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Abstract. With the growing connectivity demands, Unmanned Aerial
Vehicles (UAVs) have emerged as a prominent component in the de-
ployment of Next Generation On-demand Wireless Networks. However,
current UAV positioning solutions typically neglect the impact of Rate
Adaptation (RA) algorithms or simplify its effect by considering ideal
and non-implementable RA algorithms. This work proposes the Rate
Adaptation aware RL-based Flying Gateway Positioning (RARL) algo-
rithm, a positioning method for Flying Gateways that applies Deep Q-
Learning, accounting for the dynamic data rate imposed by the underly-
ing RA algorithm. The RARL algorithm aims to maximize the through-
put of the flying wireless links serving one or more Flying Access Points,
which in turn serve ground terminals. The performance evaluation of the
RARL algorithm demonstrates that it is capable of taking into account
the effect of the underlying RA algorithm and achieve the maximum
throughput in all analysed static and mobile scenarios.

Keywords: Aerial networks · Rate Adaptation · UAV positioning · Deep
Reinforcement Learning

1 Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged
as a promising technology for ensuring cost-effective on-demand wireless connec-
tivity [6,17]. The ability of UAVs to fly and navigate autonomously allow them to
provide access to communications services where no infrastructure coverage ex-
ists, which can be particularly useful in remote or difficult-to-reach areas. UAVs
are especially relevant in the context of sudden fluctuations in traffic demands
that impair the effective allocation of radio resources, a scenario frequently seen
in crowded events, for instance. Thus, UAVs are suitable platforms for delivering
and enhancing connectivity in heterogeneous scenarios, carrying communications
hardware to deploy Wi-Fi or cellular coverage. UAVs are highly adaptable and
can be quickly deployed and optimally positioned, in contrast to conventional
ground-based solutions [8].

In flying networks, relays are often employed to improve network coverage
and capacity, as represented in Figure 1. The distance between UAVs directly
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influences the communications range between the flying nodes, as well as the
Quality of Service (QoS) associated to the inter-UAV wireless links. Therefore,
the use of intermediate UAVs, herein named Flying Gateways (FGWs), enables
the extension of the communication range between the Backhaul network and
the Flying Access Points (FAPs), while preserving the quality of the established
connection [7]. By optimizing the positioning of the FGWs, there is an effective
balance of the load in the network while improving coverage, resulting in a
more efficient and reliable flying network. Nevertheless, the optimization of the
position of UAVs in flying networks according to a specific link metrics is still a
challenge, considering their dynamic nature.

Fig. 1: Relay network topology example, adapted from [12].

Machine Learning approaches can be employed to enhance various aspects of
the performance and operation of flying networks, including delay, throughput,
transmission power, and cache resource utilization [1,5,11,15,3]. Reinforcement
Learning (RL) techniques are particularly useful, as they are intrinsically related
to control theory. RL represents a relevant approach to handle the continuous
changing environment of flying networks, taking into account long-term, sequen-
tial and cumulative rewards, as it maps states into the effectiveness of the actions
[10]. With RL, decisions are based on the current states of the environment,
meaning that the agent can be trained using real-time network measurements
instead of relying on approximations [1]. This allows the agent to have a more
accurate response to the current environment conditions.

The main contribution of this paper is the Rate Adaptation aware RL-based
Flying Gateway Positioning (RARL) algorithm, which addresses the problem of
finding the position for the FGW that maximizes the throughput obtained in
the FAPs, considering the influence of the underlying RA algorithm. The effec-
tiveness of the RL approach was validated through simulations using Network
Simulator 3 (ns-3), which served as the platform for training, validating and
testing the model.

The rest of the paper is organized as follows. Section II presents the related
work on UAV positioning in flying networks. The design of the RARL algorithm
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is detailed in Section III. Section IV introduces the ns-3 simulation setup, as well
as the simulation results on the performance of the RARL algorithm. Finally,
Section V presents the conclusions and points out the future work.

2 Related Work

With the advancements made in the context of flying networks, many studies
have been developed to improve the positioning of the flying nodes. The work
carried in [7] includes the implementation of centralized on-demand Gateway
UAV positioning algorithm, relying on the awareness of the incoming traffic be-
haviour. Based on a mathematical approach, the goal is to minimize the capacity
of the bidirectional wireless link between the FGW and the FAPs, while ensuring
the bitrates required by each FAP. The results indicate that the position of the
FGW is an essential aspect of the Backhaul network configuration, since con-
stant FGW position updates can improve network performance. However, the
authors consider an ideal underlying RA algorithm.

In [5], a solution for flying Base Stations, serving a region with numerous
users, was proposed. This deployment relies on RL techniques for the UAV to be
able to learn how to optimize its trajectory, contouring obstacles and reaching
the intended service area. In this study, the UAV is assumed to return to its
landing location when reaching the limit period of the flight. With a Q-Learning
approach, the system was implemented based on making direct movement de-
cisions, allowing the optimization of the sum rate of the transmission over the
duration of the flight. With this solution, the algorithm needs no prior knowledge
of the environment and has the ability to learn the structure of the network, re-
sulting in improved performance. However, a limiting factor of this study is that
it considers a static environment, with no changes in the course of the flight.

Overall, the main UAV positioning approaches include brute-force search-
ing, mathematical optimizations [7,2,18], heuristics [9], and Machine Learning
algorithms [1,5,11,15,3]. Despite their importance, optimizing UAV positions in
a network to maximize one or more link metrics remains a challenging task,
given the multiple factors to consider. From the literature review, DRL emerges
as a promising approach for UAV positioning, supporting the choice of the Q-
Learning approach in the implementation of the RARL algorithm.

It is worth noting that few solutions have considered the impact of the Back-
haul network on the QoS experienced by ground terminals [7]. In addition, they
are focussed on static and invariant scenarios, assuming mostly symmetric links.
Moreover, none of the studies analysed included a realistic RA algorithm, which
limits the applicability of these methods. Our work aims to address the afore-
mentioned shortfalls, by considering a continuous analysis of the network state
and accounting for the implementation of realistic and dynamic adjustments of
the data rate in the network.



4 Gabriella Pantaleão et al.

3 RARL Algorithm Design

The RARL algorithm relies on the implementation of Deep Q-Learning, a Deep
RL method that has been proven to be highly applicable in continuous control
tasks, making it well-suited for addressing the positioning of UAVs within flying
networks. Three different scenarios were defined to design the RARL algorithm,
as presented below:

1. Asymmetric links scenario: with three static nodes corresponding to the
Backhaul, the FGW and the FAP, considering that the link between the
FGW and the Backhaul node and the link between the FAP and the FGW
are asymmetric, meaning that they have different values for the transmission
power. This scenario is illustrated in Figure 2a.

2. Moving FAP scenario: with the same network topology as the asym-
metric links scenario, where the link between the FAP and the FGW and
the link between the FGW and the Backhaul node are symmetric, but the
FAP moves, as presented in Figure 2b.

3. Two FAPs scenario: with four static nodes, corresponding to the Back-
haul, the FGW and two FAPs, where the link between the FGW and the
Backhaul node handles the traffic of the two symmetric links between the
FGW and the FAPs, as shown in Figure 2c.

Without loss of generality, in the two last scenarios we have considered sym-
metric wireless links in order to isolate the problems. The learning process was
adapted for each of the three scenarios. For all the cases, the agent was instanti-
ated in the FGW node, which is responsible for performing the different actions
selected. Nevertheless, the algorithm modelling as a Markov Decision Process
was different for each scenario. The action space, the observation space and the
reward functions defined for each scenario are described below.

3.1 Action Space

The actions of the FGW are based on discrete sequential movements, based
on incrementing the position in the 2D venue in the selected direction by 25
meters, a distance defined as a compromise between the training time and the
impact of the FGW’s movement on the link metrics, selected every 1 second,
defined as the decision interval. Thus, the action space comprises five movement
options, including the possibility of remaining in the same position: Left, Right,
Up, Down, and Same.

3.2 Observation Space

The observations must characterize the system so that the agent can recognize
the best positions for maximizing and balancing the throughput values in the
FGW and FAP nodes. For the asymmetric links and moving FAP scenarios,
the observations are defined as:
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(a) Asymmetric links scenario. (b) Moving FAP scenario.

(c) Two FAPs scenario.

Fig. 2: Three scenarios analysed.

– the coordinates of the FGW;
– the distances between the FGW and the Backhaul node and between the

FGW and the FAP;
– the throughput values measured in each link, calculated as the number of

bytes received throughout the course of a decision interval, i.e. every second.

For the two FAPs scenario, the approach to sense the environment is dif-
ferent, given the existence of more than one FAP. In this case, the observations
do not include the throughput values.

3.3 Reward Function

The underlying Minstrel-HT RA algorithm has a significant impact on the ob-
tained throughput values, heavily influenced by the distances travelled by the
FGW. This means that even if it travels to the same final position, the initial
conditions imposed by the link metrics in the starting point impact the final
throughput value obtained at the destination point. This means that the closer
the UAV originally is to the final position, the fewer fluctuations are seen in
the observed throughput. This is due to the fact that, when using Minstrel-HT,
the throughput variation has a slow response in cases where the link quality
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improves, as shown in [13,14,4,16]. Hence, modelling the system becomes chal-
lenging due to the need to identify positions that optimize and balance the
throughput values, which in turn requires addressing the peaks and variations
introduced by the Minstrel-HT algorithm.

To evaluate the variation of the link metrics - in this case the Signal-to-Noise
Ratio (SNR) and the throughput - throughout the simulations, a preliminary
study was carried out. For this purpose, the Backhaul node was positioned in (0,
0) and the FAP in (1000, 1000), with the configuration showed in Figure 2a. By
moving the FGW from the coordinates (25, 25) to (975, 975) and incrementing
the position of the FGW, horizontally and vertically, by 25 meters every 1 second,
the aim was to analyse the actual impact of the distance in the link metrics. To
evaluate the link metrics variation throughout the simulations, a preliminary
study was carried out. For this, the Backhaul node was positioned in (0, 0)
and the FAP in (1000, 1000), with the configuration showed in Figure 2a. By
moving the FGW from the coordinates (25, 25) to (975, 975) and incrementing
the position of the FGW, horizontally and vertically, by 25 meters every 1 second,
the aim was to analyse the actual impact of the distance in the link metrics.

For the asymmetric links and moving FAP scenarios, since the SNR,
shown in Figure 3b, has greater sensitivity to changes in position when compared
to the throughput, presented in Figure 3a, the SNR was considered as a more
suitable measure of the environment’s state. This means that, the objective can
be modelled according to the SNR, with the reward functions translating into
maximizing the SNR values and minimizing the difference between the SNR
obtained in both the link connecting the Backhaul node and the FGW and in
the link between the FGW and the FAP.
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Fig. 3: Link metrics comparison for the asymmetric links and moving FAP
scenarios.

The goal is to maximize the throughput values and to minimize possible
throughput imbalances between the two nodes acting as receivers in each wire-
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less link. For this purpose, the objective is then to maximize the SNR value in
the FGW, SNRFGW , and the SNR value in FAP, SNRFAP , and penalize the
difference between them, by multiplying it by a weight of 2. This constant was
chosen empirically, as it allows the penalization to be sufficient to impact the
reward value when the links are imbalanced, without impacting negatively the
learning process. The reward function is defined in Equation 1:

Reward = SNRFGW + SNRFAP − 2|SNRFGW − SNRFAP | (1)

In the case of the two FAPs scenario, the objective remains the same: to
maximize the throughput values while minimizing throughput imbalances be-
tween the two nodes. However, due to differences in topology and the need for
routing traffic through the FGW node, the variations of the throughput and
SNR values are different in this scenario, given the increase of the Packet Loss
Ratio as the distance between the FGW and the Backhaul node increases, which
implies a reduction of the link capacity. This is demonstrated by the results
obtained from the same preliminary study conducted for this scenario, where
the Backhaul node was positioned in (0, 500), the FAP1 in (1000, 1000) and
the FAP2 in (1000, 0), as represented in Figure 2c. The results of the through-
put variation in Figure 4a and the SNR variation in Figure 4b show that the
throughput and SNR are not proportional, due to the interdependency of the
links. For instance, if we move the FGW closer to the Backhaul node, the links
between the FGW and the FAPs get stretched, thus leading to a reduction in
the throughput obtained in the link between the FGW and the Backhaul node.
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Fig. 4: Link metrics comparison for the two FAPs scenario.

Hence, in this scenario, the reward was designed to rely directly on the
throughput values obtained in the FAPs. As in the first reward function, the
reward was designed to penalize the possible throughput imbalances obtained
in the FAPs and favour higher throughput values. Similarly, a factor of 2 was
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considered. The reward function for the two FAPs scenario is defined in Equa-
tion 2, where T refers to the throughput.

Reward = TFAP1
+ TFAP2

− 2|TFAP1
− TFAP2

| (2)

4 Simulation Configuration and Results

The simulations performed to validate the proposed RARL algorithm were car-
ried out using ns-3. This section presents the configuration of the simulation
environment and the simulation results obtained for each scenario.

4.1 Simulation Configuration

The ns-3 simulator played a crucial role in simulating real-world behaviour in
various scenarios. It served as the foundation for the DRL agent to gather rele-
vant information from the environment, specifically the link metrics of interest.
It is worth noting that the different connections were designed as independent
links and downlink traffic was considered. Table 1 summarizes the most relevant
parameters applied in the simulation.

Table 1: Simulation parameters considered for the three scenarios.
ns-3.37 Simulator Parameters

Wi-Fi Standard IEEE 802.11n
Channel Bandwidth 20 MHz
Antenna Gain 0 dBi
Propagation Loss Model Friis
Rate Adaptation Algorithm Minstrel-HT
Application Traffic UDP
UDP Data Rate 70 Mbit/s
Packet Size 1400 bytes

4.2 Simulation Results

The initial positions of the FGW were defined as extreme locations, tailored to
each specific scenario. The results are presented below according to the scenario.

Asymmetric Links Scenario. Regarding the asymmetric links scenario, the
aim was to assess the impact of the asymmetric links in the optimal positioning
of the FGW. Thus, the Backhaul and the FAP nodes were stationary, located
at the coordinates (0, 0) and (1000, 1000), respectively. Furthermore, the initial
position for the FGW was at the coordinates (500, 500), to show that the model
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was able to recognize the asymmetry between the links and find the optimal
position in the new scenario, following the trajectory shown in Figure 5a, as
depicted below:

– Initial position of the FGW: (500, 500);
– Final position of the FGW: (175, 525);
– Final distance between FGW and FAP: 950 meters;
– Final distance between FGW and Backhaul: 550 meters.

Regarding the asymmetric links scenario, it is possible to see that the
FGW recognizes the asymmetry of the links, as the final position is significantly
closer to the Backhaul node, given that its transmission power was lower than
the transmission power of the FGW. After a few iterations, the throughput in
the FAP and in the FGW reached the value of around 17 Mbit/s, as seen in
Figure 5b. Nevertheless, the instabilities with the Minstrel-HT RA algorithm
were evident, with fluctuations occurring during the Modulation and Coding
Scheme data rate changes.

Figure 5a also presents the baseline solution, with the optimal trajectory
to the optimal final position, determined as the point that ensures the SNR
values in both links are the same, following Equation 3, where P refers to the
transmission power, G to the antenna gain, D to the distance between nodes
and f to the frequency of operation. The throughput variation for the baseline
solution, shown in Figure 5c, follows a pattern similar to the one achieved with
the RARL algorithm. Still, RARL converges faster (cf. Figure 5b), validating
the RA aware implementation of the RARL algorithm, as it was able to quickly
meet the objective of throughput converge and maximization in the different
links.

PRx = PTx +GTx +GRx + 20 log

(
c

4πDf

)
(3)

Moving FAP Scenario. The FAP movement in the moving FAP scenario
relied on the use of the Waypoint Mobility Model available in ns-3. For the
evaluation presented herein, the movement was defined to evidence the behaviour
regarding the FGW positioning when the FAP moves closer and further away.
The following movement was defined:

1. The FAP is stationary during the first Waypoint, at (600, 600), for the initial
20 seconds, as observed in Figure 6a. The final results are:
– Initial position of the FGW: (400, 400);
– Final position of the FGW: oscillation between the coordinates (250,

450) and (275, 450);
– Final distance between FGW and FAP: 380 meters;
– Final distance between FGW and Backhaul node: 500 meters.

2. When it comes to the second Waypoint, represented in Figure 6b, the move-
ment of the FAP from (600, 600) to (1000, 1000). The FGW behaviour is
described below:



10 Gabriella Pantaleão et al.

(a) Trajectory of the FGW to final po-
sition.
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Fig. 5: Analysis of the RARL algorithm performance for the asymmetric links
scenario.

– Initial position of the FGW: (275, 450);
– Final position of the FGW: the FGW adapts progressively to the FAPs

position, finally oscillating between (550, 450) and (575, 450). The fi-
nal position of this trajectory validates the RARL algorithm, given the
proximity to the geometric centre between the FAP and the Backhaul
node;

– Final distance between FGW and FAP: 700 meters;
– Final distance between FGW and Backhaul node: 730 meters.

3. Finally, in the third part of the movement, displayed in Figure 6c, the FAP
moves to the coordinates (700, 300). The FGW behaviour is described below:
– Initial position of the FGW: (575, 450);
– Final position of the FGW: the final position of the FGW resulted in

the oscillation between the coordinates (300, 450) and (325, 450).
– Final distance between FGW and FAP: 400 meters;
– Final distance between FGW and Backhaul node: 550 meters.

When it comes to the evolution of the throughput values throughout the sim-
ulation in the moving FAP scenario, it is possible to observe in Figure 7a that



RA Aware Positioning for Flying Gateways using RL 11

the throughput in the FGW node remained overall constant, having a uniform
behaviour. On the other hand, the throughput measured in the FAP suffered
multiple variations. Given that the FAP movement begins at 20 seconds, the
fluctuations occurred just in the initial moments. As soon as the FGW is able to
adjust the position to the movement, the throughputs converge, reaching around
17 Mbit/s. Due to the convergence occurring during the movement of the FAP,
it can be concluded that the FGW was able to successfully follow the trajectory
of the FAP.

A baseline model was also tested to evaluate the RARL algorithm perfor-
mance. In the baseline model, the FGW defines a trajectory that follows the
movement of the FAP node, maintaining the same distance between the FAP
and the Backhaul node. The throughputs in the receiving nodes are presented
in Figure 7b and lead to the conclusion that the RARL was able to learn how
to converge and maximize the throughput values even when the environment
is constantly changing. As an RA aware algorithm, the RARL algorithm was
able to detect the throughput imbalances and ensure the convergence of the
throughputs throughout the FAP, outperform the baseline solution.

(a) First part of the movement. (b) Second part of the movement.

(c) Third part of the movement.

Fig. 6: Trajectory of the FGW to final position for the moving FAP scenario.
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Fig. 7: Throughput values evolution for the moving FAP scenario.

Two FAPs Scenario. When it comes to the two FAPs scenario, given the
presence of an additional FAP node, the distribution of the nodes through the
venue included the Backhaul node at (0, 500), FAP1 at (1000, 1000) and FAP2
at (1000, 0). The analysis of the implementation with the Minstrel-HT, shown
in Figure 8a, was based on placing the FGW at a considerable distance to all
the nodes in this configuration, having the following results:

– Initial position of the FGW: (25, 25);

– Final position of the FGW: (325, 375);

– Final distance between FGW and FAP1: 920 meters;

– Final distance between FGW and FAP2: 770 meters;

– Final distance between FGW and Backhaul: 350 meters.

Overall, in the two FAPs scenario, the first link between the Backhaul node
and the FGW can act as a bottleneck, limiting the maximum throughput achiev-
able in the FAPs. The throughput variation in the different nodes is shown in
Figure 8b, showcasing the effect of the applied underlying RA algorithm with
the instabilities associated with data rate transitions. It is possible to observe
that the throughput in the FGW is constantly higher, showing values around
23 Mbit/s. However, around the moment when there is a transition to a higher
data rate in FAP1, there is a significant fluctuation in all the values. Finally, the
throughput values in the FAPs converge to approximately 11 Mbit/s, accom-
plishing the objective of reaching higher values.

A baseline optimal trajectory leading to the geometric centre of the three
nodes is presented in Figure 8a. This implementation was able to converge the
throughput values throughout most of the simulation time. Nevertheless, the
throughputs eventually decrease, which evidences that the final position was not
optimal, showcasing that the RARL algorithm indeed maximized the throughput
values in the nodes, while minimizing imbalances.
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(a) Trajectory of the FGW to the final
position.
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RARL algorithm.
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Fig. 8: Analysis of the RARL algorithm performance for the two FAPs scenario.

5 Conclusions

Given the great impact on the network performance, the optimal positioning of
the FGW is a critical element in the flying network design. This paper proposes
the RARL algorithm, a DRL-based FGW positioning approach that considers
the effect of two aspects that have been overlooked in the state of the art: the
influence of underlying RA algorithms and the impact of the Backhaul network
configuration.

The evaluation of the performance of the RARL algorithm was carried out in
ns-3. It was possible to observe that the fluctuations and instabilities, associated
with the influence of Minstrel-HT in the link metrics, were overcome. This is
supported by the trajectory of the FGW leading to a maximization of the defined
reward functions, despite potential interference caused by the underlying RA
algorithm in the throughput measured throughout the displacement of the FGW.

The comparisons of the RARL algorithm with the baseline models demon-
strate its capability of converging and maximizing the throughput values in the
nodes in all the three scenarios studied, meaning that this work endorses the
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possibility of implementing an RA aware positioning algorithm for real-world
deployments. As future work, we intend to enhance the trajectory performed
by the FGW, as it was overall not fully optimized, in order to reduce resource
consumption and the time to converge to the optimal position.
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