
Artifact Report: Trocq: Proof Transfer for Free,
With or Without Univalence

Trocq [5] is both the name of a calculus, describing a parametricity frame-
work, and of a Coq plugin [6] that provides tactics for performing representation
changes in goals, as well as vernacular commands for specifying the expected
translations. More precisely, from an initial goal of type G , the trocq tactic
simultaneously computes using the Trocq calculus [5] a translation G' and a
justification w : G' -> G . If successful, the user is thus left with proving G' .

The plugin orchestrates this double synthesis, by assembling existing build-
ing blocks known to the tactic, in the course of a linear traversal of the input
term G . These building blocks are of two natures. First, the actual rules of
the parametricity framework [5] govern the synthesis rule attached to each term
construction of CCω. The other nature of building blocks is the collection of
registered pairs of user-defined constants. These pairs come equipped with a
witness of their relatedness at some level, a data registered via the Trocq Use
command. When the linear traversal of the input term hits a constant, it queries
the database registering these user-defined relations, looking for the correspond-
ing constant and witness to be used in the synthesis.

The Trocq plugin is implemented in Elpi [9]: a dialect of λProlog which
can be used as a meta-language for Coq, through the Coq-Elpi [20] plugin. The
latter encodes Coq terms in higher-order abstract syntax (HOAS) which pro-
vides native support for bound variables, complemented by a comprehensive
API (typechecking, elaboration, interacting with the global environment, etc).

1 Example
Let us translate the induction principle associated with type nat , the unary
representation of N, to type N , the binary one. Types nat and N are equivalent
and we use the Trocq Use command to register such pairs of related types:

Definition RN : (N <=> nat)%P := Iso.toParamSym N.of_nat_iso.
Trocq Use RN. (* registering a pair of related types *)

Proof RN coerces to a relation of type N -> nat -> Type , and we also register
proofs that it relates the respective zero and successor constants of these types:

c© The Author(s) 2024
S. Weirich (Ed.): ESOP 2024, LNCS 14576, pp. 269–274, 2024.
https://doi.org/10.1007/978-3-031-57262-3_11

Cyril Cohen1, Enzo Crance2,3, and Assia Mahboubi2,4(B)

1 Université Côte d’Azur, Inria, Biot, France
Cyril.Cohen@inria.fr

2 Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004,
Nantes, France

Enzo.Crance,Assia.Mahboubi @inria.fr
3 Mitsubishi Electric R&D Centre Europe, Rennes, France
4 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

{ }

https://github.com/coq-community/trocq/blob/0.1.5/examples/artifact_paper_example.v
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57262-3_11&domain=pdf


270 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Definition RN0 : RN 0%N 0%nat. Proof. done. Qed.
Definition RNS m n : RN m n -> RN (N.succ m) (S n). Proof. by case. Qed.
Trocq Use RN0. Trocq Use RNS. (* registering related constants *)

We can now use tactic trocq to prove a useful induction principle on type N :

Lemma N_Srec : forall (P : N -> Type), P 0%N ->
(forall n, P n -> P (N.succ n)) -> forall n, P n.

Proof. trocq. (* replaces N by nat in the goal *) exact nat_rect. Qed.

Inspecting the proof term actually reveals that univalence was not needed in the
proof of N_Srec . The example directory of the artifact provides more examples,
for weaker relations than equivalences, and beyond representation independence.

2 Architecture of the plugin

A Trocq parametricity sequent ∆ ⊢t M @ A ∼ M ′ ∵ MR expresses that
terms M and M ′ are related at type A with witness MR in context ∆. Unlike
standard, unequivocal parametricity translations, each construct of CCω gives
rise to a family of possible synthesis rules, indexed by annotations on M and A.

Encoding CC+
ω . To implement the annotation calculus CC+

ω , we just annotate
Coq’s sort Type with a pair (n,m) using convertible synonyms (PType n m) ,
where PType := fun (_ _ : label) => Type . The two thrown-away arguments
code for the annotation. In the course of the synthesis, arguments of certain
occurrences of PType are left as holes and filled by a constraint solving algorithm.

Synthesis. The logic programming paradigm on which Elpi is based, is ideal to
implement algorithms expressed as inference rules, as each rule can be associated
to an instance of a predicate. The linear traversal of the input term at the core
of the Trocq plugin is operated by the predicate param , of arity 4, where
param X T X' XR stands for the parametricity sequent ∆ ⊢t x @ T ∼ x′ ∵ xR

for a certain context ∆. In this sequent, x and T are input values (initially,
the source goal and the annotated sort □(0,1)), and the synthesized term x′ and
witness xR are outputs. Each construct of CCω leads to one instance of the
predicate. As an example, let us inspect the instance of the param predicate
for dependent products, which implements the rule TrocqPi of the Trocq
calculus. For the sake of readability, we removed lines related to logs, pretty-
printing, and fresh universe instance generation. The head of the predicate is:

param (prod N A B) (app [pglobal (const PType) _, M1, M2]) Prod' ProdR :-
param.db.ptype PType, !,
cstr.univ-link C M1 M2,

which matches an input term Πx : A.B and our Coq encoding of its annotated
type □(M1,M2). Then, following the hypotheses in the inference rule, the predicate

https://github.com/coq-community/trocq/blob/b5bd4bfcd7435b0cba121f9a7575a9fd97109af8/elpi/param.elpi#L158


Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence 271

computes the prescribed annotation (CA, CB) = DΠ(C), and does two recursive
calls on A and B with classes CA and CB :

cstr.dep-pi C CA CB,
cstr.univ-link CA M1A M2A,
param A (app [pglobal (const PType) _, M1A, M2A]) A' AR,
cstr.univ-link CB M1B M2B,
TB = app [pglobal (const PType) _, M1B, M2B],
@annot-pi-decl N A a\ pi a' aR\ param.store a A a' aR =>

param (B a) TB (B' a') (BR a a' aR),

The last step (omitted in the above snippet) is to build the output proof
pCΠ AR BR. As the axioms (univalence, functional extensionality) that might be
involved in some proofs are not assumed globally, they are used as an additional
argument albeit only in the building blocks that require them. Therefore, we
check whether the requested rule requires the addition of an axiom to the list
of arguments (in the case of the dependent product, function extensionality). If
this axiom is not present in the context at the time of calling this part of the
code, the tactic rightfully fails, because the translation is impossible.

Exploiting symmetries. Trocq provides several distinct rules per language con-
struct (such as Π) and per relation structure among the 36 items in the hierarchy:
for a same construct, these rules differ by the annotations required on the input
of the rule, and by the structure of the relation relating the input term and the
synthesized one. For each such rule, a Coq function provides the corresponding
rule building block. Making the most of symmetries, the 495 rule building blocks
are generated by meta-programming from only 9 manually defined ones.

Handling of constants. Finally, the traversal of the input term collects constraints
on the annotations, as multiple valid solutions might exists: for instance, an
implication might be obtained from weakening an equivalence. The algorithm
strives to minimize the requirements on the user-defined building blocks, which
also amounts to minimizing the dependency on axioms. This inference procedure
is formalized as a finite domain constraint solving problem, and implemented
using Constraint Handling Rules (CHR) language [10], as available in Elpi.

3 Related work

In the context of type theory, Barthe and Pons [3] already noticed that the
computational content of type isomorphisms can serve proof transfer. The first
implementation report of a tool based on this idea appeared soon after [16].
Implemented in a meta-language and based on proof rewriting, this heuristic
translation produced a candidate proof term from an existing proof term, with no
formal guarantee, not even that of being well-typed. Generalized rewriting [17],
which generalizes setoid rewriting to preorders, is also a variant of proof transfer,
albeit within the same type. As such, it allows in particular rewriting under



binders. The restriction to homogeneous relations however excludes more general
instances of proof transfer, e.g., , datatype representation change and quasi-
PERs (QPER, or zig-zag complete relations) [13], essentially heterogeneous.

The other proof transfer methods we are aware of all address the case of
heterogeneous relations. Incidentally, they can thus also be used for the homo-
geneous case, and thus for generalized rewriting, although this special case is
seldom emphasized. The Coq Effective Algebra Library (CoqEAL) [8,7] and the
Isabelle/HOL transfer package [14,11,12,15], pioneered the use of parametricity-
based methods for proof transfer, motivated by the refinement of proof-oriented
data-structures to computation-oriented counterparts. Together with a subse-
quent generalization of the CoqEAL approach [21], these tools address the case
of a transfer between a subtype of a certain type A and a quotient of a certain
type B, i.e., the case of a trivial QPER in which the zig-zag morphism is a
surjection from A to B.

Modern approaches to proof transfer rely on univalence, either as an axiom,
in the case of univalent parametricity [19] or as a computing primitive [2]. Key
ingredients of univalent parametricity were already present in earlier seemingly
unpublished work [1], implemented using an ancestor of the MetaCoq library [18].

The columns of Table 1 lists these tools in chronological order, and indicates
when the features listed as lines are available (✓), not available (✗) or only
partially available (✐). Transfer along heterogeneous relations, and while the
oldest tool operates via a monolithic translation of an input proof term, others
rather prove an internal implication lemma. Anticipation [19] refers to the need
to define a dedicated structure for the signature to be transported. Binders (∀)
can prevent transfer, as well as dependent types, which require univalence.

[16] [17] [7] [14] [21] [19] [2] [4] Trocq
Heterogen. rel. ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No anticipation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Under ∀ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Dep. types ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Univalence-free ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Subrelations ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✐

QERs ✗ ✐ ✐ ✐ ✐ ✗ ✓ ✗ ✐

Subtyping ✗ ✗ ✐ ✐ ✐ ✗ ✗ ✐ ✐

Coq Coq Coq Isabelle/HOL Coq HoTT CubicalAgda Coq Coq or HoTT

Table 1. Comparison of proof transfer automation devices

Acknowledgments. The authors would like to thank Enrico Tassi and the anonymous
reviewers. This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 101001995).

272 Cyril Cohen, Enzo Crance, and Assia Mahboubi



References

1. Anand, A., Morrisett, G.: Revisiting parametricity: Inductives and uniformity of
propositions (2017), http://arxiv.org/abs/1705.01163

2. Angiuli, C., Cavallo, E., Mörtberg, A., Zeuner, M.: Internalizing representation
independence with univalence. Proc. ACM Program. Lang. 5(POPL), 1–30 (2021)

3. Barthe, G., Pons, O.: Type isomorphisms and proof reuse in dependent type theory.
In: FoSSaCS. LNCS, vol. 2030, pp. 57–71. Springer (2001)

4. Blot, V., Cousineau, D., Crance, E., de Prisque, L.D., Keller, C., Mahboubi, A.,
Vial, P.: Compositional pre-processing for automated reasoning in dependent type
theory. In: CPP. pp. 63–77. ACM (2023)

6. Cohen, C., Crance, E., Mahboubi, A.: coq-community/trocq: Trocq 0.1.5 (Jan
2024). https://doi.org/10.5281/zenodo.10563382

7. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: CPP. LNCS,
vol. 8307, pp. 147–162. Springer (2013)

8. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational
algebra in coq. In: ITP. LNCS, vol. 7406, pp. 83–98. Springer (2012)

9. Dunchev, C., Guidi, F., Coen, C.S., Tassi, E.: ELPI: fast, embeddable, λProlog
interpreter. In: LPAR. LNCS, vol. 9450, pp. 460–468. Springer (2015)

10. Frühwirth, T., Raiser, F.: Constraint handling rules: Compilation, execution, and
analysis (2011)

11. Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data refinement in Is-
abelle/HOL. In: ITP. LNCS, vol. 7998, pp. 100–115. Springer (2013)

12. Huffman, B., Kuncar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: CPP. LNCS, vol. 8307, pp. 131–146. Springer (2013)

13. Krishnaswami, N.R., Dreyer, D.: Internalizing relational parametricity in the ex-
tensional calculus of constructions. In: CSL. LIPIcs, vol. 23, pp. 432–451. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013)

14. Lammich, P.: Automatic data refinement. In: ITP. LNCS, vol. 7998, pp. 84–99.
Springer (2013)

15. Lammich, P., Lochbihler, A.: Automatic refinement to efficient data structures: A
comparison of two approaches. J. Autom. Reason. 63(1), 53–94 (2019)

16. Magaud, N.: Changing data representation within the Coq System. In: TPHOLs.
LNCS, vol. 2758, pp. 87–102. Springer (2003)

17. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formaliz. Reason.
2(1), 41–62 (2009)

18. Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G.,
Tabareau, N., Winterhalter, T.: The metacoq project. J. Autom. Reason. 64(5),
947–999 (2020)

19. Tabareau, N., Tanter, É., Sozeau, M.: The marriage of univalence and parametric-
ity. Journal of the ACM (JACM) 68(1), 1–44 (2021)

20. Tassi, E.: Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi
λprolog). In: CoqPL (January 2018), https://hal.inria.fr/hal-01637063

21. Zimmermann, T., Herbelin, H.: Automatic and transparent transfer of theorems
along isomorphisms in the coq proof assistant. In: CICM (Work in Progress). pp.
50–62 (2015)

Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence 273

5. Cohen, C., Crance, E., Mahboubi, A.: Trocq: proof transfer for free, with or with-
out univalence. In: Weirich, S. (ed.) Programming Languages and Systems. LNCS,
vol. 14576, pp. 239–268. Springer, Cham (2024). https://doi.org/10.1007/978-
3-031-57262-3_10

http://arxiv.org/abs/1705.01163
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.5281/zenodo.10563382
https://hal.inria.fr/hal-01637063
https://doi.org/10.1007/978-3-031-57262-3_10


274 Cyril Cohen, Enzo Crance, and Assia Mahboubi

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence



