
The Session Abstract Machine

Abstract. We build on a fine-grained analysis of session-based interaction
as provided by the linear logic typing disciplines to introduce the SAM, an
abstract machine for mechanically executing session-typed processes. A re-
markable feature of the SAM’s design is its ability to naturally segregate and
coordinate sequential with concurrent session behaviours. In particular, implic-
itly sequential parts of session programs may be efficiently executed by deter-
ministic sequential application of SAM transitions, amenable to compilation,
and without concurrent synchronisation mechanisms. We provide an intuitive
discussion of the SAM structure and its underlying design, and state and prove
its correctness for executing programs in a session calculus corresponding to
full classical linear logic CLL. We also discuss extensions and applications of
the SAM to the execution of linear and session-based programming languages.
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1 Introduction

In this work, we build on the linear logic based foundation for session types [13,
15, 72] to construct SAM, an abstract machine specially designed for executing
session processes typed by (classical) linear logic CLL. Although motivated by
the session type discipline, which originally emerged in the realm of concurrency
and distribution [31, 33, 28, 34], a basic motivation for designing the SAM was
to provide an efficient deterministic execution model for the implicitly sequential
session-typed program idioms that often proliferate in concurrent session-based
programming. It is well-known that in a world of fine-grained concurrency, build-
ing on many process-based encodings of concepts such as (abstract) data types,
functions, continuations, and effects [49, 70, 65, 66, 10, 68, 54], large parts of
the code turn out to be inherently sequential, further justifying the foundational
and practical relevance of our results. A remarkable feature of the SAM’s de-
sign is therefore its potential to efficiently coordinate sequential with full-fledged
concurrent behaviours in session-based programming.

Leveraging early work relating linear logic with the semantics of linear and
concurrent computation [1, 6, 2], the proposition-as-types (PaT) interpreta-
tion [73] of linear logic proofs as a form of well-behaved session-typed nominal
calculus has motivated many developments since its inception [12, 5, 68, 67]. We
believe that, much how the λ-calculus is deemed a canonical typed model for
functional (sequential) computation with pure values, the session calculus can
be accepted as a fairly canonical typed model for stateful concurrent compu-
tation with linear resources, well-rooted in the trunk of “classical” Type The-
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ory. The PaT interpretation of session processes also establishes a bridge be-
tween more classical theories of computation and process algebra via logic. It
also reinstates Robin Milner’s view of computation as interaction [48], “data-as-
processes” [49] and “functions-as-processes” [47], now in the setting of a tightly
typed world, based on linear logic, where types may statically ensure key prop-
erties like deadlock-freedom, termination, and correct resource usage in stateful
programs. Session calculi are motivating novel programming language design,
bringing up new insights on typeful programming [18] with linear and behavioral
types, e.g., [24, 61, 20, 5]. Most systems of typed session calculi have been formu-
lated in process algebraic form [31, 33, 28], or on top of concurrent λ-calculi with
an extra layer of communication channels (e.g., [29]), logically inspired systems
such as the those discussed in this paper (e.g., [13, 15, 72, 23, 39, 59, 27, 61])
are defined by a logical proof / type system where proof rules are seen as wit-
nesses for the typing of process terms, proofs are read as processes, structural
equivalence is proof conversion and computation corresponds to cut reduction.
These formulations provide a fundamental semantic foundation to study the
model’s expressiveness and meta-theory, but of course do not directly support
the concrete implementation of programming languages based on them.

Although several programming language implementations of nominal calculi
based languages have been proposed for some time (e.g. [57]), with some in-
troducing abstract machines as the underlying technology (e.g., [69, 46]), we
are not aware of any prior design proposal for an abstract machine for reduc-
ing session processes exploiting deep properties of a source session calculus,
as e.g., the CAM [21] the LAM [41], or the KM [40], which also explore the
Curry-Howard correspondences, may reclaim to be, respectively for call-by-value
cartesian-closed structures, linear logic, and the call-by-name λ-calculus.

The SAM reduction strategy explores a form of “asynchronous” interaction
that essentially expresses that, for processes typed by the logical discipline, ses-
sions are always pairwise causally independent, in the sense that immediate com-
munication on some session is never blocked by communication on a different
session. This property is captured syntactically by prefix commutation equations,
valid commuting conversions in the underlying logic: adding equations for such
laws explicitly to process structural congruence keeps observational equivalence
of CLL processes untouched [53]. Combined with insights related to focalisation
and polarisation in linear logic [4, 56, 44], we realize that all communication in
any session may be operationally structured as the exchange of bundles of posi-
tive actions from sender to receiver, where the roles sender/receiver flip whenever
the session type swaps polarity. Communication may then be mediated by mes-
sage buffers, first filled up by the sender (“write-biased” scheduling), and at a
later time emptied by the receiver. Building on these observations and on key
properties of linear logic proofs leveraged in well-known purely structural proofs
of progress [13, 15, 61], we identify a sequential and deterministic reduction strat-
egy for CLL typed processes, based on a form of co-routining where continuations
are associated to session queues, and “context switching” occurs whenever polar-
ity flips. That such strategy works at all, preserving all the required correctness
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properties of the CLL language does not seem immediately obvious, given that
each processes may sequentially perform multiple actions on many different ses-
sions, meaning that multiple context switches must be interleaved. The bulk of
our paper is then devoted to establishing all such properties in a precise tech-
nical sense. We believe that the SAM may provide a principled foundation for
safe execution environments for programming languages combining functional,
imperative and concurrent idioms based on session and linear types, as witnessed
in practice for Rust [37], (Linear) Haskell [45, 8, 38], Move [9], and in research
languages [60, 36, 24]. To further substantiate these views we have developed an
implementation of the SAM, integrated in a language for realistic session-based
shared-state programs [17].
Outline and Contributions. In Section 2 we briefly review the session-typed
calculus CLL, which exactly corresponds to (classical) Linear Logic with mix. In
Section 3 we discuss the motivation and design principles of the core SAM, grad-
ually presenting its structure for the language fragment corresponding to session
types without the exponentials, which will be introduced later. Even if the core
SAM structure and transition rules are fairly simple, the proofs of correctness
are more technically involved, and require progressive build up. Therefore, we
first bridge between CLL and SAM via a intermediate logical language CLLB, in-
troducing explicit queues in cuts, presented in Section 4. We show preservation
(Theorem 4.1) and progress (Theorem 4.2) for CLLB, and prove that there is two
way simulation between CLLB and CLL via a strong operational correspondence
(Theorem 4.3). Given this correspondence, in Section 5 we state and prove the
adequacy of the SAM for executing CLL processes, showing soundness wrt. CLLB
(Theorem 5.1) and CLL (Theorem 5.2), and progress / deadlock absence (Theo-
rem 5.3). In Section 6 modularly extend the previous results to the exponentials
and mix, and revise the core SAM by introducing explicit environments, stat-
ing the associated adequacy results (Theorem 6.1 and Theorem 6.2). We also
discuss how to accommodate concurrency, and other extensions in the SAM.
We conclude by a discussion of related work and additional remarks. Additional
definitions and proofs can be found in the companion technical report [16].

2 Background on CLL, the core language and type system

We start by revisiting the language and type system of CLL, and its operational
semantics. The system is based on a PaT interpretation of classical linear logic
(we follow the presentations of [15, 11, 60]).

Definition 2.1 (Types). Types A,B are defined by

A,B ::= 1 | ⊥ | A O B | A⊗B | Nℓ∈L Aℓ | ⊕ℓ∈L Aℓ | !A | ?A

Types comprise of the units (1,⊥), multiplicatives (⊗, O), additives (⊕ℓ∈LAℓ,
Nℓ∈LAℓ) and exponentials (!, ?). We adopt here a labeled version of the additives,
where the linear logic sum type A#inl ⊕A#inr is defined by ⊕ℓ∈{#inl,#inr}Aℓ. The
positive types are 1, ⊗, ⊕, and !, while the negative types are ⊥, O, N and ?.
We abbreviate A O B by A ⊸ B. We write A+ (resp. A−) to assert that A is a
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positive (resp. negative) type. Type duality A corresponds to negation:

1 = ⊥ A⊗B = A O B ⊕ℓ∈LAℓ = Nℓ∈LAℓ !A = ?B

Duality captures the symmetry of behaviour in binary process interaction, as
manifest in the cut rule.

Definition 2.2 (Processes). The syntax of processes P,Q is given by:

P,Q ::= 0 | P || Q | fwd x y | cut {P |x:A| Q} | close x | wait x;P
| case x {|#ℓ ∈ L:Pℓ} | #inr x;P | send x(y.P );Q | recv x(z);P
| !x(y);P | ?x;P | cut! {y.P |!x : A| Q} | call x(z);Q

Typing judgements have the form P ⊢ ∆;Γ , where P is a process and the typing
context ∆;Γ is dyadic [4, 7, 55, 13]: both ∆ and Γ assign types to names, the
context ∆ is handled linearly (no implicit contraction or weakening) while the
exponential context Γ is unrestricted. The type system exactly corresponds, via a
propositions-as-types correspondence, to the canonical proof system of Classical
Linear Logic with Mix. When a cut type annotation is easily inferred, we may
omit it and write cut {P |x| Q}. The typing rules of CLL are given in Fig. 1.

The process 0 denotes the inactive process, typed in the empty linear context
(rule [T0]). P ||Q denotes independent parallel composition of processes P andQ
(rule [Tmix]), whereas cut {P |x:A| Q} denotes interfering parallel composition
of P and Q, where P and Q share exactly one channel name x, typed as A
in P and A in Q (rule [Tcut]). The construct fwd x y captures forwarding
between dually typed names x and y (rule [Tfwd]), which operationally consists
in (globally) renaming x for y.

Processes close x and wait x;P denote session termination and the dual action
of waiting for session termination, respectively (rules [T1] and [T⊥]). The con-
structs case x {|#ℓ ∈ L:Pℓ} and #l x;P denote label input and output, respec-
tively, where the input construct pattern matches on the received label to select
the process continuation that is to run. Process send x(y.P1);P2 and recv x(z);Q
codify the output of (fresh) name y on channel x and the corresponding input
action, where the received name will be substituted for z in Q (rules [T⊗] and
[TO]). Typing ensures that the names used in P1 and P2 are disjoint.

Processes !x(y);P , ?x;Q and call x(z);Q embody replicated servers and client
processes. Process !x(y);P consists of a process that waits for inputs on x, spawn-
ing a replica of P (depending on no linear sessions – rule [T!]). Process ?x;Q and
call x(z);Q allow for replicated servers to be activated and subsequently used
as (fresh) linear sessions (rules [T?] and [Tcall]). Composition of exponentials is
achieved by the cut! {y.P |!x : A| Q} process, where P cannot depend on linear
sessions and so may be safely replicated.

We call action any process that is either a forwarder or realizes an intro-
duction rule, and denote by A the set of all actions, by A(x) the set of action
with subject x (the subject of an action is the channel name in which it inter-
acts [49]). An action is deemed positive (resp. negative) if its associated type
is positive (resp. negative) in the sense of focusing. The set of positive (resp.
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[T0]
0 ⊢ ∅;Γ

P ⊢ ∆′;Γ Q ⊢ ∆;Γ
[Tmix]

P || Q ⊢ ∆′,∆;Γ

[Tfwd]
fwd x y ⊢ x : A, y : A;Γ

P ⊢ ∆′, x : A;Γ Q ⊢ ∆,x : A;Γ

cut {P |x : A| Q} ⊢ ∆′,∆;Γ

[Tcut]

[T1]
close x ⊢ x : 1;Γ

Q ⊢ ∆;Γ
[T⊥]

wait x;Q ⊢ ∆,x : ⊥;Γ

Pℓ ⊢ ∆,x : Aℓ;Γ (all ℓ ∈ L)
[TN]

case x {|#ℓ ∈ L:Pℓ} ⊢ ∆,x : Nℓ∈LAℓ;Γ

Q ⊢ ∆′, x : A#l;Γ #l ∈ L
[T⊕]

#l x;Q ⊢ ∆′, x : ⊕ℓ∈LAℓ;Γ

P1 ⊢ ∆1, y : A;Γ P2 ⊢ ∆2, x : B;Γ
[T⊗]

send x(y.P1);P2 ⊢ ∆1,∆2, x : A⊗B;Γ

Q ⊢ ∆, z : A, x : B;Γ
[TO]

recv x(z);Q ⊢ ∆,x : A O B;Γ

P ⊢ y : A;Γ
[T!]

!x(y);P ⊢ x :!A;Γ

Q ⊢ ∆;Γ, x : A
[T?]

?x;Q ⊢ ∆,x :?A;Γ

P ⊢ y : A;Γ Q ⊢ ∆;Γ, x : A
[Tcut!]

cut! {y.P |!x : A| Q} ⊢ ∆;Γ

Q ⊢ ∆, z : A;Γ, x : A
[Tcall]

call x(z);Q ⊢ ∆;Γ, x : A

Fig. 1: Typing Rules of CLL.

negative) actions is denoted by A+ (resp. A−). We sometimes use, e.g., A or
A+(x) to denote a process in the set. The CLL operational semantics is given by
a structural congruence relation ≡ that captures static identities on processes,
corresponding to commuting conversions in the logic, and a reduction relation
→ that captures process interaction, and corresponds to cut-elimination steps.

Definition 2.3 (P ≡ Q). Structural congruence ≡ is the least congruence on
processes closed under α-conversion and the ≡-rules in Fig. 2.

The definition of ≡ reflects expected static laws, along the lines of the structural
congruences / conversions in [13, 71]. The binary operators forwarder, cut, and
mix are commutative. The set of processes modulo ≡ is a commutative monoid
with operation the parallel composition (− || −) and identity given by inaction
0 ([par]). Any static constructs commute, as expressed by the laws [CM]-[C!sC!].
The unrestricted cut distributes over all the static constructs by law [C*], where
− | ∗ | − stands for either a mix, linear or unrestricted cut. The laws [C+∗] and
[C+] denote sound proof equivalences in linear logic and bring explicit the in-
dependence of linear actions (noted a(x)), in different sessions x [53]. These
conversions are not required to obtain deadlock freedom. However, they are nec-
essary for full cut elimination (e.g., see [71]), and expose more redexes, thus
more non-determinism in the choice of possible reductions. Perhaps surprisingly,
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fwd x y ≡ fwd y x [fwd]

cut {P |x : A| Q} ≡ cut {Q |x : A| P} [com]

P || 0 ≡ P P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R [par]

cut {P |x| (Q || R)} ≡ (cut {P |x| Q}) || R [CM]

cut {P |x| (cut {Q |y| R})} ≡ cut {(cut {P |x| Q}) |y| R} [CC]

cut {P |z| (cut! {y.Q |!x| R})} ≡ cut! {y.Q |!x| (cut {P |z| R})} [CC!]

cut! {y.Q |!x| (P || R)} ≡ P || (cut! {y.Q |!x| R}) [C!M]

cut! {y.P |!x| (cut! {w.Q |!z| R})} ≡ cut! {w.Q |!z| (cut! {y.P |!x| R})} [C!C!]

cut! {y.P |!x| (Q | ∗ | R)} ≡ cut! {y.P |!x| Q} | ∗ | cut! {y.P |!x| R} [C!*]

a(x);Q | ∗ | R ≡ a(x); (Q | ∗ | R) [C+*]

a1(x); a2(y);P ≡ a2(y); a1(x);P [Ci]

Provisos: in [CM] x ∈ fn(Q); in [CC] x, y ∈ fn(Q); in [CC!], [C!M] x /∈ fn(P ); in [C!C!],

x /∈ fn(Q) and z /∈ fn(P ). In [Ci], x ̸= y and bn(a1(x)) ∩ bn(a2(y)) = ∅

Fig. 2: Structural congruence P ≡ Q.

cut {fwd x y |y| P} → {x/y}P [fwd]

cut {close x |x| wait x;P} → P [1⊥]

cut {send x(y.P );Q |x| recv x(z);R} → Q |x| (P |y| {y/z}R) [⊗O]

cut {case x {|#ℓ ∈ L:P#ℓ} |x| #l x;R} → cut {P#l |x| R} [N⊕l]

cut {!x(y);P |x| ?x;Q} → cut! {y.P |!x| Q} [!?]

cut! {y.P |!x| call x(z);Q} → cut {{z/y}P |z| (cut! {y.P |!x| Q})} [call]

Fig. 3: Reduction P → Q.

this extra flexibility is important to allow the deterministic sequential evaluation
strategy for CLL programs adopted by the SAM to be expressed.

Definition 2.4 (Reduction →). Reduction → is defined by the rules of Fig. 3.

We denote by ⇒ the reflexive-transitive closure of →. Reduction includes
the set of principal cut conversions, i.e. the redexes for each pair of interacting
constructs. It is closed by structural congruence ([≡]), in rule [cong] we con-
sider that C is a static context, i.e. a process context in which the single hole
is covered only by the static constructs mix or cut. The forwarding behaviour
is implemented by name substitution [fwd] [14]. All the other reductions act on
a principal cut between two dual actions, and eliminate it on behalf of cuts in-
volving their subprocesses. CLL satisfies basic safety properties [13] listed below,
and also confluence, and termination [60, 61]. In particular we have:
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Theorem 2.1 (Type Preservation). Let P ⊢ ∆;Γ . (1) If P ≡ Q, then Q ⊢
∆;Γ . (2) If P → Q, then Q ⊢ ∆;Γ .

A process P is live if and only if P = C[Q], for some static context C (the hole
lies within the scope of static constructs mix and cut) and Q is an active process
(a process with a topmost action prefix).

Theorem 2.2 (Progress). Let P ⊢ ∅; ∅ be live. Then P → Q for some Q.

3 A Core Session Abstract Machine

In this section we develop the key insights that guide the construction of our
session abstract machine (SAM) and introduce its operational rules in an incre-
mental fashion. We omit the linear logic exponentials for the sake of clarity of
presentation, postponing their discussion for Section 6.

One of the main observations that drives the design of the SAM is the nature
of proof dynamics in (classical) linear logic, and thus of process execution dy-
namics in the CLL system of Section 2. The proof dynamics of linear logic are de-
rived from the computational content of the cut elimination proof, which defines
a proof simplification strategy that removes (all) instances of the cut rule from
a proof. However, the strategy induced by cut elimination is non-deterministic
insofar as multiple simplification steps may apply to a given proof. Transposing
this observation to CLL and other related systems, we observe that their opera-
tional semantics is does not prescribe a rigid evaluation order for processes. For
instance, in the process cut {P |x| Q}, reduction is allowed in both P and Q.
This is of course in line with reduction in process calculi (e.g., [49]). However,
in logical-based systems this amounts to don’t care non-determinism since, re-
gardless of the evaluation order, confluence ensures that the same outcomes are
produced (in opposition to don’t know non-determinism which breaks confluence
and is thus disallowed in purely logical systems). The design of the SAM arises
from attempting to fix a purely sequential reduction strategy for CLL processes,
such that only one process is allowed to execute at any given point in time, in
the style of coroutines. To construct such a strategy, we forego the use of purely
synchronous communication channels, which require a handshake between two
concurrently executing processes, and so consider session channels as a kind of
buffered communication medium (this idea has been explored in the context of
linear logic interpretations of sessions in [25]), or queue, where one process can
asynchronously write messages so that another may, subsequently, read. To en-
sure the correct directionality of communication, the queue has a write endpoint
(on which a process may only write) and a read endpoint (along which only
reads may be performed), such that at any given point in time a process can
only hold one of two endpoints of a queue. Moreover, our design takes inspira-
tion from insights related to polarisation and focusing in linear logic, grouping
communication in sequences of positive (i.e. write) actions.

Allowing session channels to buffer message sequences, we may then model
process execution by alternating between writer processes (that inject messages
into the respective queues) and corresponding reader processes. Thus, the SAM
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S ::= (P,H) State

H ::= SessionRef → SessionRec Heap

R ::= x⟨q, P ⟩y Session Record

q ::= nil | Val@q Queue

Val ::= ✓ Close token
| #l Choice label
| clos(x, P ) Process Closure

Fig. 4: core SAM Components

must maintain a heap that tracks the queue contents of each session (and its
endpoints), as well as the suspended processes. The construction of the core of
the SAM is given in Figure 4. An execution state is simply a pair consisting of
the running process P and the heap H. For technical reasons that are made clear
in Sections 4 and 5, the process language used in the SAM differs superficially
from that of CLL, but for the purposes of this overview we will use CLL process
syntax. Later we show the two languages are equivalent in a strong sense.

A heap is a mapping between session identifiers and session records of the
form x⟨q,Q⟩y, denoting a session with write endpoint x and read endpoint y, with
queue contents q and a suspended process Q, holding one of the two endpoints.
If Q holds the read endpoint then it is suspended waiting for the process holding
the write endpoint to fill the queue with data for it to read. If Q holds the write
endpoint, then Q has been suspended after filling the queue and is now waiting
for the reader process on y to empty the queue.

We adopt the convention of placing the write endpoint on the left and the
read endpoint on the right. In general, session records in the SAM support a
form of coroutines through their contained processes, which are called on and
returned from multiple times over the course of the execution of the machine. A
queue can either be empty (nil) or holding a sequence of values. A value is either
a close session token (✓), identifying the last output on a session; a choice label
#l or a process closure clos(x, P ), used to model session send and receive. We
overload the @ notation to also denote concatenation of queues.
Cut. We begin by considering how to execute a cut of the form cut {P |x :
A+| Q} where x is a positive type (in the sense of polarized logic [30]) in P . A
positive type corresponds to a type denoting an output (or write) action, whereas
a negative type denotes an input (or read) action. We maintain the invariant
that in such a cut, P holds the write endpoint and Q the read endpoint. This
means that the next action performed by P on the session will be to push some
value onto the queue and, dually, the next action performed by Q on the session
will be to read a value from the queue. In general, the holder of the write and
read endpoint can change throughout execution.

Given the choice of either scheduling P or Q, we are effectively forced to
schedule P before Q. Given that the cut introduces the (unique) session that
is shared between the two processes, the only way for Q to exercise its read
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capability on the session successfully is to wait for P to have exercised (at least
some of) its write capability. If we were to schedule Q before P , the process
might attempt to read a value from an empty queue, resulting in a stuck state
of the SAM. Thus, the SAM execution rule for cut is:

(cut {P |x : A+| Q}, H) Z⇒ (P,H[x⟨nil, {y/x}Q⟩y]) [SCut]

The rule states that P is the process that is to be scheduled, adding the session
record x⟨nil, Q⟩y to the heap, which effectively suspends the execution of Q until
P has exercised some of its write capabilities on the new session. Note that, in
general, both P and Q can interact along many different sessions as both readers
and writers before exercising any action on x (resp. y). However, they alone hold
the freshly created endpoints x and y and so the next value sent along the session
must come from P and Q is its intended receiver.
Channel Output. To execute an output of the form send x(z.R);Q in the SAM
we simply lookup the session record for x and add to the queue a process closure
containing R (which interacts along z), continuing with the execution of Q:

(send x(z.R);Q,H[x⟨q, P ⟩y]) Z⇒ (Q,H[x⟨q@clos(z,R), P ⟩y]) [S⊗]

Note that the SAM eagerly continues to execute Q instead of switching to P ,
the holder of the read endpoint of the queue. This allows for the running process
to perform all available writes before a context switch occurs.
Session Closure. Executing a close follows a similar spirit, but no continua-
tion process exists and so execution switches to the process P holding the read
endpoint y of the queue:

(close x,H[x⟨q, P ⟩y]) Z⇒ (P,H[x⟨q@✓, 0⟩y]) [S1]

The process P will eventually read the termination mark from the queue (trig-
gering the deallocation of the session record from the heap):

(wait y;P,H[x⟨✓, 0⟩y]) Z⇒ (P,H) [S⊥]

Note the requirement that ✓ be the final element of the queue.
Negative Action on Write Endpoint. As hinted above for the case of exe-
cuting a cut, the SAM has a kind of write bias insofar as the process chosen to
execute in a cut is that which holds the write endpoint for the newly created
session. Since CLL processes use channels bidirectionally, the role of writer and
reader on a channel (and thus the holder of the write and read endpoints of
the queue) may be exchanged during execution. For instance, a process P may
wish to send a value v to Q and then receive a response on the same channel.
However, when considering a queue-based semantics, the execution of the input
action must not obtain the value v, intended for Q. Care is therefore needed to
ensure that v is received by the holder of the read endpoint of the queue before
P is allowed to execute its input action (and so taking over the read endpoint).
This notion is captured by the following rule, where A− denotes any process
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performing a negative polarity action (i.e., a wait, recv, case or, as we discuss
later, a fwd x y when x is a write endpoint with a negative polarity type):

(A−(x), H[x⟨q,Q⟩y]) Z⇒ (Q,H[x
〈
q,A−(x)

〉
y]) [S−]

If the executing process is to perform a negative polarity action on a write
endpoint x, the SAM context switches to Q, the holder of the read endpoint y of
the session, and suspends the previously running process. This will now allow for
Q to perform the appropriate inputs before execution of the action A− resumes.
Channel Input. The rules for recv actions are as follows:

(recv y(w:+);Q,H[x⟨clos(z,R)@q, P ⟩y]) Z⇒ (Q,H[w⟨nil, R⟩z][x⟨q⟩sy]) [SO+]
(recv y(w:−);Q,H[x⟨clos(z,R)@q, P ⟩y]) Z⇒ (R,H[z⟨nil, Q⟩w][x⟨q⟩sy]) [SO−]

where x⟨q⟩sy ≜ if (q = nil) then y⟨q, P ⟩x else x⟨q, P ⟩y. The execution of an
input action requires the corresponding queue to contain a process closure, de-
noting the process that interacts along the received channel w. In order to ensure
that no inputs attempt to read from an empty queue, we must branch on the
polarity of the communicated session (written w:+ and w:− in the rules above):
if the session has a positive type, then Q must take the write endpoint w of the
newly generated queue (since Q uses the session with a dual type) and thus we
execute Q and allocate a session record in the heap for the new session, with read
endpoint z; if the exchanged session has a negative type, the converse holds and
Q must take the read endpoint of the newly generated queue. In this scenario,
we must execute R so that it may exercise its write capability on the queue and
suspend Q in the new session record.

In either case, the session record for the original session is updated by re-
moving the received message from the queue. Crucially, since processes are well-
typed, if the resulting queue is empty then it must be the case that Q has
no more reads to perform on the session, and so we swap the read and write
endpoints of the session. This swap serves two purposes: first, it enables Q to
perform writes if needed; secondly, and more subtly, it allows for the process,
say, P , that holds the other endpoint of the queue to be resumed to perform
its actions accordingly. To see how this is the case, consider that such a process
will be suspended (due to rule [S−]) attempting to perform a negative action on
the write endpoint of the queue. After the swap, the endpoint of the suspended
process now matches its intended action. Since Q now holds the write endpoint,
it will perform some number of positive actions on the session which end either
in a close, which context switches to P , or until it attempts to perform a negative
action on the write endpoint, triggering rule [S−] and so context switching to P .
Choice and Selection. The treatment of the additive constructs in the SAM
is straightforward:

(#l x;Q,H[x⟨q, P ⟩y]) Z⇒ (Q,H[x⟨q@#l, P ⟩y]) [S⊕]
(case y {|#ℓ ∈ L:Qℓ}, H[x⟨#l@q, P ⟩y]) Z⇒ (Q#l, H[x⟨q⟩sy]) [SN]

Sending a label #l simply adds the #l to the corresponding queue and proceeds
with the execution, whereas executing a case reads a label from the queue and
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continues execution of the appropriate branch. Since removing the label may
empty the queue, we perform the same adjustment as in rules [SO+] and [SO−].
Forwarding. Finally, let us consider the execution of a forwarder (we overload
the @ notation to also denote concatenation of queues):

(fwd x− y+, H[z⟨q1, Q⟩x][y⟨q2, P ⟩w]) Z⇒ (P,H[z⟨q2@q1, Q⟩w]) [Sfwd]

A forwarder denotes the merging of two sessions x and y. Since the forwarder
holds the read and write endpoints x and y, respectively, Q has written (through
z) the contents of q1, whereas the previous steps of the currently running process
have written q2. Thus, P is waiting to read q2@q1, justifying the rule above.

The reader may then wonder about other possible configurations of the SAM
heap and how they interact with the forwarder. Specifically, what happens if y is
of a positive type but a read endpoint of a queue, or, dually, if x is of a negative
type but a write endpoint. The former case is ruled out by the SAM since the
heap satisfies the invariant that any session record of the form x:A⟨q, P ⟩y:A ∈ H
is such that Amust be of negative polarity or P is the inert process (which cannot
be forwarded). The latter case is possible and is handled by rule [S−], since such
a forward fwd x− y+ stands for a process that wants to perform a negative
polarity action on a write endpoint (or a positive action on a read endpoint).

3.1 On the Write-Bias of the SAM

Consider the following CLL process:

P ≜ cut {P1 |a : 1⊗ 1| {a/b}Q1}

P1 ≜ send a(y.P2);P3 Q1 ≜ recv b(x);Q2

P2 ≜ close y Q2 ≜ wait x;Q3

P3 ≜ close a Q3 ≜ wait b; 0

Let us walk through the execution trace of P :

(1) (P, ∅) Z⇒ by [SCut]
(2) (P1, a⟨nil, Q1⟩b) Z⇒ by [S⊗]
(3) (P3, a⟨clos(y, P2), Q1⟩b) Z⇒ by [S1]
(4) (Q1, a⟨clos(y, P2)@✓, 0⟩b) Z⇒ by [SO−]
(5) (P2, y⟨nil, Q2⟩x, a⟨✓, 0⟩b) Z⇒ by [S1]
(6) (Q2, y⟨✓, 0⟩x, a⟨✓, 0⟩b) Z⇒ by [S⊥]
(7) (Q3, a⟨✓, 0⟩b) Z⇒ by [S⊥]
(8) (0, ∅)

The SAM begins in the state on line (1) above, executing the cut. Since the
type of a is positive, we execute P1, and allocate the session record, suspending
Q1, resulting in the state on line (2). Since P1 is a write action on a write
endpoint, we proceed via the [S⊗] rule, resulting in the SAM configuration in
line (3), executing P3 and adding a closure containing P2 to the session queue
with write endpoint a. Executing P3 (3), a close action, requires adding the ✓
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to the queue and context switching to the process Q1, now ready to receive the
sent value. The applicable rule is now (4) [SO−], and so execution will context
switch to P2 after creating the session record for the new session with endpoints
y and x. P2 will execute and the machine ends up in state (6) followed by (7),
which consume the appropriate ✓ and deallocate the session records.

Note how after executing the send action of P1 we eagerly execute the positive
action in P3 rather than context switching to Q1. While in this particular process
it would have been safe to execute the negative action in Q1, switch to P2 and
then back to Q2, we would now need to somehow context switch to P3 before
continuing with the execution of Q3, or execution would be stuck. However, the
relationship between P3 and Q2 is unclear at best. Moreover, if the continuation
of Q1 were of the form wait b;wait x; 0, the context switch after the execution of
P2 would have to execute P3, or the machine would also be in a stuck state.

3.2 Illustrating Forwarding

To better illustrate the way in which fwd x− y+ effectively stands for a negative
action, consider the following CLL process (to simplify the execution trace we
assume the existence of output and input of integers typed as int⊗A and intOA,
respectively, eliding the need for process closures in this example):

P ≜ cut {P1 |b : int O int O 1| {b/c}cut {Q1 |a : int⊗ int O 1| {a/d}R1}}
P1 ≜ recv b(x);P2 Q1 ≜ send a(1);Q2 R1 ≜ recv d(y);R2

P2 ≜ recv b(z);P3 Q2 ≜ send c(3);Q3 R2 ≜ send d(2);R3

P3 ≜ close b Q3 ≜ fwd a c R3 ≜ wait d; 0

If we consider the execution of P we observe:

(1) (P, ∅) Z⇒ by [SCut]
(2) (cut {Q1 |a| {a/d}R1}, c⟨nil, P1⟩b) Z⇒ by [SCut]
(3) (Q1, a⟨nil, R1⟩d, c⟨nil, P1⟩b) Z⇒ by [S⊗]
(4) (Q2, a⟨1, R1⟩d, c⟨nil, P1⟩b) Z⇒ by [S⊗]
(5) (fwd a c, a⟨1, R1⟩d, c⟨3, P1⟩b) Z⇒ by [S−]
(6) (R1, a⟨1, Q3⟩d, c⟨3, P1⟩b) Z⇒ by [SO]
(7) (R2, d⟨nil, Q3⟩a, c⟨3, P1⟩b) Z⇒ by [S⊗]
(8) (R3, d⟨2, Q3⟩a, c⟨3, P1⟩b) Z⇒ by [S−]
(9) (fwd a c, d⟨2, R3⟩a, c⟨3, P1⟩b) Z⇒ by [Sfwd]
(10) (P1, d⟨3@2, R3⟩b) Z⇒ by [SO]
(11) (P2, b⟨2, R3⟩d) Z⇒ by [SO]
(12) (P3, b⟨nil, R3⟩d) Z⇒ by [S1]
(13) (R3, b⟨✓, R3⟩d) Z⇒ by [S⊥]
(14) (0, ∅)

The first four steps of the execution of P allocate the two session records and
the writes by Q1 and Q2 takes place. We are now in configuration (5), where
Q3 = fwd a− c+ is to execute and a is a write endpoint of a queue assigned a
negative type (intO1). This forwarder stands for a process performing a negative
action on a write endpoint (i.e., P1) and so context switching is required, rule
[S−] applies and the SAM context switches to R1, suspending Q3 until the
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forward can be performed. After R1 receives (6) and the queue endpoints a and
d are swapped (7), R2 executes and then rule [S−] applies (8), context switching
back to Q3. Since the queue endpoints are now flipped, rule [Sfwd] now applies
(9), collapsing the two session records (via queue concatenation) and proceeding
with the execution of P1, P2, P3 and R3 (10-14). Note the correct ordering in
which the sent values are dequeued, where 3 is read before 2, as intended.
Discussion. The core execution rules for the SAM are summarized in Figure 5.
At this point, the reader may wonder just how reasonable the SAM’s evaluation
strategy is. Our evaluation strategy is devised to be a deterministic, sequential
strategy, where exactly one process is executing at any given point in time,
supported by a queue-based buffer structure for channels and a heap for session
records. Moreover, taking inspiration from focusing and polarized logic, we adopt
a write-biased stance and prioritize (bundles of) write actions over reads, where
suspended processes hold the read endpoint of queues while waiting for the writer
process to fill the queue, and hold write endpoints of queues after filling them,
waiting for the reader process to empty the queue.

While this latter point seems like a reasonable way to ensure that inputs
never get stuck, it is not immediately obvious that the strategy is sound wrt the
more standard (asynchronous) semantics of CLL and related languages, given
that processes are free to act on multiple sessions. Thus, the write-bias of the
cut rule (and the overall SAM) does not necessarily mean that the process that
is chosen to execute will immediately perform a write action on the freshly
cut session x. In general, such a process may perform multiple write or read
actions on many other sessions before performing the write on x, meaning that
multiple context switches may occur. Given this, it is not obvious that this
strategy is adequate insofar as preserving the correctness properties of CLL in
terms of soundness, progress and type preservation. The remainder of this paper
is devoted to establishing this correspondence in a precise technical sense.

4 CLLB: A Buffered Formulation of CLL

There is a substantial gap between the language CLL, presented in an abstract al-
gebraic style, and its operational semantics, defined by equational and rewriting
systems, and an abstract machine as the SAM, a deterministic state machine ma-
nipulating several low level structures. Therefore, even if the core SAM structure
and transition rules are fairly simple, proving its correctness is more challenging
and technically involved, and require progressive build up. Therefore, we first
bridge between CLL and SAM via a intermediate logical language CLLB, which
extends CLL with a buffered cut construct.

cut {P |a : A [q] b : B| Q}

The buffered cut construct models interaction via a “message queue” with two
polarised endpoints a and b, held respectively by the processes P and Q. A
polarised endpoint has the form x or x. The endpoint marked x is the only
allowing writes, the unmarked y is the only one allowing reads, exactly one of
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(cut {P |x : A+| Q}, H) Z⇒ (P,H[x⟨nil, {y/x}Q⟩y]) [SCut]

(fwd x y,H[z⟨q1, Q⟩x][y⟨q2, P ⟩w]) Z⇒ (P,H[z⟨q2@q1, Q⟩w]) [Sfwd]

(close x,H[x⟨q, P ⟩y]) Z⇒ (P,H[x⟨q@✓, 0⟩y]) [S1]

(wait y;P,H[x⟨✓, 0⟩y]) Z⇒ (P,H) [S⊥]

(A−(x), H[x⟨q,Q⟩y]) Z⇒ (Q,H[x
〈
q,A−(x)

〉
y]) [S−]

(send x(z.R);Q,H[x⟨q, P ⟩y]) Z⇒ (Q,H[x⟨q@clos(z,R), P ⟩y]) [S⊗]

(recv y(w : +);Q,H[x⟨clos(z,R)@q, P ⟩y]) Z⇒ (Q,H[w⟨nil, R⟩z][x⟨q⟩sy]) [SO]

(recv y(w : −);Q,H[x⟨clos(z,R)@q, P ⟩y]) Z⇒ (R,H[z⟨nil, Q⟩w][x⟨q⟩sy]) [SO]

(#l x;Q,H[x⟨q, P ⟩y]) Z⇒ (Q,H[x⟨q@#l, P ⟩y]) [S⊕]

(case y {|#ℓ ∈ L:Qℓ}, H[x⟨#l@q, P ⟩y]) Z⇒ (Q#l, H[x⟨q⟩sy]) [SN]

N.B. : x⟨q⟩sy ≜ if (q = nil) then y⟨q, P ⟩x else x⟨q, P ⟩y

Fig. 5: The core SAM Transition Rules

the two endpoints is marked. The endpoints types A,B are of course related but
do not need to be exact duals, the type of the writer endpoint may be advanced
in time wrt the type of the reader endpoint, reflecting the messages already
enqueued but not yet consumed. If the queue is empty, we have A = B. Thus a
buffered cut with empty queue corresponds to the basic cut of CLL.

cut {P |x : A| Q} ≡ cut {P |x : A [nil] y : A| {y/x}Q} (A+)

The queue q stores values V defined by

V ::= ✓ (Close token) | #l (Selection Label)
| clos(x, P ) (Linear Closure) | clos!(x, P ) (Exponential Closure)

q ::= nil | V | V@q (Queue)

We use @ to also denote (associative) concatenation operation of queues, with
unit nil. Enqueue and dequeue operations occur respectively on the lhs and rhs.

The type system CLLB is obtained from CLL by replacing [TCut] with the
typing rules (and symmetric ones) in Fig. 6. We distinguish the type judgements
as P ⊢ ∆;Γ for CLL and P ⊢B ∆;Γ for CLLB. The [TCutB] rule sets the
endpoints mode based in the cut type polarity, applicable whenever the queue
is empty. The remaining rules relate queue contents with their corresponding
(positive action) processes. For instance, rule [Tcut-⊗] can be read bottom-up
as stating that typing processes mediated by a queue containing a process closure
clos(y,R) amounts to typing the process that will emit the session y (bound to
R), interacting with the queue with the closure removed. Rules [Tcut-⊕] and
[Tcut!] apply a similar principle to the other possible queue contents. In [Tcut-
1] and [Tcut!] the write endpoint is typed ∅, as the sender has terminated (0).
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P ⊢B ∆′, x : A;Γ Q ⊢B ∆, y : A;Γ

cut {P |x : A [nil] y : A| Q} ⊢B ∆′,∆;Γ

(A positive) [TcutB]

cut {close x |x : 1 [q] y : B| Q} ⊢B ∆;Γ

cut {0 |x : ∅[q@✓]y : B| Q} ⊢B ∆;Γ

[Tcut-1]

cut {send x(y.R);P |x : T⊗A [q] y : B| Q} ⊢B ∆;Γ

cut {P |x : A [q@clos(y,R)] y : B| Q} ⊢B ∆;Γ

[Tcut-⊗]

cut {#l x;P |x : ⊕ℓ∈LAℓ [q] y : B| Q} ⊢B ∆;Γ

cut {P |x : A#l [q@#l] y : B| Q} ⊢B ∆;Γ

[Tcut-⊕]

cut {!x(z);P |x :!A [q] y : B| Q} ⊢B ∆;Γ

cut {0 |x : ∅ [q@clos!(z, P )] y : B| Q} ⊢B ∆;Γ

[Tcut!]

Fig. 6: Additional typing rules for CLLB.

cut {Q |a : A[q]b : B| P} ≡B cut {Q |b : B[q]a : A| P} [comm]

cut {P |x[q]y| (Q || R)} ≡B (cut {P |x[q]y| Q}) || R [CM]

P |x[q]z| (cut {Q |y[p]w| R}) ≡B cut {(cut {P |x[q]z| Q}) |y[p]w| R} [CC]

cut {P |z[q]w| (cut! {y.Q |!x| R})} ≡B cut! {y.Q |!x| (cut {P |z[q]w| R})} [CC!]

cut! {y.P |!x| (cut {Q |z[q]w| R})} ≡B

cut {(y.P |!x| Q) |z[q]w| (cut! {y.P |!x| R}}) [D-C!]

Fig. 7: Additional structural congruence rules for CLLB.

Structural congruence for B (noted ≡B) is obtained by extending ≡ with
commutative conversions for the buffered cut, listed in Fig. 7. The following
provisos apply: [CM] y ∈ fn(Q); in [CC] y, z ∈ fn(Q); in [CC!] x /∈ fn(P ).
Accordingly, reduction for B (noted →B) is obtained by replacing the → rules
[fwd], [1⊥], [⊗O] and [⊕N] by the rules in Fig. 8. Essentially each principal
cut reduction rule of CLL is replaced by a pair of “positive” (→p) / “negative”
(→n) reduction rules that allow processes to interact asynchronously via the
queue, that is, positive process actions (corresponding to positive types) are non-
blocking. For example, the rule [⊗] for send appends a session closure to the tail of
the queue (rhs) and the rule for receive pops a session closure from the head of the
queue (lhs). Notice that positive rules are enabled only if the relevant endpoint
is in write mode (x), and negative rules are enabled only if the relevant endpoint
is in read mode (y). In [O] above the target cuts endpoint polarities depends
on the types of the composed processes. To uniformly express the appropriate
marking of endpoint polarities we define some convenient abbreviations:
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cut {Q |z [q1] x| fwd x y |y [q2] w| P} →B cut {Q |z [q2@q1] w| P} [fwdp]

cut {close x |x [q] y| Q} →B cut {0 |x [q@✓] y| Q} [1]

cut {0 |x [✓] y| wait y;P} →B P [⊥]

cut {send x(z.P );Q |x [q] y| R} →B cut {Q |x [q@clos(z, P )]| y| R} [⊗]

cut {Q |x [clos(z, P )@q] y| recv y(w);R} →B

cut {Q |x [q] y| cut {P |z [nil] w| R}p}p [O]

cut {#l x;P |x [q] y| R} →B cut {Q |x [q@#l]| y| R} [⊕]

cut {Q |x [l@q] y| case y {|#ℓ ∈ L:Pℓ} } →B cut {Q |x [q] y| P#l}p [N]

cut {!x(z);P |x [q] y| Q} →B cut {0 |x [q@clos!(z, P )]| y| Q} [!]

cut {0 |x [clos!(y, P )] y| ?y;Q} →B cut! {y.P |!x| Q} [?]

Fig. 8: Reduction P →B Q.

Definition 4.1 (Setting polarities).

cut {Q |a : A[nil]b : B| P}p ≜ if +A then cut {Q |a : A[nil]b : B| P}
else cut {Q |a : A[nil]b : B| P}

cut {Q |a : A[q]b : B| P}p ≜ cut {Q |a : A[q]b : B| P} (q ̸= nil)

The following definition then formalizes the intuition given above about how
to encode processes of CLL into processes of CLLB.

Definition 4.2 (Embedding). Let P ⊢ ∆;Γ . P † is the B process such that

(cut {P |x : A| Q})† ≜ cut {P † |x : A [nil] y : A| ({y/x}Q)†}p

homomorphically defined in the remaining constructs. Clearly P † ⊢B ∆;Γ .

4.1 Preservation and Progress for CLLB

In this section, we prove basic safety properties of CLLB: Preservation (Theo-
rem 4.1) and Progress (Theorem 4.2). To reason about type derivations involving
buffered cuts, we formulate some auxiliary inversion principles that allow us, by
aggregating sequences of application of [TCut-∗] rules of CLLB, to talk in a uni-
form way about typing of values in queues and typing of processes connected by
queues. To assert typing of queue values c we use judgments the form Γ ;∆ ⊢ c:E,
where E is a either a type or a one hole type context, defined by

E ::= □ | T | T O E | Nℓ∈L Eℓ

where in Nℓ∈LEℓ only branch type E#l for some selected label #l ∈ L is a one
hole context (to plug the continuation type); only the branch chosen by the
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selected label in a queue is relevant to type next queue values. We identify the
selected branch in the type by tagging it with the corresponding label #l thus
Nℓ∈LEℓ[#l]. We then introduce the following typing rules for queue values.

Definition 4.3 (Typing of Queue Values).

Γ ;⊢val ✓ : ⊥
P ⊢B ∆, z : T ;Γ

Γ ;∆ ⊢val clos(z, P ) : T O E

Nℓ∈LEℓ[#l]

Γ ;∆ ⊢val #l : Nℓ∈LEℓ

P ⊢B z : A;Γ

Γ ;⊢val clos!(z, P ) :?A

Given a sequence of k one hole queue value types Ei and a type A, we denote by
Ek;A the type E1[E2[...Ek[A]]]. Queue value types allow us to talk in a uniform
way about the type a receiver processes compatible with the types of enqueued
values, as characterized by the following Lemma 4.1 and Lemma 4.2.

Lemma 4.1 (Non-full). For P ̸= 0 the rule below is admissible and invertible:

P ⊢B ∆P , x:A;Γ Q ⊢B ∆Q, y:B;Γ q = ck B = Ek;A Γ ;∆i ⊢ ci:Ei −B

cut {P |x:A [q] y:B| Q} ⊢B ∆P , ∆Q, ∆1, ...,∆k;Γ

Notice that a session type, as defined by a CLL proposition, may terminate
in either 1, ⊥ or an exponential type !A/?A. We then also have

Lemma 4.2 (Full). The proof rules below are admissible:

Q ⊢B ∆Q, y : B;Γ Γ ;∆i ⊢ ci : Ei B = Ek;⊥ ck = ✓ −B

cut {0 |x : ∅ [ck] y : B| Q} ⊢B ∆Q, ∆1, . . . ,∆k;Γ

Q ⊢B ∆Q, y:B;Γ Γ ;∆i ⊢ ci:Ei B = Ek−1;C Γ ⊢ ck = clos!(z,R):C −B

cut {0 |x : ∅ [ck] y : B| Q} ⊢B ∆Q, ∆1, . . . ,∆k, Γ

Moreover, one of them must apply for inverting the judgment in the conclusion.

Theorem 4.1 (Preservation). Let P ⊢B ∆;Γ .

(1) If P ≡B Q, then Q ⊢B ∆;Γ . (2) If P →B Q, then Q ⊢B ∆;Γ .

A process P is live if and only if P = C[Q], for some static context C (the hole
lies within the scope of static constructs mix, cut) and Q is an action process.
We first show that a live process either reduces or offers an interaction on a
free name. The observability predicate defined in Fig. 9 (cf. [63]) characterises
interactions of a process with the environment.

Lemma 4.3 (Liveness). Let P ⊢B ∆;Γ be live. Either P ↓x or P →B.

Theorem 4.2 (Progress). Let P ⊢ ∅; ∅ be a live process. Then, P →B.
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[fwd]
fwd x y ↓x

s(A) = x
[A]

A ↓x

P ≡ Q Q ↓x
[≡]

P ↓x

P ↓x
[mix]

(P || Q) ↓x
P ↓x x ̸= y

[cut]
(P |y[q]x| Q) ↓x

Q ↓x x ̸= y
[cut!]

(z.P |!y| Q) ↓x

Fig. 9: Observability Predicate P ↓x.

4.2 Correspondence between CLL and CLLB

In this section we establish the correspondence between reduction in CLL and
CLLB, proving that the two languages simulate each other in a tight sense.
Intuitively, the correspondence shows that CLLB allows some positive actions to
be buffered ahead of reception, while in CLL a single positive action synchronises
with the corresponding dual in one step, or a forward reduction takes place.

We write a reduction P→BQ as P→Bp Q if the reduced action is positive,
P→Bn Q if the reduced action is negative (we consider [call] negative), P→Ba Q
if the reduced action is a forwarder, and P→Bap Q if the reduced action is
positive or a forwarder. We also write P →Br Q for positive action followed by
a matching negative action on the same cut with an initially empty queue.

Lemma 4.4. The following commutations of reductions hold.

1. Let P1→Bp S→Bn P2. Either P1 →Br P2, or P1→Bn S′→Bp P2 for some S′.
2. Let P1→Ba S→Bn P2. Then P1→Bn S′→Ba P2 for some S′.
3. If P1→Bap S→Bn P2, either P1 →Br P2, or P1→Bn S′→Bap P2 for some S′.
4. Let P1→Bap N

ϵ⇒Ba S →Br P2. Either P1
ϵ→Ba N or P1 →Br S′→Bap P2 for

some S′.

Lemma 4.5 (Simulation). Let P ⊢ ∅; ∅. If P → Q then P † ⇒B Q†.

Proof. Each cut reduction of CLL is either simulated by two reduction steps of
B in sequence or by a [fwd] reduction.

The following lemma identifies that in CLLB, a sequence of positive actions
(or forwards) followed by a negative action can always be commuted either by
pulling out the negative action first, followed by the sequence of positive actions
and forwards; having the negative action follow a positive action on the same
channel and then performing the remaining actions; or by first performing a
sequence of forward actions, the output and input on the relevant session and
then the remaining actions.

Lemma 4.6 (Simulation). Let P ⊢B ∅; ∅. If P⇒Bap →Bn Q then (1) P→Bn R
and R⇒Bap Q for some R, or; (2) P →Br R and R⇒Bap Q for some R, or; (3)

P
ϵ⇒Ba →Br R and R⇒Bap Q for some R.

Theorem 4.3 (Operational correspondence CLL-CLLB). Let P ⊢ ∅; ∅.

1. If P ⇒ R then P † ⇒B R†.
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2. If P †(⇒Bap →Bn )∗Q then there is R such that P ⇒ R and R†⇒Bap Q.

Due to the progress property for CLLB (Theorem 4.2) and because queues
are bounded by the size of positive/negative sections in types, after a sequence of
positive or forwarder reductions a negative reduction consuming a queue value
must occur. Theorem 4.3(2) states that every reduction sequence in CLLB is
simulated by a reduction sequence in CLL up to some anticipated forwarding
and buffering of positive actions. Our results imply that every reduction path in
CLLB maps to a reduction path in CLL in which every negative reduction step
in the former is mapped, in order, to a cut reduction step in the latter.

5 Correctness of the core SAM

We now prove that every execution trace of the core SAM defined in Fig. 5
represents a correct process reduction sequence CLLB (and therefore of CLL, in
the light of Theorem 4.3), first for the language without exponentials and mix,
which will be treated in Section 6. In what follows, we annotate endpoints of
session records with their types (e.g. as x:A⟨q, P ⟩y:B), these annotations are
not needed to guide the operation of the SAM, but convenient for the proofs;
they will be omitted when not relevant or are obvious from the context. We first
define a simple encoding of well-typed CLLB processes to SAM states.

Definition 5.1 (Encode). Given P ⊢B ∅ we define enc(P ) = C as enc(P, ∅) cut∗Z⇒
C where enc(P,H)

cut∗Z⇒ C is defined by the rules

enc(P (x), H[x:A⟨q,Q⟩y:B])
cut∗Z⇒ C

enc(cut {P |x:A[q] y:B]| Q}, H)
cut∗Z⇒ C

(A+ )

enc(Q(y), H[x:A⟨q, P ⟩y:B])
cut∗Z⇒ C

enc(cut {P |x:A [q] y:B]| Q}, H)
cut∗Z⇒ C

(A− or P = 0 )

enc(A, H)
cut∗Z⇒ (A, H) (A ∈ A)

Notice that enc(P ) maximally applies the SAM execution rule for cut to (P, ∅)
until an action is reached. Clearly, for any P ⊢B ∅, if enc(P ) = C then P Z⇒∗ C.
Also, if all cuts in a state C have empty queues then there is a process Q of CLL
such that enc(Q†) = C. We then have

Theorem 5.1 (Soundness wrt CLLB). Let P ⊢B ∅.
If enc(P ) Z⇒ D

cut∗Z⇒ C then there is Q such that P → ∪ ≡ Q and C = enc(Q).

We can then combine soundness with the operational correspondence between
CLL and CLLB (Theorem 4.3) to obtain an overall soundness result for the SAM
with respect to CLL:

Theorem 5.2 (Soundness wrt CLL). Let P ⊢B ∅.
1. If enc(P )

∗Z⇒cut∗Z⇒ C there is Q such that P ⇒ ∪ ≡ Q and C = enc(Q).

2. Let P ⊢ ∅. If enc(P †)
∗Z⇒ enc(Q†) then P ⇒ Q.
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In Definition 5.2 we identify readiness, the fundamental invariant property of
SAM states, key to prove progress of its execution strategy. Readiness means that
any running process holding an endpoint of negative type, and thus attempting to
execute a negative action (e.g., a receive or offer action) on it, will always find an
appropriate value (resp. a closure or a label) to be read in the appropriate session
queue. No busy waiting or context switching will be necessary since the sequential
execution semantics of the SAM enforces that all actions corresponding to a
positive section of a session type have always been enqueued by the “caller”
process before the ”callee” takes over. As discussed in Section 3 it might not seem
obvious whether all such input endpoints, (including endpoints moved around
via send / receive interactions), always refer to non-empty queues.

Readiness must also be maintained by processes suspended in session records,
even if a suspended process waiting on a read endpoint will not necessarily have
the corresponding queue already populated. Intuitively, a process P is (H,N)-
ready if all its “reads” in the input channels (except those in N) will be matched
by values already stored in the corresponding session queue.

Definition 5.2 (Ready). Process P is H,N -ready if for all y ∈ fn(P ) \ N
and x : A⟨q,R⟩y ∈ H then A is negative or void. We abbreviate H, ∅-ready by
H-ready. Heap H is ready if, for all x⟨q,R⟩y ∈ H, the following conditions hold:

1. if R(y) then R is H, {y}-ready
2. if R(x) then R is H-ready
3. if clos(z : −, R) ∈ q, R is H, {z}-ready.
4. if clos(z : +, R) ∈ q, R is H-ready.

State C = (P,H) is ready if H is ready and P is H-ready.

Lemma 5.1 (Readiness). Let P ⊢ ∅ and (P, ∅) ∗Z⇒ S. Then S is ready.

Theorem 5.3 (Progress). Let P ⊢B ∅ and P live. Then enc(P ) Z⇒ S′.

6 The SAM for full CLL

In this section, we complete our initial presentation of the SAM, in particular, we
introduce support for the exponentials, allowing the machine to compute with
non-linear values, and a selective concurrency semantics. We have delayed the
introduction of an environment structure for the SAM, to make the presentation
easier to follow. However, this was done at the expense of a more abstract formal-
isation of the operational semantics, making use of α-conversion, and overloading
language syntax names as heap references for allocated session records.

The SAM actually relies on environment-based implementation of name man-
agement, presented in Fig. 6. A SAM state is then a triple (E , P,H) where
E is an environment that maps each free name of the code P into either a
closure or a heap record endpoint. These heap references are freshly allocated
and unique, thus avoiding any clashes and enforcing proper static scoping. Clo-
sures, representing suspended linear (clos(z, E , P )) and exponential behaviour
(clos!(z, E , P )), pair the code in its environment, and we expect the following
structural safety conditions for name biding in configurations to hold.
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S ::= (E , P,H) State

H ::= Ref → SessionRec Heap

SessionRec ::= x⟨q, E , P ⟩y

q ::= nil | Val@q Queue

Val ::= ✓ Close token
| #l Choice label
| clos(x, E , P ) Linear Closure
| clos!(x, E , P ) Exponential Closure

E ,G,F ::= Name → (Ref ∪Val) Environment

Fig. 10: The SAM

Definition 6.1 (Closure).
A process P is (E , N)-closed if fn(P )\N ⊆ dom(E), and E-closed if (E , ∅)-closed.
Environment E is H-closed if for all x ∈ dom(E) if E(x) is a reference then
x ∈ H, if E(x) = clos!(z,F , R) then F is H-closed and R is (F , {z})-closed.
Heap H is closed if for all x⟨q,G, Q⟩y ∈ H, G is H-closed, Q is G-closed, and
for all clos(z,F , R) ∈ q and clos!(z,F , R) ∈ q, F is H closed and R is (F , {z})-
closed. State (E , P,H) is closed if H is closed, E is H-closed, and P is E-closed.

In Figure 6 we present the environment-based execution rules for the SAM. All
rules except those for exponentials have already been essentially presented in
Fig. 5 and discussed in previous sections. The only changes to those rules are
due to the presence of environments, which at all times record the bindings for
free names in the code. Overall, we have

Lemma 6.1. Let P ⊢B ∅; ∅. For all S such that (P, ∅, ∅) ∗Z⇒ S, S is closed.

We discuss the SAM rules for the exponentials. Values of exponential type are
represented by exponential closures clos!(z,F , R). Recall that a session type may
terminate in either type 1, type ⊥ or in an exponential type !A/?A (cf. 4.2).
So, the (positive) execution rule [S!] is similar to rule [S1]: it enqueues the clo-
sure representing the replicated process, and switches context, since the session
terminates (cf. [!] Fig. 8). The execution rule [S?] is similar to rule [SO]: it pops
a closure from the queue (which, in this case, always becomes empty), and in-
stead of using it immediately, adds it to the environment to become persistently
available to client code (cf. reduction rule [S?] Fig. 8). Any such closure rep-
resenting a replicated process may be called by client code with transition rule
[Scall], which essentially creates a new linear session composed by cut with the
client code, similarly to [SO]. Rule [SCall] operates with some similarity to rule
[SO]: instead of activating a linear closure popped from the queue, it activate an
exponential closure fetched from the environment.

We extend the enc map to the exponential cut and environment states
(E , P,H) by adapting Definition 5.1, and adding the clause:
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(E , cut {P |x : A [nil] y : B| Q}, H) Z⇒ (G, P,H[a⟨q,F , Q⟩b]) [SCut]
a, b = new,G = E{a/x},F = E{b/y}

(E , close x,H[a⟨q,F , P ⟩b]) Z⇒ (F , P,H[a⟨q@✓, ∅, 0⟩b]) [S1]
a = E(x)

(E , fwd x y,H[c⟨q1,G, Q⟩a][b⟨q2,F , P ⟩d]) Z⇒ (F , P,H[c⟨q2@q1,G, Q⟩d]) [Sfwd]
a = E(x), b = E(y)

(E ,wait y;P,H[a⟨✓, ∅, 0⟩b]) Z⇒ (E , P,H) [S⊥]
b = E(y)

(E ,A−(x), H[a⟨q,G, Q⟩b]) Z⇒ (G, Q,H[a
〈
q, E ,A−(x)

〉
b]) [S−]

a = E(x)

(E , send x(z.R);Q,H[a⟨q, P ⟩b]) Z⇒
(E , Q,H[a⟨q@clos(z, E , R), P ⟩b]) [S⊗]

a = E(x)

(E , recv y(w:+);Q,H[a⟨clos(z,F , R)@q,G, P ⟩b]) Z⇒
(E ′, Q,H[e⟨nil,F ′, R⟩f ][a⟨q⟩sb]) [SO+]

e, f = new, b = E(y), E ′ = E{e/w},F ′ = F{f/z}

(E , recv y(w:−);Q,H[a⟨clos(z,F , R)@q,G, P ⟩b]) Z⇒
(F ′, R,H[e⟨nil, E ′, Q⟩f ][a⟨q⟩sb]) [SO−]

e, f = new, b = E(y),F ′ = F{e/z}, E ′ = E{f/w}

(E ,#l x;Q,H[a⟨q,G, P ⟩b]) Z⇒ (E , Q,H[a⟨q@#l,G, P ⟩b]) [S⊕]
a = E(x)

(E , case y {|#ℓ ∈ L:Qℓ}, H[a⟨#l@q,G, P ⟩b]) Z⇒ (E , Q#l, H[a⟨q⟩sb]) [SN]
b = E(y)

(E , !x(z);Q,H[a⟨q,G, P ⟩b]) Z⇒ (G, P,H[a⟨q@clos(z, E , Q), ∅, 0⟩b]) [S!]
a = E(x)

(E , ?y;Q,H[a⟨clos(z,F , R), ∅, 0⟩b]) Z⇒ (E ′, Q,H) [S?]
b = E(y), E ′ = E{clos(z,F , R)/y}

(E , call y(w:+);Q,H) Z⇒ (E ′, Q,H[a⟨nil,F ′, R⟩b]) [Scall+]
a, b = new, E ′ = E{a/w},F ′ = F{b/z}
clos(z,F , R) = E(y)

(E , call y(w:−);Q,H) Z⇒ (F ′, R,H[a⟨nil, E ′, Q⟩b]) [Scall-]
a, b = new, E ′ = E{b/w},F ′ = F{a/z}
clos(z,F , R) = E(y)

a⟨q⟩sb ≜ if (q = nil) then b⟨q,G, P ⟩a else a⟨q,G, P ⟩b

Fig. 11: SAM Transition Rules for the complete CLL
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enc(E{clos!(y, E , R)/x}, P ), H)
cut∗Z⇒ C

enc(E , cut! {y.R |!x| P}, H)
cut∗Z⇒ C

We now update our meta-theoretical results for the complete SAM.

Theorem 6.1 (Soundness). Let P ⊢B ∅; ∅.
If enc(P ) Z⇒ D

cut∗Z⇒ C then there is Q such that P → ∪ ≡ Q and C = enc(Q).

Theorem 6.2 (Progress). Let P ⊢B ∅; ∅ and P live. Then enc(P ) Z⇒ C.

6.1 Concurrent Semantics of Cut and Mix

Intuitively, the execution of mix P || Q consists in the parallel execution of (non-
interfering) processes P and Q. We may execute P || Q by sequentialising P and
Q in some arbirary way, and this actually may be useful in some cases.

However, much more interesting is the accommodation in the SAM of inter-
fering concurrency, as required to support full-fledged concurrent languages for
session-based programming. First, we evolve the SAM from single threaded to
multithreaded, where states now expose a multiset of processes Pi ready for exe-
cution by the basic SAM sequential transitions: ({P1, P2, . . . , Pn}, H) and intro-
duce an annotated variant pcut of the cut. It has the same CLL/CLLB semantics,
but to be implemented as a fork construct where P and Q spawn concurrently,
their interaction mediated by an atomic concurrent session record x ⟨q⟩ y. The
type system ensuring that concurrent channels may be forwarded only to con-
current channels. We extend the SAM with transition rule for multisets:

(P,H) Z⇒ (P ′, H ′)

(P ⊎ T,H) Z⇒ (P ′ ⊎ T,H ′)
[Srun]

(pcut {P |x:A [q] y:B| Q} ⊎ T,H) Z⇒ ({P,Q} ⊎ T}, H[x ⟨nil⟩ y]) [SCutp]

((P || Q) ⊎ T,H) Z⇒ ({P,Q} ⊎ T}, H[x ⟨nil⟩ y]) [SMixp]

Each individual thread executes locally according to the SAM sequential transi-
tions presented before, until an action on a concurrent queue is reached. Concur-
rent process actions on concurrent queues are atomic, and defined as expected.
Positive actions always progress by pushing a value into the queue, while neg-
ative actions will either pop off a value from the queue or block, waiting for a
value to become available. We illustrate with the rules for 1,⊥ typed actions.

(close x,H[x ⟨q⟩ y]) Z⇒ (0, H[x ⟨q@✓⟩ y]) [S1c]

(wait y;P,H[x⟨✓, y⟩]) Z⇒ (P,H) [S⊥c]

Notice that, as in the case for wait y;P above, any negative action in the
thread queue is unable to progress if the corresponding queue is empty. It should
be clear how to define transition rules for all other pairs of dual actions. Given
an appropriate encoding encc of annotated CLLB processes in concurrent SAM
states, and as consequence of typing and leveraging the proof scheme for progress
in CLLB (Theorem 4.2), we have:

Theorem 6.3 (Soundness-c). Let P ⊢B ∅; ∅.
If encc(P ) Z⇒ D

cut∗Z⇒ C then there is Q such that P → ∪ ≡ Q and C = encc(Q).
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Theorem 6.4 (Progress-c). Let P ⊢B ∅; ∅ and P live. Then encc(P ) Z⇒ C.

The extended SAM executes concurrent session programs, consisting in an
arbitrary number of concurrent threads. Each thread deterministically executes
sequential code, but can at any moment spawn new concurrent threads. The
whole model is expressed in the common language of (classical) linear logic,
statically ensuring safety, proper resource usage, termination, and deadlock ab-
sence by static typing.

7 Concluding Remarks and Related Work

We introduce the Session Abstract Machine, or SAM, an abstract machine for
executing session processes typed by (classical) linear logic CLL, deriving a deter-
ministic, sequential evaluation strategy, where exactly one process is executing
at any given point in time. In the SAM, session channels are implemented as
single queues with a write and a read endpoint, which are written to, and read
by executing processes. Positive actions are non-blocking, giving rise to a degree
of asynchrony. However, processes in a session synchronise at polarity inversions,
where they alternate execution, according to a fixed co-routining strategy. De-
spite its specific strategy, the SAM semantics is sound wrt CLL and satisfies
the correctness properties of logic-based session type systems. We also present a
conservative concurrent extension of the SAM, allowing the degrees of concur-
rency to be modularly expressed at a fine grain, ranging from fully sequential
to fully concurrent execution. Indeed, a practical concern with the SAM design
lies in providing a principled foundation for an execution environment for multi-
paradigm languages, combining concurrent, imperative and functional program-
ming. The overall SAM design as presented here may be uniformly extended
to cover any other polarised language constructs that conservatively extend the
PaT paradigm, such as polymorphism, affine types, recursive and co-recursive
types, and shared state [56, 61]. We have implemented a SAM-based version [17]
of an open-source implementation of CLL [62].

A machine model provides evidence of the algorithmic feasibility of a pro-
gramming language abstract semantics, and illuminates its operational meaning
from certain concrete semantic perspective. Since the seminal work of Landin
on the SECD [43], several machines to support the execution of programs for a
given programming language have been proposed. The SAM is then proposed
herein in this same spirit of Cousineau, Curien and Mauny’s Categorical Ab-
stract Machine for the call-by-value λ-calculus [21], Lafont’s Linear Abstract
Machine for the linear λ-calculus [41], and Krivine’s Machine for the call-by-
name λ-calculus [40] ; these works explored Curry-Howard correspondences to
propose provably correct solutions. In [22], Danvy developed a deconstruction
of the SECD based on a sequence of program transformations. The SAM is also
derived from Curry-Howard correspondences for linear logic CLL [15, 72], and we
also rely on program conversions, via the intermediate buffered language CLLB,
as a key proof technique. We believe that the SAM is the first proposal of its
kind to tackle the challenges of a process language, while building on several
deep properties of its type structure towards a principled design. Among those,
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focusing [4] and polarisation [44, 32, 56] played an important role to achieve
a deterministic sequential reduction strategy for session-based programming,
perhaps our main initial motivation. That allows the SAM to naturally and effi-
ciently integrate the execution of sequential and concurrent session behaviours,
and suggests effective compilation schemes for mainstream virtual machines or
compiler frameworks.

The adoption of session and linear types is clearly increasing in research
(e.g., [26, 3, 58, 24, 74, 66, 56, 61]) and general purpose languages (e.g., Haskell [8,
38], Rust [42, 20] Ocaml [35, 52], F# [51], Move [9], among many others), which
either require sophisticated encodings of linear typing via type-level computa-
tion or forego of some static correctness properties for usability purposes. Such
developments typically have as a main focus the realization of the session typ-
ing discipline (or of a particular refinement of such typing), with the underlying
concurrent execution model often offloaded to existing language infrastructure.

We highlight the work [19], which studies the relationship between syn-
chronous session types and game semantics, which are fundamentally asyn-
chronous. Their work proposes an encoding of synchronous strategies into asyn-
chronous strategies by so-called call-return protocols. While their focus differs
significantly from ours, the encoding via asynchrony is reminiscent of our own.

We further note the work [50] which develops a polarized variant of the λµµ̃
suitable for sequent calculi like that of linear logic. While we draw upon similar
inspirations in the design of the SAM, there are several key distinctions: the
work [50] presents λµ-calculi featuring values and substitution of terms for vari-
ables (potentially deep within the term structure). Our system, being based on
processes calculus, features neither -– there is no term representing the outcome
of a computation, since computation is the interactive behavior of processes (cf.
game semantics); nor does computation rely on substitution in the same sense.
Another significant distinction is that our work materializes a heap-based ab-
stract machine rather than a stack-based machine. Finally, our type and term
structure is not itself polarized. Instead, we draw inspiration from focusing in-
sofar as we extract from focusing the insights that drive execution in the SAM.

In future work, we plan to study the semantics of the SAM in terms of games
(and categories), along the lines of [19, 21, 41]. We also plan to investigate the
ways in which the evaluation strategy of the SAM can be leveraged to develop
efficient compilation of fine-grained session-based programming, and its relation-
ship with effect handlers, coroutines and delimited continuations. Linearity plays
a key role in programming languages and environments for smart contracts in
distributed ledgers [24, 64] manipulating linear resources (assets); it would be in-
teresting to investigate how linear abstract machines like the SAM would provide
a basis for certifying resource sensitive computing infrastructures [75, 9].
Data Availability. An implementation of the SAM as a typechecker and inter-
preter is publicly available [17]. Additional definitions and proofs can be found
in the companion extended technical report [16].
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