using the Iris framework [2].

Like our work, the aforementioned developments verify operating system code
using a proof assistant such as Isabelle [23] or Coq [1]. Unlike our work, these
developments are not focused on the formal verification of code that builds on
an OS kernel, by building on prior verification results for the kernel. Our verifi-
cation is performed for a group of inter-task synchronization and communication
services. On the other hand, the verification performed in the aforementioned
related developments either has a comprehensive coverage of the functionalities
of an OS, or targets a different component than our verification does.

Apart from the aforementioned related work, several developments (e.g. [25,
12, 13, 24, 22, 6, 7, 29]) formally verify operating systems at a more abstract level
than we do, or via an approach that is different from ours – such as through
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model checking or requiring trust in external solvers (e.g., Z3 [15]). In addition,
some of the existing works [20, 14, 30] verify the security properties of operating
systems, instead of functional correctness as we verify in the present work.

Our work is about the formal verification of concurrent programs in a broad
sense. Notable verification frameworks in this regard include Iris [19] and VST [10].
These frameworks have no builtin support for the type of concurrency in a pre-
emptive OS kernel, where the switch between threads is triggered via interrupt
handling. Our use of the auxiliary variables with fractional permission helps ex-
press a protocol followed by the concurrent tasks that manipulate the service
objects. In the literature, there exist techniques with dedicated abstractions for
expressing the protocols followed by concurrent threads. An example abstrac-
tion is a state transition system [26]. In the present work, our focus is to achieve
the required verification by maximally exploiting the features of the verification
framework for the underlying microkernel. Hence, we have not introduced fur-
ther abstractions for the expression of protocols. Due to space limits, we stop
here in our discussion about related work in concurrent program verification.

8 Conclusion

We address the problems in formally verifying a group of OS services that build
on a preemptive microkernel, in case the microkernel itself has been formally
verified. Specifically, the verification of the microkernel has been a refinement
verification performed using a concurrent separation logic that supports frac-
tional permission. Our aim is to build sufficiently on the verification framework
and verification code for the microkernel, in verifying the code of the services.
Our methodology consists of enhancements to the verification framework that
enable the compositional specification of the service functions, as well as a de-
sign of invariants for establishing structural integrity properties about the con-
nection between the service level and the kernel level. We use the methodology
to accomplish a substantial verification task targeting a group of inter-task syn-
chronization and communication services based on the preemptive microkernel
µC/OS-II. The verification uncovers dormant bugs and provides a level of cor-
rectness assurance that is above what can be achieved through extensive testing.

A potential direction for future work is the design of deductive systems that
facilitate the verification of global properties for a service, based on the abstract
programs of all the interface functions of a service. Another direction for future
work is the verification of progress properties for the functions of a service.

Data-Availability Statements. The mechanized extension to the CSL-R veri-
fication framework and proofs for the OS service in abstract form (as described in
Section 4 and Section 5) are published at Zenodo (10.5281/zenodo.10456998).
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use, you will need to obtain permission directly from the copyright holder.

Refinement Verification of OS Services 209


	Refinement Verification of OS Servicesbased on a Verified Preemptive Microkernel



