
Detection of Uncaught Exceptions in Functional
Programs by Abstract Interpretation⋆

Inria, Campus universitaire de Beaulieu, Rennes, France
pierre.lermusiaux@inria.fr benoit.montagu@inria.fr

Abstract. Exception handling is a key feature in modern programming
languages. Exceptions can be used to deal with errors, or as a means
to control the flow of execution of a program. Since they might unex-
pectedly terminate a program, unhandled exceptions are a serious safety
concern. We propose a static analysis to detect uncaught exceptions in
functional programs, that is defined as an abstract interpreter. It com-
putes a description of the values potentially returned by a program using
a novel abstract domain, that can express inductively defined sets of
values. Simultaneously, the analysis infers the possibly raised exceptions,
by computing in the abstract exception monad. This abstract interpreter
has been implemented as an effective static analyser for a large subset of
OCaml programs, that supports mutable data types, the OCaml module
system, and dynamically extensible data types such as the exception type.
The analyser has been evaluated on several hundreds of OCaml programs.

Keywords: Static Analysis · Exceptions · Higher-Order Programs ·
Abstract Interpretation · Abstract Domain for Trees

1 Introduction

Programs that run in critical environments need to comply with strong safety
guarantees. The minimal guarantee one expects for critical software is the absence
of runtime failures. Sound static analyses can provide such guarantees statically,
for every possible execution of a program, and in a fully automatic manner.

The static typing discipline found in the ML family of languages is such a
static analysis technique, that brought strong safety guarantees to programs at a
very low cost: well-typed programs cannot “go wrong” [48]. This soundness theorem
for well-typed ML programs, however, does not preclude programs from abruptly
ending with uncaught exceptions. Several analyses for ML-like languages have
been developed to detect such undesirable behaviours, that were either leveraging
type and effect systems [38,54], or that were based on variants of control-flow
analyses or set constraints [68,67,14,15,66]. The recent success of algebraic effects
and their introduction in popular languages such as OCaml [37] has renewed the
interest in the static detection of uncaught exceptions and effects.
⋆ This work was funded by the Salto grant, supported by Nomadic Labs and Inria.

c© The Author(s) 2024
S. Weirich (Ed.): ESOP 2024, LNCS 14577, pp. 391–420, 2024.
https://doi.org/10.1007/978-3-031-57267-8_15

,

Pierre Lermusiaux and Benoît Montagu(B)

https://orcid.org/0009-0002-8395-3968
https://orcid.org/0009-0005-6153-6276
https://salto.gitlabpages.inria.fr/
https://www.nomadic-labs.com/
https://www.inria.fr/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57267-8_15&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-57267-8_15

Analysing uncaught exceptions in ML is a difficult problem, because data
flow and control flow are interdependent. This is not only due to the first class
nature of functions, but also due to the first class nature of exceptions themselves,
e.g., they can be taken as parameters, recorded in data structures or in mutable
references. Furthermore, exceptions can carry any value as argument—including
functions—and new exceptions can be dynamically generated at runtime.

In this paper, we propose a static analysis for a higher-order language, in
which exceptions are first-class values. The analysis is based on the abstract
interpretation framework [9]. It is a forward value analysis that infers which values
any program point can compute, and which exceptions they might raise. For this
purpose, we introduce a novel abstract domain that can represent recursively
defined sets of values. We define a widening operator for this abstract domain,
that is responsible for finding recursive generalisations of solutions.

Our analysis leverages this abstract domain to represent both possible values
and exceptions, thanks to the abstract exception monad. This monad—that can
also be used as an abstract domain—is an abstraction of the exception monad,
that collects all values and exceptions.

We define our analysis as a big-step monadic interpreter, written in the open
recursive style, that was emphasised in the “Abstracting Definitional Interpreter”
approach [11]. Then, we obtain an effective analyser by applying a generic,
dynamic fixpoint solver [6,63,59,24,12,30]. We prove that our analysis is sound,
under the soundness assumption of the fixpoint solver.

We extend the analysis to handle a large subset of the OCaml language. In
particular, it supports the dynamic creation of exceptions, mutable state, modules
and functors. The analysis is so far limited to sequential programs that do not
perform system calls, do not use the Gc or Obj modules, and do not employ
recursive modules, general recursive definitions of values, objects, classes, arrays,
or floats. We implemented an OCaml prototype for this analyser. It reports the
possibly thrown exceptions and an over-approximation of the data they carry,
along with an abstraction of the call trace that led to the program point where
the exception was raised. We discuss some implementation choices, and evaluate
the precision and performance of our analyser on 290 programs, that include
examples from the literature and from the OCaml compiler’s test suite.

2 Overview

Let us consider the classic example of the factorial function, as written below in
a continuation passing style.

let rec fact_cont n i k =
if i >= n then k i else
fact_cont n (i + 1) (fun x -> k (x * i))

let fact n = fact_cont n 1 (fun x -> x)
let result = fact 5

The fact_cont function recursively calls itself with increasing values of its
parameter i, until the value n is reached.

392 P. Lermusiaux, B. Montagu

We are interested in finding which values (and exceptions) this program might
return. To answer this question, we first need to find the possible continuations
the function fact_cont can be called with, and, importantly, we need an abstract
domain in which we can express this set, or an over-approximation thereof.

With the abstract domain that we introduce in §4, we can express such a set
as the following abstract value:

µα. {funs : {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ {ints : [1,+∞]}; k 7→ α}; }}

This abstract value represents a recursively-defined set—as indicated by the µ
constructor—that is locally named α. This set is composed of function closures,
that can be either the identity function, or the function λx. k (x ∗ i), considered
in an environment where the variable i is bound to an integer that is greater or
equal to 1, and where the variable k is recursively bound to the local variable α,
i.e., to a value of the set we are defining.

Our abstract domain can also express structural invariants on data, such as
the one for red-black trees [52], that forbids red nodes from having red children:

µα.

constructs :

E : ();

R :

{constructs : {E : (), B : (α, {ints :⊤}, α)}};
{ints :⊤},
{constructs : {E : (), B : (α, {ints :⊤}, α)}}

 ;

B : (α, {ints :⊤}, α)

Our abstract domain bears a strong similarity with the theory of equi-recursive

types [56], in the sense that recursion is a core aspect of our definition. However,
it differs from recursive types, as function types are absent: sets of closures are
used instead. Moreover, it is parameterised by a non-relational abstract domain
used to represent integers values—which is not possible with simple type systems.

We leverage our abstract domain and define a static analysis for a call-by-value
λ-calculus with pattern matching, exception handling, and first-class exceptions
(§3). In this language, the order of evaluation is made explicit by let bindings,
and pattern matching is exhaustive and non-ambiguous [8]. These requirements
drastically simplify the semantics of programs and their analysis. The analysis is
defined as an abstract interpreter that performs a forward value analysis (§5).

Based on this small abstract interpreter, we sketch (§6) several extensions
that we implemented to obtain a static analyser for a subset of OCaml programs.
The implementation uses an intermediate language that is close to the one of §3,
into which we translated the OCaml typed abstract syntax tree. We evaluated
the precision and performance of our analyser on 290 OCaml programs, written
in a variety of styles (direct, CPS, monadic, etc.). We discuss these experimental
results (§7), cover related work (§8), and finish with conclusive remarks (§9).

3 A λ-calculus With Exceptions

We introduce as an intermediate language a λ-calculus with pattern matching
and exception handling. Its syntax resembles the monadic normal form, where
the order of evaluation is made explicit with let bindings.

Detection of Uncaught Exceptions by Abstract Interpretation 393

Definition 1. Given C a set of constructor symbols, we give the following in-
ductive definition of patterns p, q, and expressions t, u, r:

p, q ∈ P ::= x | n | c(p1, . . . , pk) | p1 + p2 | p \ q
t, u, r ∈ T ::= x | n | x1 op x2 | c(x1, . . . , xk)

| µf. λx. t | f y | let x = t in u | raise x
| match t with p1 ⇒ u1 | · · · | pn ⇒ un

| dispatch t with val x⇒ u | exn y ⇒ r

where n is a constant integer, c is a constructor of C, op is a binary operation
on integers, and where the pattern q cannot contain any complement p1 \ p2.

We consider a pattern syntax and formalism inspired from [8]. The pattern
disjunction p+q matches any value matched by p or q, and the pattern complement
p \ q matches any value that is matched by p but not by q.

As in the OCaml typed AST, variables carry a type. We may write xτ to
denote that the variable x is of type τ . Patterns are linear, i.e., sub-patterns of
constructor patterns cannot share variables. All functions are recursive by default.
If f does not occur in the expression t, then we write λx. t instead of µf. λx. t.

The values of this language are integer constants, constructors applied to
values, and function closures, that contain an environment of values:

v ∈ V ::= n | c(v1, . . . , vk) | ⟨E,µf. λx. t⟩ where domE = fv(µf. λx. t)
E ∈ E ::= [] | E, x 7→v

Patterns induce a matching relation over values, that is described, with regard
to a given environment E, by recursion on patterns:

x ≺≺E v ⇐⇒ E(x) = v
c(p1, . . . , pn) ≺≺E c(v1, . . . , vn) ⇐⇒

∧n
i=1 pi ≺≺E vi

p+ q ≺≺E v ⇐⇒ p≺≺E v ∨ q ≺≺E v
p \ q ≺≺E v ⇐⇒ p≺≺E v ∧ q ⊀≺ v

We say that a pattern p matches a value v, denoted p ≺≺ v, iff there exists an
environment E such that p≺≺E v. In such case, we write E⟨p≺≺ v⟩ the smallest
environment such that p≺≺E⟨p≺≺v⟩ v.

Thanks to this pattern-matching formalism, we can focus on the class of
programs where pattern matching is exhaustive and non-ambiguous, i.e.: In a
term match t with p1 ⇒ u1 | · · · | pn ⇒ un where t : τ , we require that for any
value v : τ , there exists a unique 1 ≤ i ≤ n such that pi≺≺v. The work presented
in [8] shows how to disambiguate patterns, i.e., how to make any pattern match
non-ambiguous. We restrict ourselves to non-ambiguous patterns, because it
simplifies both the dynamic semantics and the analysis of programs.

We present in Figure 1 a call-by-value big-step semantics for our language.
We write t ⇓val v to denote that the expression term t reduces to the value v, and
we write t ⇓exn v to denote that the reduction of t raises an exception evaluated
as v. In this language, any value can be raised as an exception. The evaluation
rules are mostly standard. We briefly explain the rules for match and dispatch.

394 P. Lermusiaux, B. Montagu

E ⊢ x ⇓val E(x)
Var

E ⊢ n ⇓val n
Int

E ⊢ x1 op x2 ⇓val E(x1) JopK E(x2)
Op

E ⊢ raise x ⇓exn E(x)
Raise

E ⊢ c(x1, . . . , xk) ⇓val c(E(x1), . . . , E(xk))
Const

E′ = E|fv(µf. λx. t)

E ⊢ µf. λx. t ⇓val ⟨E′, µf. λx. t⟩
Lam

E(y) = ⟨E′, µf. λx. t⟩
E′, f 7→E(y), x 7→E(z) ⊢ t ⇓m v

E ⊢ y z ⇓m v
App

E ⊢ t1 ⇓val v1 E, x 7→v1 ⊢ t2 ⇓m v2

E ⊢ let x = t1 in t2 ⇓m v2
Let

E ⊢ t1 ⇓exn v
E ⊢ let x = t1 in t2 ⇓exn v

LetRaise

E ⊢ t ⇓val v pi ≺≺ v E,E⟨pi ≺≺ v⟩ ⊢ ui ⇓m v′ 1 ≤ i ≤ n

E ⊢ match t with p1 ⇒ u1 | · · · | pn ⇒ un ⇓m v′
Match

E ⊢ t ⇓exn v
E ⊢ match t with p1 ⇒ u1 | · · · | pn ⇒ un ⇓exn v

MatchRaise

E ⊢ t ⇓m v E, xm 7→v ⊢ um ⇓m′ v′

E ⊢ dispatch t with val xval ⇒ uval | exn xexn ⇒ uexn ⇓m′ v′
Dispatch

Fig. 1. Big-step semantics.

The non-ambiguous pattern-matching simplifies the semantics of the term
match t with p1 ⇒ u1 | · · · | pn ⇒ un, as only one pattern can match the value
of t, and thus only one branch is considered during the evaluation.

The rule Dispatch deals with exception handling: the evaluation of the term
dispatch t with val xval ⇒ uval | exn xexn ⇒ uexn first evaluates t. If t reduces to a
value, then the value branch uval is evaluated. Otherwise, if t raises an exception,
the exception branch uexn is evaluated. In both cases, the value or the exception
is added to the environment of the corresponding branch.

4 An Abstract Domain for Regular Sets of Values

In this section, we define an abstract domain that is able to represent inductively
defined sets of values of our programming language. It is parameterised over a
non-relational, numeric abstract domain I, that provides a concretisation function
γI : I → ℘(Z), a test for the abstract inclusion pre-order, and operations for
union, intersection and widening, with the standard soundness conditions. For
instance, the soundness of abstract union is stated: γI(I1) ∪ γI(I2) ⊆ γI(I1 ⊔I I2).

The definition of our abstract domain follows:

Definition 2 (Abstract values).
A ∈ A ::= {ints : I; constructs :C; funs :F} | α | µα.A (Abstract value)
I ∈ I ::= any numeric abstract domain (Abstract integers)
C ::= {c 7→ (A, . . . ,A)} | ⊤ (Abstract constructs)
F ::= {µf. λx. t 7→ E} | ⊤ (Abstract closures)

E ∈ E ::=
{
x 7→ A

}
(Abstract environment)

Detection of Uncaught Exceptions by Abstract Interpretation 395

An abstract value, written A, describes which integers it denotes (in the
field ints), and which values whose head is a constructor it denotes (in the field
constructs), and which function closures it denotes (in the field funs). The integer
values are described by a numeric abstract domain that is taken as parameter.

The constructed values are described by a map whose keys are the possible
head constructors of the values, and whose data are tuples of abstract values,
that denote the possible values for all the arguments of that constructor. The
constructed values might also be described by ⊤, which means that the head
constructor could be any constructor, and the arguments may be any value.

Similarly, the possible function closures are described by a map that associates
possible codes of the function to abstract environments. The environments map
free variables of the corresponding function code to abstract values, denoting the
possible concrete values of these variables. The closures might also be described
by ⊤, to represent any closure made from any function code with any environment.

Finally, we can construct recursive sets of values through the use of variables α,
that are introduced by the µ constructor of fixpoints.

The bottom value is {ints :⊥; constructs : {}; funs : {}}, and the top value is
{ints :⊤; constructs :⊤; funs :⊤}. We may completely omit some of the fields
(ints, constructs or funs) when they are associated with a bottom value.

This informal explanation is formalised in the concretisation function:

Definition 3 (Concretisation). Assume Γ is a finite mapping from vari-
ables to abstract values. The concretisation γΓ : A → ℘(V) is defined by
γΓ {ints : I; constructs :C; funs :F} = γ(I) ∪ γΓ (C) ∪ γΓ (F), where:

γΓ (α) = Γ (α)
γΓ (µα.A) = lfp⊆(λS.γΓ,α:S(A))

γ(I) = γI(I)

γΓ (C) =

{c(v1, . . . , vn) | c ∈ C ∧ ∀1 ≤ i ≤ n, vi ∈ V} if C = ⊤{
c(v1, . . . , vn)

∣∣∣∣∣ (c 7→ (A1, . . . ,An)) ∈ C

∧∀1 ≤ i ≤ n, vi ∈ γΓ (Ai)

}
otherwise

γΓ (F) =

{
{⟨E,µf. λx. t⟩ | E ∈ E ∧ t ∈ T} if F = ⊤
{⟨E,µf. λx. t⟩ | (µf. λx. t 7→ E) ∈ F ∧ E ∈ γΓ (E)} otherwise

γΓ (E) = {E | domE = domE ∧ ∀x ∈ domE,E(x) ∈ γΓ (E(x))}

The definition is justified by the fact that the function λS.γΓ,α:S(A) is mono-
tonic, and thus has a least fixed point, thanks to the Knaster-Tarski theorem.
This is formalised by the following lemma:

Lemma 1. Consider the inclusion order ⊆ on ℘(S), and its pointwise extension
on environments Γ . For any abstract value A, the function λΓ.γΓ (A) is monotonic.

The fact that our abstract values may represent sets of values that might not
all have the same types may seem surprising, since our goal is, ultimately, to
analyse strongly typed programs. The crux of the explanation lies in the fact that
our abstract domain can only represent regular sets of values. If we restricted our

396 P. Lermusiaux, B. Montagu

abstract values so that they represent homogeneously typed values, it would be
difficult to represent sets of values that are induced by a non-regular recursive
type—like the type of finger trees [23]—or by generalised algebraic data types
(GADTs). Indeed, one would need to find an over-approximation of such sets, and
we would often approximate with the ⊤ abstract value. The ability to describe
regular sets of values that may not have all the same type gives us more freedom,
and allows to find more precise approximations. For instance, we can represent
finger trees as a recursive set whose values are either trees or fingers, although
trees and fingers have distinct types. In practice, the ⊤ value is never produced.

We write A1[α← A2] to denote the capture avoiding substitution. We write
γ(A) for γ[](A), i.e., when the environment is empty.

The unwinding of fixpoints preserves the concretisation of abstract values.

Lemma 2 (Unwinding). γ(µα.A) = γ(A[α← µα.A])

To define several operations on abstract values, we restrict them to well-formed
values, using the standard contractiveness property for recursive types [16]:

Definition 4 (Contractiveness). An abstract value A = µβ1. . . . µβn.A
′ is

α-contractive if n ≥ 0 and A′ does not start with µ and is not the variable α.

Well-formedness requires that fixpoints must be contractive, that constructors
are used with the correct arity, and that the environment in closures only define
bindings for the free variables of the functions.

Definition 5 (Well-formedness). An abstract value A is well-formed when
the following conditions are satisfied:
– For any µα.A′ that occurs in A, the abstract value A′ is α-contractive, and
– For any c 7→ (A1, . . . ,An) that occurs in A, the arity of c is n, and
– For any µf. λx. t 7→ E that occurs in A, domE = fv(µf. λx. t).

Well-formedness rules out the abstract value µα.α, whose concretisation is the
empty set. Well-formedness is preserved by substitution, provided contractiveness
for the substituted variable is satisfied. This ensures that unwinding fixpoints
preserves well-formedness. In the rest of this article, we only consider closed,
well-formed abstract values.

For any abstract value A, we can retrieve the subset of integer values (respec-
tively, constructed values, or function closures) by unwinding the top-level µs if
there are any, and eventually getting the ints field (respectively, constructs, or
funs). This is formalised in the following definition for projection on integers:

Definition 6 (Projection on integers). The projection on integers of a well-
formed abstract value A, written A.ints, is defined as follows:

{ints : I; constructs :C; funs :F} .ints = I
(µα.A).ints = (A[α← µα.A]).ints

The definition for projection is well founded, thanks to the contractiveness of
µs: only a finite number of unwindings is necessary. The projections A.constructs
and A.funs are defined in a similar way. Projection on integers is sound, as it
over-approximates the set of integers an abstract value contains:

Detection of Uncaught Exceptions by Abstract Interpretation 397

Lemma 3 (Soundness of projection on integers). γ(A) ∩ Z ⊆ γ(A.ints)

Projections for constructors and closures enjoy similar soundness properties.

4.1 Inclusion, Union and Intersection

Following the methodology employed in the context of recursive subtyping, we
define the inclusion relation between abstract values as a co-inductive relation.

Definition 7 (Abstract inclusion). The inclusion between abstract values,
written A1 ⊑ A2 is defined as a co-inductive relation by the following rules:

A1[α← µα.A1] ⊑ A2

µα.A1 ⊑ A2

A1 ̸= µβ.A′
1 A1 ⊑ A2[α← µα.A2]

A1 ⊑ µα.A2

I1 ⊑I I2 C1 ⊑C C2 F1 ⊑F F2

{ints : I1; constructs :C1; funs :F1} ⊑ {ints : I2; constructs :C2; funs :F2}

C1 ⊑C ⊤ F1 ⊑F ⊤
∀(c 7→ (A1,1, . . . ,A1,n)) ∈ C1,
∃(c 7→ (A2,1, . . . ,A2,n)) ∈ C2,
∀1 ≤ i ≤ n, A1,i ⊑ A2,i

C1 ⊑C C2

∀(µf. λx. t 7→ E1) ∈ F1,
∃(µf. λx. t 7→ E2) ∈ F2,
∀x ∈ domE1, E1(x) ⊑ E2(x)

F1 ⊑F F2

In this definition, the relation ⊑I is provided by the abstract domain on integers.
The inclusion relation unfolds fixpoints when necessary, and otherwise compares
each field (integers, constructed values, closures) separately, by treating the
finite maps for constructed values and closures as disjunctions, i.e., by using
the standard Hoare ordering. In practice, the inclusion test is implemented by
transforming abstract values into graphs that resemble tree automata: each graph
node corresponds to a sub-term of an abstract value, and µ-nodes create cycles.
Then, it suffices to check whether one automaton simulates the other [1,31,16].

Lemma 4 (Inclusion is a pre-order). The inclusion between closed, well-
formed abstract values is a pre-order, i.e., a reflexive and transitive relation.

The definitions for abstract union and intersection are defined in the compan-
ion research report [34] in a similar way, as co-inductive relations that unwind
fixpoints when needed.

The abstract operations enjoy the expected soundness properties:

Lemma 5 (Soundness of abstract operations). For any closed, well-formed
abstract values A1 and A2:
– A1 ⊑ A2 implies γ(A1) ⊆ γ(A2), and
– γ(A1) ∪ γ(A2) ⊆ γ(A1 ⊔ A2), and
– γ(A1) ∩ γ(A2) ⊆ γ(A1 ⊓ A2).

398 P. Lermusiaux, B. Montagu

The proof of Lemma 5 crucially relies on Lemma 2, that proves that unwinding
a recursive value preserves its concretisation.

Union and intersection are implemented by translating the values into graphs,
on which union and intersection are easily computed. Then, we transform them
back into trees with µ nodes. Our implementation exploits the locally nameless
representation [5], where bound variables are encoded as de Bruijn indices. We
leverage this canonical representation by hash-consing values and memoising the
operations [13]. This has proved essential to obtain acceptable performance.

4.2 Widening

The widening, written A1∇A2, is a binary operator on abstract values that over-
approximates the union of abstract values, and is used to approximate the Kleene
fixpoint iterations. The role of the widening is central in abstract interpretation,
as it serves two purposes. Firstly, the widening must find generalisations of
abstract values, in order to find invariants. This part impacts the precision of
the analysis, and relies on heuristics. Secondly, it must ensure the termination of
the analysis, by enforcing a stability property: every widening chain must reach
a limit in finite time. This part impacts the performance of the analyser.

In our abstract domain, the widening operator is responsible for finding
regularities in abstract values and for creating µ nodes. A similar idea was used
in the analysis of Prolog programs using type graphs [22], that are trees that
contain cycles. Our widening draws inspiration from type graphs.

We now give the informal procedure to compute the widening of two abstract
values A1 and A2. It operates in two phases. The first phase proceeds as follows:
1. Compute the union A12 of A1 and A2 where the widening of the numeric

abstract domain is used, instead of the standard union. This ensures that
the numeric parts of abstract values won’t grow indefinitely.

2. Compute Anew, which is a minimised version of A12. Minimisation is performed
by an algorithm on tree automata, that produces a semantically equivalent
abstract value, and whose size is smaller.

3. Compare the Anew and A1 (viewed as trees):
– If the height of Anew is not greater than the height of A1, return Anew;
– If, for each construct and each code of closures, the maximal number of

occurrences in each tree path of Anew is less than those occurrences in
A1, or a user-provided threshold, return Anew;

– Otherwise, go to the shrinking phase.
Steps 2 and 3 allow the size of abstract values to grow enough, before a shrinking
phase starts. In practice, this is important to find precise invariants.

The shrinking phase, which takes inspiration from the widening operation of
type graphs, tries to shrink Anew, by introducing µ nodes at appropriate positions
to “fold the abstract value on itself”. It proceeds as follows:
1. Find clashes between A1 and Anew, i.e., nodes that are reachable through the

same path (possibly unwinding µ nodes) in the two trees, and such that:
– Either, the two nodes have different sets of head constructors or codes of

functions: this means that the two nodes might differ semantically.

Detection of Uncaught Exceptions by Abstract Interpretation 399

– Or, the two nodes have different depths in the two trees: this means that
some path was followed through a µ-unwinding.

2. If no clash is found, then return Anew.
3. If a clash is found, then we try to create a cycle in Anew by merging the

clashing node with one of its ancestors:
– We search for the closest ancestor of the clashing node that is semantically

larger in the sense of the pre-order. If there is such an ancestor, then we
merge it with the clashing node, thus creating a cycle.

– If no such ancestor exists, we search for the closest ancestor that has at
least the same head constructors and function codes as the clashing node,
then we merge it with the clashing node too.

– If no such ancestor exists, then we return Anew unchanged, which allows
the abstract values to grow.

We repeat this operation until no clashing node remains, or until a maximal
number of iterations is reached. In the latter case, we truncate Anew, i.e., we
replace some nodes with ⊤, so that it has the same height as A1.

In practice, we could not find any case where the final truncation is needed. We
have observed that our widening operator finds precise generalisations in practice.

5 An Abstract Interpreter to Detect Uncaught Exceptions

To design our abstract interpreter, we took inspiration from the “Abstracting
Definitional Interpreter” approach [11]. This methodology prescribes to derive
an abstract interpreter from a concrete big-step interpreter that computes in a
monad, that is a parameter of the interpreter. Furthermore, the methodology
fosters the use of the open recursive style : the interpreter should be a function that
takes as extra parameter the function that was intended to be called recursively.

The first aspect—being parameterised by a monad—is motivated by the fact
that one could use a monad that computes over abstractions of values. In §5.1,
we present a monad that is an abstraction of the exception monad. It is also an
abstract domain, and is therefore well suited to define an abstract interpreter.

The second aspect—using open recursive style—permits the use of dynamic
fixpoint solvers [59,63,12,24,6,30]. Such solvers compute post-fixpoints, i.e., over-
approximations of solutions of systems of equations over abstract values, for
which the set of equations might be discovered dynamically, while solving the
equations. New equations can be discovered, for instance, when the control flow
of a program depends on its data flow. This is the case of higher-order programs,
as the function that can be called at a given call site can possibly result from
a computation. We present in §5.2 our abstract interpreter as a function that
computes in the abstract exception monad, and is defined in open recursive style.

5.1 The Abstract Exception Monad

A big-step interpreter for a programming language with exceptions can be defined
in an elegant manner using the exception monad, which we briefly recall. In the

400 P. Lermusiaux, B. Montagu

exception monad, a computation is either a success value, or an exception that
carries some value—typically of type exception—from the object language.

type mβ = Success β | ExceptionV
return :: β → mβ
returnx = Successx

>>= :: mβ1 → (β1 → mβ2)→ mβ2

(Successx)>>= f = f x
(Exception e)>>= f = Exception e

In this monad, the raise function expresses the action of throwing an excep-
tion, while the dispatch function, corresponds to the dispatch construct of our
prototype language (§3), and expresses the action of catching an exception.

raise :: V→ mA
raise e = Exception e

dispatch :: mβ1 → (β1→mβ2)→ (V→mβ2)→ mβ2

dispatch (Successx) f g = f x
dispatch (Exception e) f g = g e

The raise function simply injects its argument into the exception case, whereas
the dispatch function takes two continuations, to handle, respectively, the success
case, and the exception case, by performing a case analysis on the monadic value.

We can easily define a monad that mimics the behaviour of the exception
monad, with the difference that it deals with abstractions of sets of (possibly
exceptional) values, instead of mere exceptional values. The construction is based
on the observation that ℘(mβ) is isomorphic to ℘(β) × ℘(V), that can itself
be abstracted into ℘(β)× ℘(A) by using our abstract domain for sets of values.
Thus, we define the abstract exception monad, written m♯ β, as follows:

type m♯ β = β × A

return♯ :: β → m♯ β
return♯B = (B,⊥)

>>=♯ :: m♯ β1 → (β1 → m♯ β2)→ m♯ β2

(B,A)>>=♯ f = let (B′,A′) = f B in (B′,A ⊔ A′)

The return♯ operation records its argument as the set of possible values, and
asserts that no exception is returned: the set of possible exceptions is ⊥. The
>>=♯ operation retrieves the value part of its monadic argument and passes it to
the continuation. The final value is composed of the value part that was produced
by the continuation, and of the union of the exceptions that might have been
raised by the monadic value and by the evaluation of the continuation. The
functions return♯ and >>=♯ satisfy the monad laws if (⊥,⊔) is a monoid.

The fact that m♯ β is a monad does not suffice to use it in an abstract
interpreter, though. We also need m♯ β to be an abstract domain, i.e., one must
decide when two monadic values are included in each other, and how to compute
abstract unions, intersections, and widening.

Interestingly, the monad m♯ β acts as an abstract domain as soon as β is
an abstract domain: this is the standard cartesian product of abstract domains,
where operations are defined pointwise. In practice, we only need to consider the
instance m♯ A, i.e., the domain of exceptional abstract values.

Detection of Uncaught Exceptions by Abstract Interpretation 401

The remaining pieces that are needed to use m♯ β in an abstract interpreter
are the abstract versions of raise and dispatch. They are defined as follows:

raise♯ :: A→ m♯ A
raise♯A = (⊥,A)

dispatch♯ : m♯ β → (β → m♯ A)→ (A→ m♯ A)→ m♯ A
dispatch♯ (B,A) F G = F B ⊔GA

The raise♯ operation raises a set of possible exceptions, by recording the abstract
value for exceptions in the set of possibly returned exceptions, and by returning
the bottom value, since it can never return any value. It is the dual of return♯.

The dispatch♯ function executes the value continuation on the set of possible
values, and executes the exception continuation on the set of possible exceptions,
and then returns their abstract union in the domain of exceptional values.

We can easily show that the abstract operations compute over-approximations
of their counterpart in the exception monad. Assume the type β is equipped
with a concretisation function γβ : β → ℘(B) for some set B. Then, we define the
concretisation for the abstract monad:

γm♯ β : m♯ β → ℘(mB)
γm♯ β(B,A) = {Success b | b ∈ γβ(B)} ∪ {Exception v | v ∈ γ(A)}

The concretisation specifies that the first component of monadic values form the
success values, and that the second component describe possible exceptions.

The soundness results for the abstract operations show that they compute
over-approximations of their concrete counterparts:

Lemma 6. The following inclusions are satisfied:
– {returnb | b ∈ γβ(B)} ⊆ γm♯ β(return

♯B)
– {m>>= f | m ∈ γm♯ β1

(M), f ∈ γβ1→m♯ β2
(F)} ⊆ γm♯ β2

(M >>=♯ F)

– {raisev | v ∈ γ(A)} ⊆ γm♯ A(raise
♯A)

–

dispatchmf g

∣∣∣∣∣∣
m ∈ γm♯ β1

(M),
f ∈ γβ1→m♯ β2

(F),
g ∈ γV→m♯ β2

(G)

 ⊆ γm♯ β2
(dispatch♯M F G)

where γβ1→β2
(F) = {f | ∀X, ∀x ∈ γβ1

(X), f x ∈ γβ2
(F X)}.

5.2 A Monadic Abstract Interpreter in Open Recursive Style

In this section, we describe our whole-program static analyser. It infers an over-
approximation of the values that a program might compute, and the exceptions
that it might raise, with the possible values they carry. Although it analyses
programs that can deal with first-class functions, it is not defined as a control-flow
analyser [60], but rather as an abstract interpreter that performs a value analysis.
The insight is the following: since functions are first-class citizens in the language,
a value analysis also infers an approximation of the control flow. A value analysis
will indeed compute which functions may be called at every call site.

Our analyser follows the open recursive style, and has the following type:

(T→ E→ m♯ A)→ (T→ E→ m♯ A)

402 P. Lermusiaux, B. Montagu

Assuming eval :: T→ E→ m♯ A, we define J·Keval· :: T→ E→ m♯ A
JxKevalE =return♯E(x)

Jc(x1, . . . , xn)KevalE =

return♯⊥ if E(xi) = ⊥ for some 1≤ i≤n

return♯{constructs :{c 7→(E(x1), . . . ,E(xn))}}
otherwise

JnKevalE =return♯{ints : {n}}
Jx1 op x2KevalE =return♯{ints :E(x1).ints JopK E(x2).ints}
Jµf. λx. tKevalE =return♯{funs : {µf. λx. t 7→ E|fv(µf. λx. t)}}

Jx yKevalE = if E(y) = ⊥ then return♯⊥ else⊔
(µf. λx.t 7→E′)∈E(x).funs eval t E

′′

where E′′ = E′, f 7→ F, x 7→ E(y)
and F = {funs : {µf. λx.t 7→ E′}}

Jlet x = t in uKevalE =JtKevalE >>=♯ λv. if v = ⊥ then return♯⊥ else
JuKevalE,x:v

Jmatch twith p1⇒ t1 | · · · | pn⇒ tnKevalE =JtKevalE >>=♯λv.if v = ⊥ then return♯⊥ else⊔
1≤i≤n(pi ≺≺

♯ v)>>=♯ λE′.

if E′ = ⊥ then return♯⊥ else JtiKevalE,E′

Jraise xKevalE =raise♯E(x)
Jdispatchuwith val x⇒ t | exn y⇒rKevalE =dispatch♯ JtKevalE

(λv. if v = ⊥ then return♯⊥ else JuKevalE,x:v)

(λe. if e = ⊥ then return♯⊥ else JrKevalE,y:e)

Fig. 2. Definition of the abstract interpreter.

It takes as a parameter an analyser, that represents the information that has
been discovered so far on the program, and produces an analyser as output, that
exploits the input analyser to produce more analysis results, that are possibly less
precise. The role of the fixpoint solver is to find a post-fixpoint of this functional.
Similar approaches—leveraging fixpoint solvers to define static analysers—have
been successfully used in other work on static analysis [22,64,50,4].

Our abstract interpreter is defined in Figure 2, where JtKevalE denotes the
abstract value of type m♯ A obtained by analysing the program t under the
abstract environment E, and using the analysis function eval for recursive calls.
Importantly, the analyser does not call eval for every recursive call. Instead, eval
is only used when the analyser cannot be called on a strict sub-term. In practice,
this means that eval is only used to analyse function calls. In every other place,
we have the guarantee that the analysis is demanded on a strict sub-term, and a
standard recursive call is performed. This strategy saves time in practice, as it
lightens the burden of the fixpoint solver, that only needs to find post-fixpoints
for function calls rather than for every program point.

To analyse a variable, we return the abstract value found in the environment.
To analyse a construct, we retrieve the abstract values for every argument,

and return the corresponding abstract value for that constructor, or ⊥ if some of
the argument was ⊥, because of the eager semantics.

Detection of Uncaught Exceptions by Abstract Interpretation 403

The analysis of an integer returns this integer injected in the integer domain.
The analysis of binary operations on integers retrieves the integer parts of the
abstract values for the two arguments, and returns the result of the transfer
function from the integer domain for that binary operation.

The analysis of a function mimics the concrete semantics: it returns an abstract
closure composed of the code of the function and its abstract environment.

The analysis of function calls is more interesting. If the abstract value for
the argument is ⊥, then we return ⊥, because evaluation is eager. Otherwise, we
retrieve all the possible closures for the value at the call position, and analyse their
bodies by extending their environments with the abstract value for the argument,
and with the abstract closure itself (we are dealing with recursive functions). The
final result is the union—at the level of the abstract monad—of the analyses
of all the possible function bodies. Because the bodies of the functions that are
analysed are not strict sub-terms of the original term x y, we perform an external
recursive call to the analyser, by using the eval parameter.

The analysis of let bindings chains the analyses of its two parts, and, because
evaluation is eager, checks for emptiness before analysing the second sub-term.

The pattern matching construct is analysed by first analysing the scrutinee,
and then analysing each branch of the match independently. For each branch,
we retrieve the environment produced by matching the abstract value with the
pattern (written p ≺≺♯ v), and then we analyse the code of that branch if the
matching was possible. Then, we take the union—at the level of the abstract
monad—of the analysis results from each branch. Notably, the exceptions that
any branch might raise are reported in the final result. The definition for matching
abstract values against patterns is available in the companion research report [34].

Analysing the raise construct is easy: a call to the raise♯ function suffices.
Finally, the analysis of dispatch amounts to calling the dispatch♯ function from
the abstract monad, on the analysis of the scrutinee, and on two continuations,
that will analyse the codes of the two branches, if they are given non-⊥ arguments.

5.3 Soundness of the Abstract Interpreter

We show that the abstract interpreter of Figure 2 is sound, in the sense that it
computes an over-approximation of the behaviour of programs.

Definition 8 (Behaviour of programs). Let S be a set of evaluation environ-
ments: EVALS t =

⋃
E∈S{Success v | E ⊢ t ⇓val v} ∪ {Exception e | E ⊢ t ⇓exn e}

The behaviour of a program t as a function EVAL that takes a set of evaluation
environments as input, and produces a set of values with a tag that indicates
whether it results from normal or from exceptional evaluation.

Then, the soundness of the abstract interpreter follows:

Theorem 1 (Soundness). Assume eval is a post-fixpoint, i.e., JtKevalE ⊑ eval tE
for every t and E. Then, EVALγ(E) t ⊆ γmA(JtKevalE).

404 P. Lermusiaux, B. Montagu

Proof. We have to show that for every E ∈ γ(E), m ∈ {val, exn} and v ∈ V,
if E ⊢ t ⇓m v, then r ∈ γmA(JtKevalE), where r = Success v when m = val, and
r = Exception v when m = exn. The proof proceeds by induction on the evaluation
judgement, generalising over m and E. The only interesting case is the one for
function application, which exploits the induction hypothesis, the post-fixpoint
property of eval and the soundness of abstract inclusion ⊑. All other cases result
from the soundness of the abstract operations and from induction hypotheses. ⊓⊔

The soundness theorem assumes that eval is a post-fixpoint, i.e., JtKevalE ⊑
eval tE. This property is ensured by the soundness of the fixpoint solver, that
always returns a post-fixpoint. The function eval is, indeed, the result of the
fixpoint solver called on the function λeval.λt.λE.JtKevalE .

6 An Abstract Interpreter for OCaml Programs

Based on the abstract interpreter of §5, we implemented a static analyser for
OCaml programs (version 4.14), that returns a map from top-level identifiers of
the program to their abstract values. Our prototype and its test suite (see §7)
are available as a companion artefact [35].

We have implemented several optimisations, that are crucial to obtain decent
performance. For example, nodes of the analysed AST are indexed by program
points using unique integers as identifiers. This enables efficient comparison
of sub-terms and allows using efficient data structures like Patricia trees [53].
Moreover—this is of paramount importance for performance—we perform hash-
consing of abstract values and memoise the operations on these abstract values.

We present in the next sections some key implementation details that we
needed to analyse OCaml programs.

6.1 Refinements With Respect to the Formal Presentation

The abstract interpreter we implemented follows the structure we have presented
in §5.2, but implements three more refinements, that we purposely elided to
follow the presentation more easily. A thorough presentation of these refinements
would go beyond the scope of the current paper.

Context sensitivity. Our analyser is context sensitive : we implemented a form
of call site sensitivity, that is akin to an abstraction of the call stack. Following [50],
we retain full sensitivity until the list of call sites becomes maximal, i.e., when
a program point appears more than once in that list, which may indicate a
recursive call to some function. In addition, we always remember the last call
site. In practice, the list of call sites is an additional parameter to the abstract
interpreter. Following [50] again, we use this list of call sites to decide when
widening on the environments should be performed: it is performed only when
eval is called on a maximal list of call sites. The same list of call sites is also used
to derive dynamic exception names and abstract pointers (see §6.4 and §6.5).

Detection of Uncaught Exceptions by Abstract Interpretation 405

Flow sensitivity. Our abstract interpreter is able to exploit information that is
learned when a branch in a match is taken, or when branching on an arithmetic
test. For example, in the program match (x, y) with (None,_) ⇒ x | _ ⇒ t,
our analyser is able to refine the possible environments, by taking into account
that x = None in the first branch, and that this first branch necessarily returns
the value None. This is done by performing a backward analysis of the scrutinee
(x, y). This backward analysis infers an over-approximation of the environment,
knowing that the scrutinee successfully matched against the pattern (None,_).

Dynamic partitioning. Finally, we have employed a form of dynamic partition-
ing to avoid conflating some analyses results, that could degrade precision. Based
on a notion of similarity on the shapes of abstract values found in environments,
we decide whether to conflate contexts or not. The technique is inspired by the
silhouettes used in shape analysis [39].

6.2 Transformation of Typed OCaml ASTs

The actual language that our interpreter takes as input is more complex than
the one we presented in §3, but undoubtedly simpler than the OCaml AST. The
main differences between our intermediate language and the OCaml AST, is that
we deal with only one construct for pattern matching, and only one construct for
exception handling, and that those two constructs implement orthogonal features
in our language. This is in contrast with OCaml’s try t1 with p -> t2 and
match t with p1 -> t1 | exception p2 -> t2, that conflate pattern match-
ing with exception handling. The transformation into our two constructs is mostly
straightforward, and greatly simplifies the job of the static analyser.

Our intermediate language makes the evaluation order explicit using let
bindings. While the evaluation order in OCaml is generally unspecified, we did
our best to mimic the choices that the OCaml compiler makes.

We added specific application nodes for OCaml primitives. To ensure they are
called with the correct arity, we inserted λ-abstractions when they were partially
applied, or additional application nodes when they were given more arguments
than expected. We also handled specifically the short-circuiting primitives on
boolean expressions && and ||, as they change the evaluation order.

We kept the n-ary application nodes of the OCaml AST (instead of the binary
applications from §3), as this is important for the semantics of labelled/optional
function arguments. Nevertheless, the transformation from the OCaml AST
into our intermediate language needed a lot of care and effort. In particular,
missing labelled arguments required the insertion of λ-abstractions, which can
be particularly subtle when interacting with optional arguments.

6.3 Pattern Disambiguation

The last major difference between OCaml and our intermediate language is
the exhaustive and non-ambiguous requirements on pattern matching. These

406 P. Lermusiaux, B. Montagu

properties not only simplify the semantics of our intermediate language, but also
facilitate the analysis of programs. Indeed, each branch of the pattern-matching
can be analysed independently of the other ones, whereas in OCaml, branches
must be considered in order, until one pattern matches the inspected value. The
OCaml type-checker still provides warnings to verify the utility of each branch
and the exhaustiveness of the overall pattern matching.

Enforcing exhaustive and non-ambiguous pattern matchings in OCaml would
require to use of cumbersome patterns, and, furthermore, it is not always possible
to write such patterns in OCaml. It is, indeed, allowed to match on values whose
types may have an infinity of constructors, e.g., arrays, strings, or extensible
variant types (see §6.4 for details). To reach these requirements, we extend the
language of patterns with a complement p \ q [8]. A value v matches a pattern
p \ q if and only if it matches p but not q. In an ordered pattern matching
match t with p1 ⇒ u1 | · · · | pn ⇒ un, we can express that the value v of the
term t matches the ith pattern, unambiguously. It suffices to add that v does not
match any of the preceding patterns pj with j < i, i.e., v matches pi \ (Σpj)≺≺ v.

The method presented in [8] shows how to solve the disambiguation prob-
lem [32]. It relies on the notion of pattern semantics JpK that is the set of values
matched by a pattern: JpK = {v ∈ V | p≺≺ v}. The idea is to reduce any pattern
p into a purely disjunctive pattern q, i.e., a pattern containing no complements \,
while preserving its semantics : JpK = JqK. The reduction relies on rewriting rules
that correspond to algebraic laws of set theory: a constructor c behaves like a
labelled cartesian product, the disjunction + like set union, and the complement \
like set difference. Note that the pattern language proposed in §3 conflates the
different forms of OCaml constructors (constructor variant, polymorphic variant,
records, arrays and tuples) as they behave similarly w.r.t. to their semantics.

In order to fully reduce a pattern, the method also relies on the observation
that a variable xτ of a variant type τ must be matched by a value whose
head is a constructor of the type τ . Therefore, the semantics of this variable
xτ can be described as the union of semantics of all constructor instances
of τ : Jxτ K =

⋃
c∈Cτ

Jc(z1, . . . , zn)K, where Cτ is the finite set of constructors of
co-domain τ . Similarly, the utility [40] approach, implemented in the OCaml
compiler, relies on the ability to enumerate all the constructors of a type to
provide a non-ambiguous description of the useful patterns. For types that may
not be finitely described, the semantic approach can still be used to partially
reduce the complements [7]. We keep anti-patterns—patterns of the form x \ q
where q contains no complements—when there exists a value v such that x\q≺≺v.

Finally, to guarantee the exhaustiveness of pattern matching, it suffices to add
a rule z \ (p1+ · · ·+pn)⇒ raise Match_failure when necessary. Again, generating
such a non-ambiguous rule, for data types that may not be finitely described, is
only possible thanks to pattern complements.

6.4 Dynamic Exceptions

The exception type in OCaml is an extensible variant type : it can be dynamically
extended with new variant constructors. This means that new exception con-

Detection of Uncaught Exceptions by Abstract Interpretation 407

t ::= . . . | let exception c of τ1 ∗ · · · ∗ τn in t | let exception b = c in t
v ::= . . . | d | d(v1, . . . , vk)

E(c) = d

S;E ⊢ c(x1, . . . , xk) ⇓val S; d(E(x1), . . . , E(xn))
DynamicConstruct

S ⊎ {d};E, c 7→d ⊢ t ⇓m S′; v

S;E ⊢ let exception c of τ1 ∗ · · · ∗ τn in t ⇓m S′; v
LetException

S;E, b 7→d ⊢ t ⇓m S′; v E(c) = d

S;E ⊢ let exception b = c in t ⇓m S′; v
RebindException

A ::= {. . . ; names :V} | α | µα.A (Abstract value)
V ::= {(c, δ)} (Abstract names)

Jlet exception c of τ1 ∗ · · · ∗ τn in tKevalE = JtKevalE,c 7→{names=(c,δ)}
Jlet exception b = c in tKevalE = JtKeval

E,b 7→E(c)

Fig. 3. Changes to support dynamic exception naming (excerpts).

structors are dynamically generated during the execution of programs. Although
this section focuses on the exception type, the techniques we present apply to
any extensible variant type as well.

To model the dynamic behaviour of type extension, we introduce dynamic
constructors, written c, that, unlike static constructors c, are dynamically associ-
ated to a variant name d during the evaluation. We update the language of §3
and its semantics to support these dynamic constructors (Figure 3).

The let exception c of τ1 ∗ · · · ∗ τn in t construct defines the new exception
constructor c, that is dynamically bound to a fresh variant name in the sub-
term t. The exception alias construct let exception b = c in t defines the exception
constructor b, that is bound in the sub-term t to the variant name of c. Constructed
values can now have a dynamic variant name as their head constructor.

To account for the generative aspect of dynamic constructors, the evaluation
rules now carry an execution state S, that contains the set of the already generated
variant names. These are akin to the time-stamps from the CFA literature [25,44],
that are used to allocate data in memory locations. In the analysis, we use an over-
approximation δ of the list of call sites—that we used already in §6.1 to control
the widening strategy—to give abstract names (c, δ) to dynamic constructors.

Finally, as the variant name of an exception constructor is resolved dynami-
cally, the pattern matching relation depends on the evaluation environment E:
c(p1, . . . , pn)≺≺ d(v1, . . . , vn) if and only if E(c) = d, and pi≺≺ vi for all i ∈ [1, n].

As the exception type is extensible, a finite number of constructor patterns
never forms an exhaustive set of patterns for the exception type. Therefore, the
utility approach on pattern matching [40] used in OCaml for exhaustiveness check-
ing cannot provide an exhaustive list of non-ambiguous counter-examples: that
list is not known statically. In contrast, the disambiguation approach from §6.3 is
particularly well suited to such types, by leveraging anti-patterns [7]. Moreover,

408 P. Lermusiaux, B. Montagu

t ::= . . . | {f1 = x1; . . . ; fn = xn} | x.f | x.f ← y
v ::= . . . | ℓ (Heap locations)
S ::= {ℓ1 7→ r1; . . . ; ℓn 7→ rn} (Memory heaps)
r ::= {f1 7→ v1; . . . ; fn 7→ vn} (Record blocks)

ℓ /∈ domS S′ = S, ℓ 7→ {f1 7→ E(x1); . . . ; fn 7→ E(xn)}
S;E ⊢ {f1 = x1; . . . ; fn = xn} ⇓val S′; ℓ

Alloc

E(x) = ℓ S(ℓ) = {f1 7→ v1; . . . ; fn 7→ vn} 1 ≤ i ≤ n

S;E ⊢ x.fi ⇓val S; vi
GetField

E(x) = ℓ S(ℓ) = {f1 7→ v1; . . . ; fn 7→ vn}
1 ≤ i ≤ n S′ = S, ℓ 7→ {f1 7→ v1; . . . ; fi 7→ E(y); . . . ; fn 7→ vn}

S;E ⊢ x.fi ← y ⇓val S′; ()
SetField

A ::= { . . . ; locs : {ℓ♯1, . . . , ℓ♯n}} (Abstract locations in abstract values)
h♯ ::= {ℓ♯1 7→ r♯1; . . . ; ℓ

♯
n 7→ r♯n} (Abstract heaps)

r♯ ::= {f1 7→ A1; . . . ; fn 7→ An} (Abstract record blocks)

Fig. 4. Changes to support mutable records (excerpts).

the equality of two exception constructors b and c of the same arity can only be
resolved dynamically. Therefore, there is no way to statically prove, or disprove,
the utility of a pattern b(q1, . . . , qn) against a pattern c(p1, . . . , pn). On the other
hand, in our pattern formalism, we can simply write b(q1, . . . , qn) \ c(p1, . . . , pn)
to guarantee the non-ambiguity between the two.

6.5 Mutable Records and Global State

OCaml supports mutable records. While immutable records can be modelled in
the programming language of §3 in the form of constructs—an immutable record
is a variant with a single case—mutable records require extending the semantics
with a global memory heap S (Figure 4).

Heaps are maps from memory locations ℓ to record blocks. Record blocks are
structured memory blocks, that contain values for all the registered fields of the
record. The standard notion of reference can be modelled as a mutable record
with a single field. This is exactly how the type of references is defined in OCaml.

We adapt the big-step semantics in a standard way, so that it takes a heap as
input and returns an updated heap as output. The evaluation rules for record
creation, access, and update, either query or modify the memory heap as expected.

OCaml features pattern matching on mutable records. We adapt the rules for
pattern matching, so that matching on a mutable record first queries the memory
heap to retrieve the values for the fields of the record, before matching continues.

To analyse programs that involve mutable records, we add a new field to
abstract values, that contains the possible abstract locations ℓ♯ a value might be
equal to. Abstract locations denote sets of concrete locations. Similarly to the

Detection of Uncaught Exceptions by Abstract Interpretation 409

dynamic extension constructors of §6.4, fresh abstract locations are chosen by
following a naming scheme that is based on the abstract call stack.

The abstract interpreter is easily adapted to support global state, by lifting
the abstract exception monad to the state monad, where states are abstract heaps.
Abstract heaps map abstract locations to abstract record blocks, that themselves
map record fields to abstract values. The operations on abstract heaps and the
transfer functions on records are standard, and elided from the presentation.

6.6 Modules and Functors

The OCaml language includes an expressive module system [36], that supports
hierarchical structures, higher-order functors, and first-class modules. In this
section, we give the reader the main insights for the analysis of OCaml modules.

First, we consider an untyped semantics of modules, i.e., we do not propagate
type information. In particular, we do not take type abstraction boundaries into
account. We carefully to keep track of module coercions, however: signature
ascriptions may have, indeed, a computational content, as they can remove some
module fields. Coercions are automatically applied at functor applications to
“reshape” the functor argument. Coercions distribute on functors, contravariantly
on their formal arguments, and covariantly on their results.

Embracing further the untyped nature of our approach, we made the choice of
having a single class of values, that comprises both values from the core language
and values for module structures and functor closures. This simplifies both the
concrete semantics (for example, transfers from the module language to the core
language and back are no-ops), and the design of the abstract domain. As we
sketched in the previous sections, it suffices to add new fields to abstract values
to describe the possible structures and functor closures.

We represent structures as unordered records, i.e., maps from field names to
values. Functor closures hold the functor code, an environment, and coercions for
the argument and the result, that shall be applied when the functor is called.

Importantly, the support of dynamic exceptions (§6.4) was required to support
functors, since an exception might be declared in a functor’s body: this leads to
the creation of a fresh exception every time this functor is instantiated.

The analysis functions for the core language and the module language, of
types T→ E→ A and M→ E→ A, are mutually recursive. Still, the approach of
using a fixpoint solver to define our abstract interpreter remains applicable. The
two functions can be transformed into a single function of type (T+M)→ E→ A,
then given to the solver, and split back into two functions. Our untyped approach
was again crucial, as we could keep a single type of abstract values, and a single
type of abstract environments, which made the previous transformation possible.

7 Experiments

We tested our prototype analyser for OCaml programs on 290 programs, that
range from small, manually written programs, to larger examples extracted

410 P. Lermusiaux, B. Montagu

Table 1. Experiments: size of the programs, analysis time (with minimisation disabled,
and enabled). They are sorted by program decreasing size.

Program Size
(LoC)

Analysis
(w/o minim.)

Analysis
(w/ minim.)

heintze_mcallester_1000 4002 0.2 s 0.2 s
boyer 1292 26 m 57 m
kb 552 1.2 s 1.4 s
map_merge 152 4.5 s 5.6 s
sliding_window 122 4.4 s 5.8 s
skolemize 82 38 m 2.9 s
negative_normal_form 64 40 m 4.6 s
red_black_trees2 64 0.5 s 1.0 s
church 20 0.05 s 0.07 s
sieve 19 0.01 s 0.01 s
tak_cps 8 0.04 s 0.04 s
tak 4 < 0.01 s 0.01 s
mc91_cps 4 < 0.01 s < 0.01 s
mc91 2 < 0.01 s < 0.01 s

from the literature or from the OCaml compiler’s test suite. The test programs
include some classic functions such as the factorial program from §2, Takeuchi’s
function, McCarthy’s 91 function, fixpoint combinators, programs that compute
over church numerals, transformations of abstract syntax trees for arithmetic
expressions or logical formulas, and the algorithm for Knuth-Bendix completion of
rewriting systems. The test suite covers a large array of coding styles, e.g., direct
style, continuation-passing style, monadic style, or imperative style, and exhibits
different language features, e.g., assertions, exception-based control flow, GADTs
and non-regular types, polymorphic recursion, second-order polymorphism, etc.

We present in Table 1, a selection of the test results on some key examples.
The complete test results are reproducible via the companion artefact [35]. The
experimental results are encouraging, both in terms of performance and precision.

In terms of precision, our analyser infers the best achievable abstract values
on several programs: For McCarthy’s 91 function mc91, the result is shown to be
greater than 91; for the skolemisation of logical formulas skolemize, the analyser
correctly infers the form of returned terms, i.e., they cannot contain existential
quantifiers. For other programs, the analyser only infers an over-approximation:
for the red_black_tree program, it correctly infers the general shape of trees,
but cannot infer the structural invariant that no red node has red children.

The map_merge example calls the Map.Make functor of finite maps from the
standard library, builds several maps, and calls the merge function on those maps,
that merges the maps. The merge function has the following signature:

val merge: (key -> 'a option -> 'b option -> 'c option) ->
'a M.t -> 'b M.t -> 'c M.t

Detection of Uncaught Exceptions by Abstract Interpretation 411

Its first argument specifies what should be done when a key/value pair is found
in one of the maps, or in both. This argument is never called for keys that are
absent in both maps, i.e., the case where the second and third arguments are both
equal to None is unreachable. OCaml programmers often write assert false
in the corresponding pattern matching branch. The analyser infers that the
Assertion_failure exception is never raised, which means that this branch
cannot be reached. The analyser cannot show, however, that every assertion
present in Map.Make is satisfied: in the re-balancing function for pseudo-balanced
trees, assertion failures are reported, because the analyser cannot infer that the
heights that are recorded in the trees are strictly positive.

In terms of performance, most examples, and even some large programs, are
analysed in a couple of seconds, or in less than a second. In contrast, some
examples like boyer need approximately one hour for the analysis to terminate.
boyer is a tautology checker, that is run on a large formula (its definition takes
about 1000 lines). This formula, of mutable type, requires the creation of several
hundreds of abstract pointers, which makes abstract operations on abstract heaps
very costly. If we reduce context sensitivity to “the last call site”, fewer abstract
pointers are created, and the analysis completes in 31 s. This suggests that context
sensitivity choices for naming abstract pointers need further investigation.

Our experiments show that the minimisation of abstract values during widen-
ing and unions (§4.2) may impact performance positively or negatively. For
instance, for AST transformations like skolemize and negative_normal_form,
minimisation decreases the analysis time from about 45 m down to a few seconds.
For boyer, however, minimisation incurs a heavy cost, as it doubles the analysis
time. Further investigations are needed to reduce the cost of minimisation.

8 Related Work

The static detection of uncaught exceptions for ML programs has been the topic
of many related work. We only discuss a selection of them, and some results on
static analysis of functional programs that are also relevant to the current work.

Set Constraints. Several static analyses for functional programs were based set
constraints [21]. The principle is to transform a program into a constraint, that
features unions, intersections, negations, and a form of conditional constraint.
Then, the constraint is simplified and given to a solver, from which the analysis
result is obtained. Fähndrich and his coauthors built a exception analysis tool
that infers types and effects for SML programs [14,15] using the BANE constraint
analysis engine, using a mix of set constraints and type constraints.

Type and Effect Systems. Pessaux and Leroy have developed ocamlexc
[38,54,55], a tool that detects uncaught exceptions in OCaml programs. They
use a type and effect system to analyse programs modularly. Their analyser
extends unification-based type inference, and makes use of row variables [57]
and polymorphism to produce precise types for functions. They type variants

412 P. Lermusiaux, B. Montagu

structurally using equi-recursive types. Recursion may also occur through the
effect annotations on arrow types. They also describe an algorithm to improve the
accuracy of their analysis, that uses polymorphic recursion for row variables. The
programming language Koka [33] also leverages row variables to type algebraic
effects. Recently, de Vilhena and Pottier [62] devised a type system based on row
variables for a language that supports the dynamic creation of algebraic effects.

Control-Flow Analyses. An important family of analyses for higher-order
programs are control-flow analyses (CFA) [60,65,51,45,19]. The goal of CFA is to
determine which functions might be called at a call site, and on which arguments.
CFA can be expressed as instances of abstract interpretation [46,44,47,50]. CFA
can easily be extended to analyse exceptions. Yi developed an abstract interpreter
that detects uncaught exceptions in SML [68,67,66]. It implements an analysis
that is close to a 0-CFA analysis extended to support exceptions.

Abstract Domains in CFA. Most previous work on CFA share a common
representation for abstract values: Although they need to represent some induc-
tively defined sets, they refrain from using a native device to express fixpoints,
such as our µ constructor. Instead, cyclic definitions are encoded using indirec-
tions through abstract pointers, that point to an abstract heap. For example, the
inductive set of continuations from §2 is expressed as follows in CFA domains:

{funs : {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ pi; k 7→ pk}}}
where: ĥ(pi) = {ints : [1,+∞]}

ĥ(pk) = {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ pi; k 7→ pk}}

In this abstract value, the closures’ environments contain the pointers pi and pk,
that are defined in the abstract heap ĥ. This abstract heap contains a cycle, since
pk is used in the definition of the abstract value pointed by pk. This is in contrast
to our approach, where we make use of µ nodes to introduce cycles directly,
without referring to a heap. We only use the abstract heap for mutable data. In
CFA domains, all data (constructs, closures, etc.) are “abstractly allocated” in
the abstract heap, regardless of whether they are mutable or not.

A benefit of the approach with heap indirections is that abstract values have
a bounded height, and cycles need no special treatment: The equality of abstract
pointers is used to compute on abstract values. While this makes the operations
of CFA abstract domains easy to define, using pointer names limits drastically the
detection of semantically equivalent values. We argue that our approach allows to
detect more semantics inclusions, therefore decreasing the number of iterations
of the analysers, at the cost of more complex abstract domain operations.

Tree Grammars. Several analyses for functional languages have been defined
using tree grammars. For example, Reynolds [58] defined an analysis for pure first-
order LISP using data sets, i.e., tree grammars that denote the possible outputs of
function symbols. Extended tree grammars, i.e., grammars with selectors of the
form X → Y.hd, have been used by Jones and his coauthors to analyse full LISP

Detection of Uncaught Exceptions by Abstract Interpretation 413

[28], and, later, strict and lazy λ-calculi [26,27]. From a λ-term, they produce tree
grammars with selectors, that denote the possible inputs and outputs of function
symbols. Selectors can then be eliminated in order to simplify the grammars.
Deterministic tree grammars have been identified as an abstract domain to recast
analyses based on set constraints into the abstract interpretation framework [10].

Tree Automata. Generalising string automata, tree automata are an established
formalism to represent sets of trees. They have been used to define static analysers
for term-rewriting systems (TRSs) [3] and higher-order programs [20]. They have
been extended to lattice tree automata to support arbitrary non-relational abstract
domains at their leaves [17,18], and improve the performance of analysers for
TRSs. Recently, tree automata were combined with relational numeric abstract
domains [29], to express relations between scalar data contained in trees. Recent
work report on the design of relational domains for algebraic data types [2,61].

Cyclic Abstract Domains. Type graphs [22] are a form of deterministic tree
grammars, that are represented as cyclic graphs with no sharing, i.e., trees with
cycles. They have been used to analyse Prolog programs. We used a similar graph-
based representation as an intermediate form to compute union, intersection and
widening. We use, however, a term-based representation with binders as our main
representation, as it allows easy and efficient hash-consing and memoisation [13].
Our widening operator (§4.2) is inspired by the one from type graphs.

Mauborgne [42,43,41] studied graph-based abstract domains for sets of trees,
and defined ways to have minimal, canonical representations of such abstract
values. Using Mauborgne’s structures natively could improve our analyser’s
performance, as we could avoid translating back and forth from terms to graphs.

Finally, recursive types [56] were a strong inspiration for the abstract domain
of §4. Recursive types have been thoroughly studied in the context of subtyp-
ing [16,31,1], where polynomial algorithms have been devised to decide inclusion.
They proceed by translating types into variants of tree automata, that can also
deal with the contravariance of arrow types.

Fixpoint Solvers. To the best of our knowledge, Le Charlier and Hentenryck [6]
were the first to exploit a dynamic fixpoint solvers to define static analysers.
They used the top-down solver to analyse Prolog programs. The same approach
has been followed for the Goblint static analyser for C programs [64,59], and for
the analysis of WebAssembly programs [4]. Recent work introduced combinators
to define dynamic fixpoint solvers in a modular manner [30]. Several dynamic
fixpoint solvers have been successfully formally verified [24,63].

9 Conclusive Remarks and Future Work

We have introduced a λ-calculus that features pattern matching primitives and
exception handling, in which exceptions are first-class citizens. We have presented
a static analysis for this language, in the form of a monadic abstract interpreter,

414 P. Lermusiaux, B. Montagu

that can be used as an effective static analyser. This analyser detects uncaught
exceptions, and provides a description of the values that a program may return.
The abstract interpreter relies on a generic abstract domain, that is parameterised
over a domain for scalars, and that can represent regular sets of values of our
programming language. This is achieved by a fixpoint constructor in the syntax
of abstract values, that denotes an inductive set of values.

The abstract interpreter is defined in an open recursive style, where the
recursive knot is tied by calling a dynamic fixpoint solver. Importantly, the
analyser does not call the solver for every recursive call: it performs standard
recursive calls on strict sub-terms, but calls the solver to analyse function calls.

Based on this approach, we implemented a static analyser for OCaml programs.
We presented some extensions of our formalism to support several core features of
OCaml, including dynamic generation of exceptions, mutable records, the module
system. Our analyser starts with transforming the OCaml typed AST into a
simpler language where evaluation order is explicit. This transformation required
a lot of care and demanded a substantial implementation effort. One key aspect
of this transformation is the disambiguation of pattern matching, as we chose to
work with an exhaustive and non-ambiguous pattern matching primitive in order
to simplify the analysis of programs.

Our experiments on 290 OCaml programs show some encouraging results, both
in terms of performance and precision. Still, some improvements are needed for
the analysis to be applicable to larger code bases. In particular, the minimisation
of abstract values requires some more study and fine tuning: while it plays a
crucial role to analyse some examples in a reasonable time, it can also severely
undermine the analyser’s performance in some other cases.

At the moment, the analyser can deal with whole programs only. To analyse
libraries more modularly, we plan to experiment with generating abstract values
that over-approximate the inputs of a library’s function, based on their types. In
the near future, we also plan to extend the analyser with OCaml features that
are yet to be supported (e.g., arrays, laziness, floats, objects, recursive modules,
interactions with the operating system, etc.), most of which will require substantial
formalisation and implementation efforts. Recently introduced features, such as
algebraic effects and one-shot continuations, are also on our agenda, and are
likely to raise interesting challenges.

Finally, we hope that our abstract interpreter can be extended to perform
other kinds of static analyses for OCaml programs, such as a purity analysis,
or the detection of whether the behaviour of a program might depend on the
order of evaluation. We would also like our implementation to serve as a basis
for experimenting with recent relational domains for trees and scalars [29,61,2],
and with relational analyses of functional programs [49].

Data-Availability Statement. The companion artefact [35] is hosted on the
Zenodo platform and referenced by the DOI 10.5281/zenodo.10457925.

Detection of Uncaught Exceptions by Abstract Interpretation 415

https://doi.org/10.5281/zenodo.10457925

References

1. Amadio, R.M., Cardelli, L.: Subtyping recursive types p. 575–631 (9 1993). https:
//doi.org/10.1145/155183.155231

2. Bautista, S., Jensen, T., Montagu, B.: Lifting Numeric Relational Domains to Al-
gebraic Data Types. In: Singh, G., Urban, C. (eds.) Static Analysis. pp. 104–134.
Springer Nature Switzerland, Cham (2022)

3. Boichut, Y., Genet, T., Jensen, T., Roux, L.L.: Rewriting Approximations for Fast
Prototyping of Static Analyzers. In: Lecture Notes in Computer Science, pp. 48–62.
Springer Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_6

4. Brandl, K., Erdweg, S., Keidel, S., Hansen, N.: Modular Abstract Definitional
Interpreters for WebAssembly. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPICS.ECOOP.2023.5

5. Charguéraud, A.: The Locally Nameless Representation. Journal of Automated
Reasoning 49(3), 363–408 (May 2011). https://doi.org/10.1007/s10817-011-9225-2

6. Charlier, B.L., Van Hentenryck, P.: A Universal Top-Down Fixpoint Algorithm.
Tech. rep., USA (1992), ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf

7. Cirstea, H., Lermusiaux, P., Moreau, P.E.: Static analysis of pattern-free properties.
In: Proceedings of the 23rd International Symposium on Principles and Practice
of Declarative Programming, PPDP 2021. pp. 9:1–9:13. ACM (sep 2021). https:
//doi.org/10.1145/3479394.3479404

8. Cirstea, H., Moreau, P.: Generic Encodings of Constructor Rewriting Systems.
In: Proceedings of the 21st International Symposium on Principles and Practice
of Declarative Programming, PPDP 2019. pp. 8:1–8:12. ACM (oct 2019). https:
//doi.org/10.1145/3354166.3354173

9. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. pp. 238–252. POPL ’77, Association for Computing
Machinery, New York, NY, USA (1977). https://doi.org/10.1145/512950.512973

10. Cousot, P., Cousot, R.: Formal Language, Grammar and Set-constraint-based Pro-
gram Analysis by Abstract Interpretation. In: Proceedings of the seventh interna-
tional conference on Functional programming languages and computer architecture
- FPCA '95. ACM Press (1995). https://doi.org/10.1145/224164.224199

11. Darais, D., Labich, N., Nguyen, P.C., Horn, D.V.: Abstracting definitional inter-
preters (functional pearl). Proc. ACM Program. Lang. 1(ICFP), 12:1–12:25 (2017).
https://doi.org/10.1145/3110256

12. Fecht, C., Seidl, H.: A Faster Solver for General Systems of Equations. Sci. Comput.
Program. 35(2), 137–161 (1999). https://doi.org/10.1016/S0167-6423(99)00009-X

13. Filliâtre, J.C., Conchon, S.: Type-safe modular hash-consing. In: Proceedings of the
2006 workshop on ML. ACM (sep 2006). https://doi.org/10.1145/1159876.1159880

14. Fähndrich, M., Aiken, A.: Tracking down exceptions in Standard ML programs.
techreport 98-996, University of California at Berkeley, Computer Science Division
(1998)

15. Fähndrich, M., Forster, J.S., Aiken, A., Cu, J.: Tracking down Exceptions in
Standard ML Programs. techreport UCB/CSD-98-996, University of California,
Computer Science Division (EECS), Berkeley, California 94720 (Feb 1998), https:
//theory.stanford.edu/~aiken/publications/papers/tr98.pdf

16. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive Subtyping Revealed. Jour-
nal of Functional Programming 12(6), 511–548 (2002). https://doi.org/10.1017/
S0956796802004318

416 P. Lermusiaux, B. Montagu

https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/155183.155231
https://doi.org/10.1007/978-3-540-73449-9_6
https://doi.org/10.1007/978-3-540-73449-9_6
https://doi.org/10.4230/LIPICS.ECOOP.2023.5
https://doi.org/10.4230/LIPICS.ECOOP.2023.5
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
https://doi.org/10.1145/3479394.3479404
https://doi.org/10.1145/3479394.3479404
https://doi.org/10.1145/3479394.3479404
https://doi.org/10.1145/3479394.3479404
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/224164.224199
https://doi.org/10.1145/224164.224199
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.1016/S0167-6423(99)00009-X
https://doi.org/10.1016/S0167-6423(99)00009-X
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1145/1159876.1159880
https://theory.stanford.edu/~aiken/publications/papers/tr98.pdf
https://theory.stanford.edu/~aiken/publications/papers/tr98.pdf
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1017/S0956796802004318

17. Genet, T., Gall, T.L., Legay, A., Murat, V.: A Completion Algorithm for Lattice
Tree Automata. In: Konstantinidis, S. (ed.) Implementation and Application of
Automata - 18th International Conference, CIAA 2013, Halifax, NS, Canada, July
16-19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7982, pp. 134–145.
Springer (2013). https://doi.org/10.1007/978-3-642-39274-0_13

18. Genet, T., Le Gall, T., Legay, A., Murat, V.: Tree Regular Model Checking for
Lattice-Based Automata. In: CIAA - 18th International Conference on Implemen-
tation and Application of Automata. LNCS, vol. 7982. Springer, Halifax, Canada
(Jul 2013)

19. Gilray, T., Lyde, S., Adams, M.D., Might, M., Horn, D.V.: Pushdown control-flow
analysis for free. In: Bodík, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 691–704. ACM
(2016). https://doi.org/10.1145/2837614.2837631

20. Haudebourg, T., Genet, T., Jensen, T.P.: Regular language type inference with
term rewriting. Proc. ACM Program. Lang. 4(ICFP), 112:1–112:29 (2020). https:
//doi.org/10.1145/3408994

21. Heintze, N., Jaffar, J.: Set constraints and set-based analysis. In: Lecture Notes
in Computer Science, pp. 281–298. Springer Berlin Heidelberg (1994). https://doi.
org/10.1007/3-540-58601-6_107

22. Hentenryck, P.V., Cortesi, A., Charlier, B.L.: Type analysis of Prolog using type
graphs. The Journal of Logic Programming 22(3), 179–209 (Mar 1995). https:
//doi.org/10.1016/0743-1066(94)00021-w

23. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure.
Journal of Functional Programming 16(02), 197 (nov 2005). https://doi.org/10.
1017/s0956796805005769

24. Hofmann, M., Karbyshev, A., Seidl, H.: Verifying a Local Generic Solver in Coq.
In: Cousot, R., Martel, M. (eds.) Static Analysis - 17th International Symposium,
SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6337, pp. 340–355. Springer (2010). https://doi.org/10.
1007/978-3-642-15769-1_21

25. Horn, D.V., Might, M.: Abstracting Abstract Machines. In: Proceedings of the 15th

ACM SIGPLAN international conference on Functional programming - ICFP '10.
ACM Press (2010). https://doi.org/10.1145/1863543.1863553

26. Jones, N.D.: Flow Analysis of Lambda Expressions. DAIMI Report Series 10(128)
(Jan 1981). https://doi.org/10.7146/dpb.v10i128.7404

27. Jones, N.D., Andersen, N.: Flow analysis of lazy higher-order functional programs.
Theoretical Computer Science 375(1-3), 120–136 (May 2007). https://doi.org/10.
1016/j.tcs.2006.12.030

28. Jones, N.D., Muchnick, S.S.: Flow Analysis and Optimization of LISP-like Structures.
In: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL '79. ACM Press (1979). https://doi.org/10.1145/
567752.567776

29. Journault, M., Miné, A., Ouadjaout, A.: An Abstract Domain for Trees with
Numeric Relations. In: Caires, L. (ed.) Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11423, pp. 724–751. Springer (2019). https://doi.org/10.1007/978-3-030-17184-1_26

Detection of Uncaught Exceptions by Abstract Interpretation 417

https://doi.org/10.1007/978-3-642-39274-0_13
https://doi.org/10.1007/978-3-642-39274-0_13
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/3408994
https://doi.org/10.1145/3408994
https://doi.org/10.1145/3408994
https://doi.org/10.1145/3408994
https://doi.org/10.1007/3-540-58601-6_107
https://doi.org/10.1007/3-540-58601-6_107
https://doi.org/10.1007/3-540-58601-6_107
https://doi.org/10.1007/3-540-58601-6_107
https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1017/s0956796805005769
https://doi.org/10.1017/s0956796805005769
https://doi.org/10.1017/s0956796805005769
https://doi.org/10.1017/s0956796805005769
https://doi.org/10.1007/978-3-642-15769-1_21
https://doi.org/10.1007/978-3-642-15769-1_21
https://doi.org/10.1007/978-3-642-15769-1_21
https://doi.org/10.1007/978-3-642-15769-1_21
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.7146/dpb.v10i128.7404
https://doi.org/10.7146/dpb.v10i128.7404
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1145/567752.567776
https://doi.org/10.1145/567752.567776
https://doi.org/10.1145/567752.567776
https://doi.org/10.1145/567752.567776
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-17184-1_26

30. Keidel, S., Erdweg, S., Hombücher, T.: Combinator-Based Fixpoint Algorithms
for Big-Step Abstract Interpreters. Proceedings of the ACM on Programming
Languages 7(ICFP), 955–981 (aug 2023). https://doi.org/10.1145/3607863

31. Kozen, D., Palsberg, J., Schwartzbach, M.I.: Efficient Recursive Subtyping. Mathe-
matical Structures in Computer Science 5(1), 113–125 (Mar 1995). https://doi.org/
10.1017/s0960129500000657

32. Krauss, A.: Pattern minimization problems over recursive data types. In: Hook,
J., Thiemann, P. (eds.) Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP '08. pp. 267–274. ACM (sep 2008).
https://doi.org/10.1145/1411204.1411242

33. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM (jan 2017). https://doi.org/10.1145/3009837.3009872

34. Lermusiaux, P., Montagu, B.: Detection of Uncaught Exceptions in Functional
Programs by Abstract Interpretation (Extended Version). Research report, Inria
(Jan 2024), https://inria.hal.science/hal-04410771

35. Lermusiaux, P., Montagu, B.: Detection of Uncaught Exceptions in Functional
Programs by Abstract Interpretation: Software Artefact (Jan 2024). https://doi.
org/10.5281/zenodo.10457925

36. Leroy, X.: A Modular Module System. Journal of Functional Programming 10(3),
269–303 (2000). https://doi.org/10.1017/S0956796800003683

37. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml System,
Documentation and User’s Manual – Release 5.1. INRIA (Nov 2023), https://v2.
ocaml.org/releases/5.1/htmlman/index.html

38. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. ACM Trans-
actions on Programming Languages and Systems 22(2), 340–377 (2000). https:
//doi.org/10.1145/349214.349230

39. Li, H., Berenger, F., Chang, B.E., Rival, X.: Semantic-directed clumping of
disjunctive abstract states. In: Castagna, G., Gordon, A.D. (eds.) Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 32–45. ACM (2017).
https://doi.org/10.1145/3009837.3009881

40. Maranget, L.: Warnings for pattern matching. Journal of Functional Programming
17(3), 387–421 (2007). https://doi.org/10.1017/S0956796807006223

41. Mauborgne, L.: Representation of Sets of Trees for Abstract Interpretation. phdthe-
sis, École Polytechnique (Nov 1999), https://www.di.ens.fr/~mauborgn/publi/t.pdf

42. Mauborgne, L.: An Incremental Unique Representation for Regular Trees. Nordic
Journal of Computing 7(4), 290–311 (Dec 2000), https://software.imdea.org/
~mauborgn/publi/njc7.pdf

43. Mauborgne, L.: Improving the representation of infinite trees to deal with sets of
trees. In: Smolka, G. (ed.) Programming Languages and Systems, 9th European
Symposium on Programming, ESOP 2000, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany,
March 25 - April 2, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1782,
pp. 275–289. Springer (2000). https://doi.org/10.1007/3-540-46425-5_18

44. Midtgaard, J.: Control-flow analysis of functional programs. ACM Computing
Surveys 44(3), 10:1–10:33 (2012). https://doi.org/10.1145/2187671.2187672

45. Midtgaard, J., Jensen, T.: A Calculational Approach to Control-Flow Analysis by
Abstract Interpretation. In: Static Analysis, pp. 347–362. Springer Berlin Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69166-2_23

418 P. Lermusiaux, B. Montagu

https://doi.org/10.1145/3607863
https://doi.org/10.1145/3607863
https://doi.org/10.1017/s0960129500000657
https://doi.org/10.1017/s0960129500000657
https://doi.org/10.1017/s0960129500000657
https://doi.org/10.1017/s0960129500000657
https://doi.org/10.1145/1411204.1411242
https://doi.org/10.1145/1411204.1411242
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://inria.hal.science/hal-04410771
https://doi.org/10.5281/zenodo.10457925
https://doi.org/10.5281/zenodo.10457925
https://doi.org/10.5281/zenodo.10457925
https://doi.org/10.5281/zenodo.10457925
https://doi.org/10.1017/S0956796800003683
https://doi.org/10.1017/S0956796800003683
https://v2.ocaml.org/releases/5.1/htmlman/index.html
https://v2.ocaml.org/releases/5.1/htmlman/index.html
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/3009837.3009881
https://doi.org/10.1145/3009837.3009881
https://doi.org/10.1017/S0956796807006223
https://doi.org/10.1017/S0956796807006223
https://www.di.ens.fr/~mauborgn/publi/t.pdf
https://software.imdea.org/~mauborgn/publi/njc7.pdf
https://software.imdea.org/~mauborgn/publi/njc7.pdf
https://doi.org/10.1007/3-540-46425-5_18
https://doi.org/10.1007/3-540-46425-5_18
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1007/978-3-540-69166-2_23
https://doi.org/10.1007/978-3-540-69166-2_23

46. Midtgaard, J., Jensen, T.P.: Control-Flow Analysis of Function Calls and Returns by
Abstract Interpretation. In: Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming - ICFP '09. ACM Press (2009). https:
//doi.org/10.1145/1596550.1596592

47. Midtgaard, J., Jensen, T.P.: Control-Flow Analysis of Function Calls and Returns
by Abstract Interpretation. Information and Computation 211, 49–76 (Feb 2012).
https://doi.org/10.1016/j.ic.2011.11.005

48. Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Com-
puter and System Sciences 17(3), 348–375 (dec 1978). https://doi.org/10.1016/
0022-0000(78)90014-4

49. Montagu, B., Jensen, T.P.: Stable Relations and Abstract Interpretation of Higher-
order Programs. Proc. ACM Program. Lang. 4(ICFP), 119:1–119:30 (2020). https:
//doi.org/10.1145/3409001

50. Montagu, B., Jensen, T.P.: Trace-Based Control-Flow Analysis. In: Freund, S.N.,
Yahav, E. (eds.) PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 20211. pp. 482–496. ACM (2021). https://doi.org/10.1145/3453483.3454057

51. Nielson, F., Nielson, H.R.: Interprocedural Control Flow Analysis. In: Programming
Languages and Systems, pp. 20–39. Springer Berlin Heidelberg (1999). https:
//doi.org/10.1007/3-540-49099-x_3

52. Okasaki, C.: Red-Black Trees in a Functional Setting. J. Funct. Program. 9(4),
471–477 (1999), http://journals.cambridge.org/action/displayAbstract?aid=44273

53. Okasaki, C., Gill, A.: Fast Mergeable Integer Maps. In: Morriset, G. (ed.) Proceed-
ings of the 1998 ACM SIGPLAN workshop on ML. pp. 77–86 (Sep 1998)

54. Pessaux, F., Leroy, X.: Type-based analysis of uncaught exceptions. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM (jan 1999). https://doi.org/10.1145/292540.292565

55. Pessaux, F.: Détection statique d’exceptions non rattrapées en Objective Caml.
Ph.D. thesis, Université Paris 6 (1999), http://www.theses.fr/1999PA066398

56. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge, Mass
(2002)

57. Rémy, D.: Type checking records and variants in a natural extension of ML. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL '89. ACM Press (1989). https://doi.org/10.1145/
75277.75284

58. Reynolds, J.C.: Automatic Computation of Data Set Definitions. Information
Processing 68, 456–461 (1969)

59. Seidl, H., Vogler, R.: Three Improvements to the Top-Down Solver. In: Sabel,
D., Thiemann, P. (eds.) Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt am
Main, Germany, September 03-05, 2018. pp. 21:1–21:14. ACM (2018). https://doi.
org/10.1145/3236950.3236967

60. Shivers, O.: The Semantics of Scheme Control-Flow Analysis. In: Proceedings
of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation. pp. 190–198. PEPM ’91, Association for Computing
Machinery, New York, NY, USA (1991). https://doi.org/10.1145/115865.115884

61. Valnet, M., Monat, R., Miné, A.: Analyse statique de valeurs par interprétation
abstraite de programmes fonctionnels manipulant des types algébriques récursifs. In:
JFLA 2023-34èmes Journées Francophones des Langages Applicatifs. pp. 210–241
(2023)

Detection of Uncaught Exceptions by Abstract Interpretation 419

https://doi.org/10.1145/1596550.1596592
https://doi.org/10.1145/1596550.1596592
https://doi.org/10.1145/1596550.1596592
https://doi.org/10.1145/1596550.1596592
https://doi.org/10.1016/j.ic.2011.11.005
https://doi.org/10.1016/j.ic.2011.11.005
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3409001
https://doi.org/10.1145/3409001
https://doi.org/10.1145/3409001
https://doi.org/10.1145/3409001
https://doi.org/10.1145/3453483.3454057
https://doi.org/10.1145/3453483.3454057
https://doi.org/10.1007/3-540-49099-x_3
https://doi.org/10.1007/3-540-49099-x_3
https://doi.org/10.1007/3-540-49099-x_3
https://doi.org/10.1007/3-540-49099-x_3
http://journals.cambridge.org/action/displayAbstract?aid=44273
https://doi.org/10.1145/292540.292565
https://doi.org/10.1145/292540.292565
http://www.theses.fr/1999PA066398
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/115865.115884
https://doi.org/10.1145/115865.115884

62. de Vilhena, P.E., Pottier, F.: A Type System for Effect Handlers and Dynamic
Labels. In: Programming Languages and Systems, pp. 225–252. Springer Nature
Switzerland (2023). https://doi.org/10.1007/978-3-031-30044-8_9

63. de Vilhena, P.E., Pottier, F., Jourdan, J.: Spy game: verifying a local generic
solver in Iris. Proc. ACM Program. Lang. 4(POPL), 33:1–33:28 (2020). https:
//doi.org/10.1145/3371101

64. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: the goblint approach. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE
2016. pp. 391–402. ACM (2016). https://doi.org/10.1145/2970276.2970337

65. Wright, A.K., Jagannathan, S.: Polymorphic Splitting: An Effective Polyvariant
Flow Analysis. ACM Trans. Program. Lang. Syst. 20(1), 166–207 (1998). https:
//doi.org/10.1145/271510.271523

66. Yi, K.: Compile-time Detection of Uncaught Exceptions in Standard ML Pro-
grams. In: Charlier, B.L. (ed.) Static Analysis, First International Static Analy-
sis Symposium, SAS’94, Namur, Belgium, September 28-30, 1994, Proceedings.
Lecture Notes in Computer Science, vol. 864, pp. 238–254. Springer (1994).
https://doi.org/10.1007/3-540-58485-4_44

67. Yi, K.: An Abstract Interpretation for Estimating Uncaught Exceptions in Standard
ML Programs. Sci. Comput. Program. 31(1), 147–173 (1998). https://doi.org/10.
1016/S0167-6423(96)00044-5

68. Yi, K., Ryu, S.: A cost-effective estimation of uncaught exceptions in Standard
ML programs. Theoretical Computer Science 277(1-2), 185–217 (2002). https:
//doi.org/10.1016/S0304-3975(00)00317-0

420 P. Lermusiaux, B. Montagu

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/271510.271523
https://doi.org/10.1145/271510.271523
https://doi.org/10.1145/271510.271523
https://doi.org/10.1145/271510.271523
https://doi.org/10.1007/3-540-58485-4_{4}{4}
https://doi.org/10.1007/3-540-58485-4_{4}{4}
https://doi.org/10.1016/S0167-6423(96)00044-5
https://doi.org/10.1016/S0167-6423(96)00044-5
https://doi.org/10.1016/S0167-6423(96)00044-5
https://doi.org/10.1016/S0167-6423(96)00044-5
https://doi.org/10.1016/S0304-3975(00)00317-0
https://doi.org/10.1016/S0304-3975(00)00317-0
https://doi.org/10.1016/S0304-3975(00)00317-0
https://doi.org/10.1016/S0304-3975(00)00317-0
http://creativecommons.org/licenses/by/4.0/

	Detection of Uncaught Exceptions in Functional Programs by Abstract Interpretation

