
Artifact report: Generic bidirectional
typing for dependent type theories

Université Paris-Saclay, INRIA, LMF, ENS Paris-Saclay, Gif-sur-Yvette, France
thiago.felicissimo@inria.fr

Abstract. We report on the implementation of a generic bidirectional
algorithm for dependent type theories, following the proposal of the pa-
per "Generic bidirectional typing for dependent type theories".

In [5] we have proposed a general definition of dependent type theories sup-
porting bidirectional typing, and established an equivalence between their declar-
ative and bidirectional type systems. The crucial property satisfied by the bidi-
rectional system is its decidability for normalizing theories, which allowed for its
implementation in OCaml in the tool BiTTs [6] which we describe here.

1 A quick introduction to the implementation

Let us first start with a concrete example of how to use the tool. Because the algo-
rithm implemented is theory-independent, the first step to use it is to specify the
theory we want to work in. This is done with the commands sort, constructor,
destructor and rewrite which specify respectively sort, constructor, destructor
and rewrite rules. For instance, the following declarations define the theory T𝜆Π
given in [5, Example 6], constituting a minimalistic Martin-Löf Type Theory
with dependent functions.

sort Ty ()

sort Tm (A : Ty)

constructor Π () (A : Ty, B{x : Tm(A)} : Ty) : Ty

constructor 𝜆 (A : Ty, B{x : Tm(A)} : Ty) (t{x : Tm(A)} : Tm(B{x})) : Tm(Π(A, x. B{x}))

destructor @ (A : Ty, B{x : Tm(A)} : Ty) (t : Tm(Π(A, x. B{x}))) (u : Tm(A)) : Tm(B{u})

rewrite @(𝜆(x. t{x}), u) --> t{u}

Once the theory is specified, we can start writing and typechecking terms
inside it. For instance, supposing we have also added a Tarski-style universe U,
we can check the following definition of the polymorphic identity function.

let idU : Tm(Π(U, a. Π(El(a), _. El(a)))) := 𝜆(a. 𝜆(x. x))

To typecheck this definition, the tool first verifies that the sort given in
the annotation is indeed well-typed, and then checks the body of the definition
c© The Author(s) 2024
S. Weirich (Ed.): ESOP 2024, LNCS 14576, pp. 171–175, 2024.
https://doi.org/10.1007/978-3-031-57262-3_7

Thiago Felicissimo(B)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57262-3_7&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


against the sort. If all the steps succeed, the identifier is added to a global scope
of top-level definitions and becomes available to be used in the rest of the file.

Supposing that the underlying theory is valid, Theorem 2 of [5] ensures that,
if the implementation says that a term is well-typed, then the term is indeed
well-typed in the declarative type system of the theory. Note however that the
implementation does not currently check if the supplied theory is valid. Extend-
ing the implementation to check this automatically is future work, so for the
time being this verification is left to the user.

Finally, we also provide commands for evaluating terms to normal form and
checking that two terms are definitionally equal. For instance, assuming we have
added natural numbers to the theory and defined factorial, we can use these
commands to compute the factorial of 3 and check that it is equal to 6.

let fact3 : Tm(N) := @(fact, S(S(S(0))))

eval fact3

let 6 : Tm(N) := S(S(S(S(S(S(0))))))

check fact3 = 6

The implementation also comes with some examples of theories that can be
defined in the framework, along with some examples of terms written in these
theories. In the directory examples/ we can find the following files:

– mltt.bitt : Martin-Löf Type Theory with a type-in-type Tarski-style uni-
verse, Π and Σ types, lists, booleans, and the unit, empty and W types.

– mltt-coquand.bitt : Martin-Löf Type Theory with a hierarchy of (weak) cu-
mulative Coquand-style universes and universe polymorphism, with Π types
and natural numbers.

– hol.bitt : Higher-Order Logic (also known as Simple Type Theory) with
implication and universal quantification.

2 The implementation

The core of the implementation can be separated into two main parts: the type-
checking and the normalization algorithms. Let us now discuss them in detail.

Normalization

Because the theories we support are dependently-typed, typechecking terms re-
quires equality checking, which in turn requires reducing terms to normal form.
In order to do so, we have implemented an untyped variant of Normalization by
Evaluation (NbE), inspired by the works of Coquand [4], Abel [1] and Kovacs [8].
In NbE, terms are evaluated into a separate syntax of runtime values, in which
binders are represented by closures and free variables by unknowns. Values can
then be compared for equality by entering closures and recursively evaluating
and comparing their bodies. One of the benefits of this approach is that, by

172 T. Felicissimo



Artifact report: Generic bidirectional typing for dependent type theories 173

using de Bruijn indices in the syntax of regular terms but de Bruijn levels in the
syntax of values, we completely avoid the need of implementing substitution or
index-shifting functions.

Let us go through the main functions used to implement normalization. In
the following, we only discuss those that operate on terms, but each one has a
counterpart for metavariable substitutions. First, because the definitional equal-
ity of theories is generated by customizable rewrite systems, rewriting requires
matching against patterns. This is done by the function

val match_tm : p_tm -> v_tm -> v_msubst

which matches a term value against a term pattern and produces a metavariable
substitution of values (the prefix p_ stands for pattern, while v_ stands for value).

This is then used in the function

val eval_tm : tm -> v_msubst -> v_subst -> v_tm

which evaluates a term under a v_subst mapping occurring variables to values
and a v_msubst mapping occurring metavariables to values or closures. This is
done by recursively evaluating subterms, then trying to match against one of the
rewrite rule’s left hand sides and finally recursively evaluating the right hand side
under the metavariable substitution returned by matching.

Finally, values can be checked for equality with the function

val equal_tm : v_tm -> v_tm -> int -> unit

which recursively enters and evaluates closures while checking the result for
equality, and raising an exception when the two given terms are not equal. The
third argument is used for generating fresh unknowns when entering closures.

Typechecking

The typechecking algorithm is composed of four main functions, each one im-
plementing one of the judgment forms of the bidirectional system of [5].

Inference Γ ⊢ 𝑡 ⇒ 𝑇 and checking Γ ⊢ 𝑡 ⇐ 𝑇 are implemented by the functions

val infer : v_ctx -> v_subst -> tm -> v_tm

val check : v_ctx -> v_subst -> tm -> v_tm -> unit

the first returning the inferred sort and the second returning unit on success.
Note that, following works such as [4,8,7], we tightly integrate it with the NbE
algorithm by asking all inputs to be already in the syntax of values, with the
exception of the subject of the typing judgment. Compared with the usual in-
ference and checking judgments, note also the addition of the second argument
v_subst used to map the variables of the context v_ctx to unknowns for when
needing to evaluate the subject.

The third judgment Γ | v : Θ ⊢ u ⇐ Ξ used to typecheck metavariable
substitutions is then rendered as the function

val check_msubst : v_ctx -> v_subst -> v_msubst -> msubst -> mctx -> v_msubst



in which the argument corresponding to Θ is omitted for it is computationally
irrelevant. We also return the value of the checked metavariable substitution,
which comes in handy when coding the recursive case of its definition. Finally,
the last judgment Γ ⊢ 𝑇 ⇐ sort is implemented by the function

val check_sort : v_ctx -> v_subst -> tm -> unit

whose type signature follows the same reasoning as above.

Differences with respect to the theory

We highlight some relevant differences regarding the theory presented in [5].
First, we do not support matching inside binders, which restricts the set of

patterns we can write. For instance, while the pattern 𝜆(x.t{x}) is accepted, the
pattern 𝜆(x.S(t{x})) (assuming that S is a constructor) would be rejected by
the implementation. This is because matching against it would require matching
inside a closure and then reading back the result into the syntax of terms, which
would be highly inefficient with our NbE setup. Thankfully, matching inside
binders is almost never needed and none of our provided examples require it.

Second, even though the inference system for matching and the proof of
decidability of conversion in [5] employ the maximal outermost strategy, our
NbE normalizer uses instead a call-by-value strategy. The maximal outermost
strategy has the theoretical advantage over call-by-value of being normalizing,
which means that it always terminates for weak normalizing theories. However,
most theories used in practice are either strong normalizing or not normalizing at
all. Moreover, call-by-value can be implemented very easily using our described
NbE setup, which is the reason we opted for it instead.

Third, instead of defining the typing functions over a specific grammar of
checkable/inferable terms as done in [5], we define them over the grammar of
(regular) terms. This means that these functions might discover in the process
that the term given is not checkable/inferable, in which case an error is given.

Finally, as seen in Section 1 our implementation also extends the bidirectional
system with top-level definitions, which is crucial for allowing to write terms in
a user-friendly manner.

3 Future work

The current implementation is still a prototype and can be extended in various
ways. In particular, error handling is still rudimentary and improving it will be
key in order to make BiTTs more user-friendly.

We also plan to further test our implementation with larger and more real-
istic examples. In particular, we would like to compare it with typecheckers for
Dedukti [2,3], a framework aimed at providing a universal typechecker geared to-
wards proof-system interoperability. Because Dedukti has no support for erased
arguments, its terms are highly-annotated, which can have an important impact
on performance. Our support for non-annotated syntaxes should therefore allow
for shorter typechecking times, an hypothesis we hope to confirm with these tests.

174 T. Felicissimo



References

1. Abel, A.: Normalization by evaluation: Dependent types and impredicativity. Ha-
bilitation. Ludwig-Maximilians-Universität München (2013)

2. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a logical framework based
on the 𝜆 𝜋-calculus modulo theory (2016), unpublished

3. Blanqui, F., Dowek, G., Grienenberger, É., Hondet, G., Thiré, F.: Some axioms
for mathematics. In: Kobayashi, N. (ed.) 6th International Conference on Formal
Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference). LIPIcs, vol. 195, pp. 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.
FSCD.2021.20, https://doi.org/10.4230/LIPIcs.FSCD.2021.20

4. Coquand, T.: An algorithm for type-checking dependent types. Science of Computer
Programming 26(1-3), 167–177 (1996)

5. Felicissimo, T.: Generic bidirectional typing for dependent type theories (2023)
6. Felicissimo, T.: BiTTs (Jan 2024). https://doi.org/10.5281/zenodo.10500598, https:

//doi.org/10.5281/zenodo.10500598
7. Gratzer, D., Sterling, J., Birkedal, L.: Implementing a modal dependent type theory.

Proceedings of the ACM on Programming Languages 3(ICFP), 1–29 (2019)
8. Kovács, A.: elaboration-zoo (2023), https://github.com/AndrasKovacs/

elaboration-zoo

Artifact report: Generic bidirectional typing for dependent type theories 175

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.5281/zenodo.10500598
https://doi.org/10.5281/zenodo.10500598
https://doi.org/10.5281/zenodo.10500598
https://doi.org/10.5281/zenodo.10500598
https://github.com/AndrasKovacs/elaboration-zoo
https://github.com/AndrasKovacs/elaboration-zoo
http://creativecommons.org/licenses/by/4.0/

	Artifact report: Generic bidirectional typing for dependent type theories



