
Artifact Report: Intel PMDK Transactions:
Specification, Validation and Concurrency⋆

Azalea Raad1 , Ori Lahav2 , John Wickerson1 ,
Piotr Balcer ,3

1 Imperial College London, London, UK
2 Tel Aviv University, Tel Aviv, Israel

3 Intel, Gdansk, Poland
4 University of Surrey, Guildford, UK

Abstract. This report extends §6 of the main paper by providing further
details of the mechanisation effort.

1 Modelling and Validating Correctness in FDR4

FDR4 [4] is a model checker for CSP [5] that has recently been used to verify
linearisability [7], as well as opacity and durable opacity [3]. We similarly provide
an FDR4 development, which allows proofs of refinement to be automatically
checked up to certain bounds. This is in contrast to manual methods of proving
correctness of concurrent objects [2,1], which require a significant amount of
manual human input (though such manual proofs are unbounded). FDR4 uses
a variety of underlying model checking paradigms and partial-order reduction
techniques [4], depending on the structure of the files to be verified. FDR4 builds
on FDR3, but the exact implementation details of FDR4 are not publicly available
since it is a commercial product (available for free academic use).

The CSP files corresponding to this report may be downloaded from [8].

1.1 Modelling Details

One of the most challenging aspects of the FDR4 development is the modelling
work itself. Our algorithms execute over a shared memory, but the CSP formalism
is based on communicating processes with no notion of shared states. Thus, for each
location we must explicitly define handler processes that communicate through
channels to update and return the values of components (e.g. the addresses,
read/write sets) of each model. Moreover, the implementations (txPMDK,

⋆ Raad is funded by a UKRI fellowship MR/V024299/1, EPSRC grant EP/X037029/1
and VeTSS. Lahav is supported by the Israel Science Foundation (grant 814/22)
and by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement no. 851811). Wickerson
is funded by EPSRC grant EP/R006865/1. Dongol is funded by EPSRC grants
EP/Y036425/1, EP/X037142/1, EP/X015149/1, EP/V038915/1, EP/R025134/2
and VeTSS.

and Brijesh Dongol4(B)

b.dongol@surrey.ac.uk

c© The Author(s) 2024
S. Weirich (Ed.): ESOP 2024, LNCS 14577, pp. 180–184, 2024.
https://doi.org/10.1007/978-3-031-57267-8_7

http://orcid.org/0000-0002-2319-3242
http://orcid.org/0000-0003-4305-6998
http://orcid.org/0000-0001-6735-5533
http://orcid.org/0000-0003-0446-3507
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57267-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-57267-8_7
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

PMDK-NORec and PMDK-TML), the specification (ddTMS) and underlying
memory models (PSC and PTSOsyn) we consider are non-trivial, significantly
increasing the challenge of the modelling effort. Although constructing the models
is challenging, once the models have been developed, they can be combined
in a modular fashion. We have taken advantage of this feature to combine
our implementations with different memory models during development. The
combination of PMDK-TML and TML/NOrec also takes advantage of this
modularity.

This modularity also means that our models are reusable. One could use our
models to check other developments, e.g. those that use txPMDK to implement
other failure-atomic data structures, or verify redesigns of txPMDK over different
memory models. Specifically, we use a top-level CSP process (which may comprise
an interleaved composition of processes for each transaction) to model the most
general client. Each transaction process begins a transaction, and then calls an
unbounded number of reads, writes and allocations at non-deterministically chosen
locations and with non-deterministically chosen values. An in-flight transaction
process may also non-deterministically choose to terminate by calling commit
instead of calling a read, write or allocation. Each operation call produces
an externally visible invocation event, and when the operation terminates, an
externally visible response is generated. Some operations may respond with an
abort, in which case the transaction process itself terminates.

Additionally, there is an externally visible crash event that synchronises
with all processes. At the level of the abstraction (i.e. ddTMS), this simply
terminates all in-flight transactions, and resets the memory sequence (as detailed
by the rule (X)). At the level of the implementation, all in-flight transactions are
terminated and additionally, the store and persistency buffers are cleared. This
means that when execution resumes, the value of each location is taken from
NVM. Immediately after a crash (and before any other processes are started), the
recovery process corresponding to the algorithm is executed. Note that transaction
identifiers are never reused.

We eschew further details of our FDR4 models since they are provided as
supplementary material [8] and also refer the interested reader to other prior
works [7,3].

1.2 Overview of Development

An overview of our FDR4 development is given in Fig. 1. We derive two specifi-
cations from ddTMS. The first is an FDR4 model of ddTMS itself, based on
prior work [7,3], but contains the extensions required for ddTMS. The second is
ddTMS-Seq, which restricts ddTMS to a sequential crash-free specification. We
use ddTMS-Seq to obtain (lower-bound) liveness-like guarantees, which strength-
ens traditional deadlock or divergence proofs of refinement. These lower-bound
checks ensure our models contain at least the traces of ddTMS-Seq.

Artifact Report: Intel PMDK Transactions 181

Implementations

PMDK

PMDK-TML

PMDK-NORec

Memory
models

PSC

PTSOsyn

ddTMS
(concurrent upper bound)

ddTMS-Seq
(sequential lower bound)

refines

refines

uses

Fig. 1: Overview of FDR4
checks

Memory #txns#locs#val#buff txPMDK
PMDK-
TML

PMDK-
NOrec

PSC 2 2 2 2 5.83s 5.90s 6.74s
PSC 2 3 2 2 201.03s 213.97s 271.35s
PSC 2 2 3 2 21.65s 23.47s 27.40s
PSC 2 2 2 3 5.83s 5.78s 6.60s

PTSOsyn 2 1 2 2 0.61s 3.96s 1.57s
PTSOsyn 2 2 2 2 6.67s 6.71s 7.73s
PTSOsyn 2 3 2 2 267.1s 268.91s 319.18s
PTSOsyn 2 2 3 2 24.10s 25.53s 29.24s
PTSOsyn 2 2 2 3 14.37s 14.19s 15.41s

Fig. 2: Summary of upper bounds checks (to-
tal time in seconds: compilation + model explo-
ration). The time out (TO) is set to 1000 seconds
of compilation time.

CSP files. Our development comprises the following files.

File Description

Types.csp Contains the basic types and parameters. Use this file to increase /
decrease the number of transactions, memory locations, values, etc.
Defaults to 2 transactions, 2 locations and two values.

MemoryP.csp Handler for memory, as well as the redo and undo logs. Operations
query handlers to read/update the shared memory, flush to persistent
memory and recover. This file is used to switch between memory
models (NVM (which contains no crashes), PSC and PTSOsyn) - see
the bottom of the file.

LocHandler.csp Handler for local memory (i.e., the loc variable used by the imple-
mentations in Figs. 5 and 6.

ddTMS.csp Model of the ddTMS automata from the main paper (Fig. 8).
PMDK.csp Model of PMDK from Fig. 4 of the main paper.
PMDK-TML.csp Model of PMDK-TML from Fig. 5 of the main paper.
PMDK-NOrec.csp Model of PMDK-NORec from Fig. 6 of the main paper.
Refinement.csp File containing all checks to be performed.

Description of Tests. The file Refinement.csp comprises six tests as detailed
in Figs. 9 and 10 of the paper. There are three upper-bound checks, which show
that PMDK, PMDK-TML and PMDK-NORec are refinements of ddTMS,
validating soundness:

– FinalTMS [T= PMDK, checking that PMDK refines ddTMS.
– FinalTMS [T= FinalTML, checking that PMDK-TML refines ddTMS.
– FinalTMS [T= FinalNOrec, checking that PMDK-NORec refines ddTMS.

Each of these tests can be run against the memory models: NVM (which contains
no crashes), PSC and PTSOsyn by commenting/uncommenting the relevant
lines at the end of the file MemoryP.csp.

Additionally, there are three lower-bound checks, which show ddTMS-Seq
are refinements of PMDK, PMDK-TML and PMDK-NORec.

182 Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, and Brijesh Dongol

– PMDK [T= SeqFinalTMS

– FinalTML [T= SeqFinalTMS

– FinalNOrec [T= FinalNOrec

Each of these tests can be run against the memory models: NVM and PSC as
defined in the file MemoryP.csp. Note that the test against PTSOsyn times out.
However, the tests above are sufficient since PTSOsyn reduces to PSC in the
absence of data races (e.g., sequential executions).

Each check in FDR4 is split into two phases: (1) a compilation phase that
builds the models; and (2) a model exploration phase. The characteristics of the
upper and lower bounds checks are distinct. When naively checking the upper
bound, compilation is almost instantaneous but model exploration times can be
significant; these times are swapped for the lower bounds checks.

In general, lower-bounds take much longer to verify than the upper-bounds
since FDR4 is optimised to verify abstract (low-detail) specifications are refined
by concrete (high-detail) implementations. The lower bounds checks use the more
complex models as the specification, leading to the creation of very large space-
inefficient models, putting pressure on the available system memory. However, the
lower-bound checks for PSC and PTSOsyn are superceded by the corresponding
checks over NVM, since the memory models PSC and PTSOsyn are both
supersets of NVM. That is, any trace over NVM must also be a trace PSC
and PTSOsyn. For two transactions, two locations and two values, the checks
for PMDK, PMDK-TML and PMDK-NORec take 12.16, 17.36, and 56.02
seconds, respectively.

1.3 Summary of Results

Fig. 2 summarises our experiments on the upper bound checks, where the times
shown combine the compilation and model exploration times. Each row represents
an experiment that bounds the number of transactions (#txns), locations (#locs),
values (#val) and the size of the persistency and store buffers (#buff). The times
reported are for an Apple M1 device with 16GB of memory. The first row depicts a
set of experiments where the implementations execute directly on NVM, without
any buffers. As we discuss below, these tests are sufficient for checking lower
bounds. The baseline for our checks sets the value of each parameter to two,
and Fig. 2 allows us to see the cost of increasing each parameter. Note that all
models time out when increasing the number of transactions to three, thus these
times are not shown. Also note that for txPMDK (which is single-threaded),
the checks for PSC also cover PTSOsyn, since PTSOsyn is equivalent to PSC in
the absence of races [6]. Nevertheless, it is interesting to run the single-threaded
experiments on the PTSOsyn model to understand the impact of the memory
model on the checks.

In our experiments we use FDR4’s built-in partial order reduction features
to make the upper bound checks feasible. This has a huge impact on the model
checking speed; for instance, the check for PMDK-TML with two transactions,
two locations, two values and buffer size of two reduces from over 6000 seconds

Artifact Report: Intel PMDK Transactions 183

(1 hour and 40 minutes) to under 7 seconds, which is almost a 1000-fold im-
provement! This speed-up makes it feasible to use FDR4 for rapid prototyping
when developing programs that use txPMDK, even for the relatively complex
PTSOsyn memory model.

References

1. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.:
Mechanized proofs of opacity: a comparison of two techniques. Formal Aspects
Comput. 30(5), 597–625 (2018). https://doi.org/10.1007/s00165-017-0433-3

2. Dongol, B., Derrick, J.: Verifying linearisability: A comparative survey. ACM Comput.
Surv. 48(2), 19:1–19:43 (2015). https://doi.org/10.1145/2796550

3. Dongol, B., Le-Papin, J.: Checking opacity and durable opacity with FDR. In:
Calinescu, R., Pasareanu, C.S. (eds.) SEFM. Lecture Notes in Computer Science, vol.
13085, pp. 222–242. Springer (2021). https://doi.org/10.1007/978-3-030-92124-8 13

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3 — A Modern
Refinement Checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS. Lecture
Notes in Computer Science, vol. 8413, pp. 187–201 (2014)

5. Hoare, C.A.R.: Communicating sequential processes (reprint). Commun. ACM 26(1),
100–106 (1983). https://doi.org/10.1145/357980.358021

6. Khyzha, A., Lahav, O.: Taming x86-tso persistency. Proc. ACM Program. Lang.
5(POPL), 1–29 (2021). https://doi.org/10.1145/3434328

7. Lowe, G.: Analysing lock-free linearizable datatypes using CSP. In: Gibson-Robinson,
T., Hopcroft, P.J., Lazic, R. (eds.) Concurrency, Security, and Puzzles - Essays
Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday. Lecture
Notes in Computer Science, vol. 10160, pp. 162–184. Springer (2017). https://doi.
org/10.1007/978-3-319-51046-0 9

8. Raad, A., Lahav, O., Wickerson, J., Balcer, P., Dongol, B.: Intel PMDK transactions:
Specification, validation and concurrency (Artifact) (2024). https://doi.org/10.6084/
m9.figshare.24988173.v1

184 Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, and Brijesh Dongol

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1145/2796550
https://doi.org/10.1145/2796550
https://doi.org/10.1007/978-3-030-92124-8_13
https://doi.org/10.1007/978-3-030-92124-8_13
https://doi.org/10.1145/357980.358021
https://doi.org/10.1145/357980.358021
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434328
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.6084/m9.figshare.24988173.v1
https://doi.org/10.6084/m9.figshare.24988173.v1
https://doi.org/10.6084/m9.figshare.24988173.v1
https://doi.org/10.6084/m9.figshare.24988173.v1
http://creativecommons.org/licenses/by/4.0/

	 Artifact Report: Intel PMDK Transactions: Specification, Validation and Concurrency

