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Abstract. The increasing complexity of recent Wi-Fi amendments is
making the use of traditional algorithms and heuristics unfeasible to ad-
dress the Rate Adaptation (RA) problem. This is due to the large combi-
nation of configuration parameters along with the high variability of the
wireless channel. Recently, several works have proposed the usage of Re-
inforcement Learning (RL) techniques to address the problem. However,
the proposed solutions lack sufficient technical explanation. Also, the
lack of standard frameworks enabling the reproducibility of results and
the limited availability of source code, makes the fair comparison with
state of the art approaches a challenge. This paper proposes a framework,
named RateRL, that integrates state of the art libraries with the well-
known Network Simulator 3 (ns-3) to enable the implementation and
evaluation of RL-based RA algorithms. To the best of our knowledge,
RateRL is the first tool available to assist researchers during the imple-
mentation, validation and evaluation phases of RL-based RA algorithms
and enable the fair comparison between competing algorithms.

Keywords: Wireless Networks · ns-3 · Deep Reinforcement Learning ·
Machine Learning Tool.

1 Introduction

The new configuration parameters available in the most recent Wi-Fi amend-
ments allied to the high variability and asymmetry of the radio channel, make
Rate Adaptation (RA) and the optimal configuration of these parameters chal-
lenging. Recent RA algorithms in Wi-Fi are often developed considering sim-
plified simulations that are not always well described. This poses a challenge
for the implementation and comparison of different RA algorithms. For exam-
ple, the Network Simulator 3 (ns-3) implements a significant amount of existing
state-of-the-art RA algorithms. However, only a few of these algorithms can be
used for recent Wi-Fi versions subsequent to IEEE 802.11n. Additionally, many
recent RA algorithms are based on Machine Learning (ML), which can make
them difficult to implement and understand. In some cases, the authors of these
algorithms do not even provide the source code or the training dataset, which
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poses an obstacle to accurately reproduce the obtained results. When developing
novel ML-based solutions the authors should consider the following practices: 1)
clearly describe the problem that the proposal is trying to solve and justify any
underlying assumptions; 2) systematically devise procedures that ensure the re-
producibility of results; 3) clearly state and justify the metrics used for the
evaluation; 4) expose the dataset used in the training process of the algorithm;
and 5) have one or more baseline models to compare with.

The use of Reinforcement Learning (RL) and other ML techniques within
the wireless networks research area has emerged as a way to further improve
the network Quality of Service (QoS). Leveraging these techniques, the research
community has been optimising the network performance, reducing latency, and
ensuring efficient resource allocation [15,10]. A high percentage of the current
telecommunications infrastructures have begun to invest and test ML algorithms
for supporting the network operation and business decisions [11]. However, the
techniques employed are not standardized, resulting in a lack of foundational
principles that would enable the transfer of knowledge from previous initiatives
to more recent ones. When compared with other fields that pioneered the use of
ML, such as computer vision or natural language processing, wireless networks
research started using ML at a later stage. Thus, it is common within the exist-
ing literature to identify ML-based solutions that lack the use of good practices
stated above. A predominant challenge relates to the scarcity of technical de-
tails provided in published works, which hampers the reproducibility of results.
Furthermore, the limited availability to the source code and the dataset used,
precludes the validation and extension of prior findings. These issues collectively
emphasize the need for a more cohesive and systematic approach to integrate
RL into wireless networks.

The main contribution of this paper is RateRL, a framework to support
the development of RL-based RA algorithms. We illustrate the use of RateRL
through a practical use case, employing the Data Driven Algorithm for Rate
Adaptation (DARA) proposed in [13]. Our framework integrates well-known RL
libraries, such as TensorFlow Agents and OpenAI Gym [2] with ns-3 [14], using
ns3-gym [7] to interface all the components. RateRL enables the task automa-
tion to identify the hyperparameter configuration that maximizes the expected
cumulative reward of the RL algorithm, while offering real-time feedback of the
training process. The code and ns-3 scripts are publicly available, facilitating the
efforts of future research works to build upon RateRL.

The rest of the paper is organised as follows. Section II presents the back-
ground. Section III addresses the related work. Section IV explains the RateRL
framework. Section V illustrates the use of RateRL considering DARA as the
use case. Finally, Section V provides some concluding remarks and points out
the future work.
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2 Background

This section refers to some background concepts that are necessary to understand
RateRL. It starts with an overview of RL, namely the Q-learning algorithm and
existing frameworks to implement these techniques. Then, a brief description of
the network simulator ns-3 is provided.

2.1 Reinforcement Learning

The RL model, represented in Figure 1, is composed of the agent and the environ-
ment elements. The communication between them is based on state, action and
reward signals. The agent learns the decisions (actions) based on the observa-
tions (states) received from the environment and its decision is evaluated taking
into account the reward. The objective of RL is to learn a policy of actions to
take for a given environment state that maximises the overall cumulative reward
for every (state, action) pair. There are multiple learning algorithms available
in the literature. The recent works that address the RA problem [13,5,12,4] use
the classic Q-learning algorithm and show better results when compared to tra-
ditional algorithms such as Minstrel-HT [6], the default RA algorithm for Linux
systems.

Fig. 1: Reinforcement Learning loop diagram.

Q-learning [16] is a model-free algorithm, which means that it does not use
any prior knowledge of the environment and learns through trial and error. Q-
learning only works with a discrete action space. The objective of Q-learning
is to learn the optimal policy that maximises the expected cumulative reward.
Q-learning learns and updates its Q-function values via trial and error using
Eq. 1, where Q(s, a) is the expected cumulative reward when the agent se-
lects action a in state s considering that future actions are selected according
to the learnt policy. r(s, a) is the reward for taking action a in state s, and
maxa∈A Q(snew, a),∀a ∈ A is the maximum possible reward of the new state
snew, which is the result of the current action; snew is the new state and aall
represents every a ∈ A. The learning rate α determines the rate at which new
values update the total Q-value. Finally, the discount factor γ ∈ [0, 1] determines
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the importance of future rewards in the calculation of the expected cumulative
reward.

Q(s, a)← (1− α)Q(s, a) + α[r(s, a) + γ max
∀a∈A

Q(snew, a)] (1)

2.2 Reinforcement Learning Frameworks

There are multiple and extensively validated frameworks available to implement
Q-learning or other RL-based learning algorithm. TensorFlow and PyTorch are
two prominent deep learning frameworks widely adopted for building and train-
ing ML models, including RL agents. TensorFlow, developed by Google, offers
a comprehensive ecosystem of tools and libraries that facilitate the creation of
neural networks and the optimisation of their parameters. TensorFlow Agents
(TF-Agents) is an extension of TensorFlow specifically designed to enable the
construction of RL agents. TF-Agents [8] provides reusable components for defin-
ing agent behaviour, defining the environment interaction loop, and implement-
ing various state-of-the-art RL algorithms. Similarly, PyTorch, developed by
Facebook’s AI Research lab, provides a dynamic computational graph that sim-
plifies model development and experimentation. Gym is an open-source toolkit
developed by OpenAI, designed to facilitate the development and testing of RL
algorithms. It provides a collection of environments (simulated scenarios) that
allow researchers and developers to experiment with and benchmark various
RL techniques as well as to develop their own custom environment making it a
valuable resource that can interface with the popular network simulator ns-3.

2.3 The Network Simulator 3

ns-3 [14] is a well-known open-source network simulation tool and one of the
most used wireless network simulators. ns-3 was driven by a desire to model
networks in a way that best suits network research and learning. It aims to
provide highly accurate and scalable network simulation capabilities for studying
various aspects of networking protocols, communications methods, and network
behaviour. Hence, it was not developed with ML or artificial intelligence in mind.
There is currently no official framework for integrating with prevalent ML tools.
Initial community efforts [7,17] were made to bridge the gap between the network
simulator and popular ML frameworks such as TensorFlow, PyTorch and Gym.
The resulting tools, named ns3-ai and ns3-gym, are detailed in Section 3.

3 Related Work

The related work is presented in this section. First, we overview existing rein-
forcement learning frameworks for networking and then we review the state of
the art in RL-based solutions for the RA problem.
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3.1 Reinforcement Learning Frameworks for Networking

To the best of our knowledge, few frameworks that integrate Reinforcement
Learning frameworks with network simulators have been proposed in the state
of the art. In [7] the authors develop a sockets-based interface between ns-3 and
OpenAI Gym to encourage the usage of RL in networking research. To over-
come the lack of flexibility imposed by ns3-gym, the authors in [17] proposed
ns3-ai, a Python module that allows the interconnection between any artificial
intelligence framework with ns-3, using a higher efficiency mechanism based on
shared-memory. However, since this is a high flexibility and efficiency data inter-
action framework researchers using ns3-ai have to adapt to implement their own
development environment to address their specific problem, resulting in slower
algorithm development or simplistic simulation environments, which reduces the
solution realism. On the other hand, the authors in [1] developed the PRISMA
framework, which is tailored to the distributed packet routing problem, on top of
ns3-gym, extending the problem to a Multi-Agent Deep Reinforcement Learning
approach. Therefore, researchers would need to modify PRISMA’s design if the
objective was to address the RA problem.

3.2 Reinforcement Learning for Rate Adaptation

Different solutions have been proposed to solve the RA problem, in particular for
Wi-Fi networks. Some use classical heuristic approaches [6,3] while recent works
have been using RL-based techniques [9,4,5,12,13]. In [4], the authors developed
a Q-learning based link adaptation solution that addresses RA together with
other configuration parameters such as the channel bandwidth and number of
spatial streams, outperforming state of the art solutions in terms of through-
put. Despite implementing it in a network interface card and evaluating their
solution in an experimental setting, the authors do not mention any standard
framework that was used to implement their solution. Also, the source code is
not publicly available. In [5,12] the authors use ns-3 to implement their RL-based
RA solutions with the help of ns3-gym and ns3-ai frameworks. However, both
works do not provide any information with regards to the training process or
hyperparameter configuration. Moreover, despite simplistic simulation scenarios
for evaluation, they are not sufficiently well described, posing an obstacle to
accurately reproduce the obtained results.

3.3 Summary

Despite the good results of recent works that boost the overall network perfor-
mance, the difficulty to replicate the results of the proposed solutions is common
among existing works. Typically, they lack implementation details – i.e. the code
is not open source – and training process description. Moreover, within the iden-
tified works, the results of the proposed solutions are not compared with other
RL-based RA algorithms.
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4 RateRL Framework

In this section, we present the RateRL framework, including its architecture and
components.

The RateRL framework was designed considering design principles similar
to the PRISMA framework [1], such as the achievement of realistic wireless net-
works simulation environments due to the usage of ns-3 and the development
with a modular approach, which makes fast prototyping of RL-based RA algo-
rithms possible.

config

start_script

TF - Agents

OpenAI Gym

agent gym

rl folder

ns3-gym
Network Simulator ns-3

lib folder
sim

uses

uses

uses

checks valid config

starts
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runtime

setup

starts

starts Data
Exchange
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configures

Fig. 2: RateRL architecture diagram.

In Figure 2 we present the RateRL architecture and how its components
interact with each other. The programming languages used to code RateRL were
Python and C++. The Python files hold every essential setup procedures and
parsing mechanisms required for the proper execution of the system, the core
ML components and most of the data collection processes. The files written in
C++, are mainly related to the configuration and utilisation of the ns-3 simulator
together with some files that interact with the ns3-gym interface.

We now detail the RateRL components and instruct the reader on how to
use RateRL. The starting point of the RateRL framework is the start script

file. A detailed description of the role of each component is presented below:

– start script checks if the configuration file is valid. It also sets up the
results folder where the logs of the simulation or training are stored. Finally,
it starts the agent component.
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– config is a JSON file that holds the configuration parameters relevant for
each of the other files within the framework, such as the agent, gym and sim.

– agent interacts with the TF-Agents framework using the environment data
that is retrieved from the ns-3 simulation. It starts the ns-3 environment
using the ns3-gym interface.

– sim defines the ns-3 simulation script. It uses the lib folder, where multiple
utility functions are defined to ease aspects such as the simulation configu-
ration and data collection.

– gym configures the ns-3 environment defining the observation and action data
shapes. It executes the action that comes from the agent, and establishes
the data collection methods that are used to collect the observation from the
ns-3 simulation as well as the metrics to calculate the reward.

The installation process is documented in the public repository, inside the
install folder, and it assumes the user does not have any of the required de-
pendencies installed. The user can run the agent in two different modes:

– Training Mode starts by filling the replay buffer with the trajectories col-
lected from the simulation. A trajectory consists of a time step (i.e., the
initial observation of the environment), the action step (i.e., the action that
was taken considering the previous time step), and the next time step (i.e.,
the new observation and the reward that was obtained using the previous
action step). This replay buffer is filled while the simulation is running un-
til the end of the episode, which in this case is the end of the simulation.
The agent is trained during this process, grabbing randomly from the re-
play buffer an amount of trajectories defined with the hyperparameter batch
size, updating the weights accordingly and increasing the train step counter.
The user can then adapt the amount of episodes the simulation runs, how
frequent the training happens and the way epsilon greedy adjusts over the
training process. When the training is over, or if the user wants to pause it,
it is possible to save the progress with a checkpoint so that the current state
of the policy can be recovered later.

– Evaluation Mode loads the trained Policy and assumes a fixed epsilon
greedy factor of 0 to avoid exploratory attempts. However, this mode is
not prepared for simulation scenarios that dynamically change requiring an
online learning approach. This will be the subject of future work.

Regardless of the mode used, RateRL saves simulation logs with the through-
put of every existing communication link as well as the nodes positions, with a
configurable periodicity.

5 Using the RateRL Framework

In this section we use the implementation, training and evaluation of the DARA
algorithm [13] as a use case to illustrate the utilisation of the RateRL framework.



8 R. Queiros et al.

5.1 DARA Overview

DARA [13] is a RL-based RA algorithm developed for the IEEE 802.11n amend-
ment. It considers scenarios with Single Input Single Output and fixed channel
bandwidth of 20 MHz, using long Guard Interval. The valid actions are the
first 8 Modulation and Coding Schemes (MCS). The state is the average SNR
value considering the Acknowledgement frames that originate from the receiver
node. Finally, the reward is a function of the Frame Success Ratio (FSR) and
the chosen MCS, to value the highest possible MCS without compromising the
FSR.

5.2 Simulation Settings

We configured the preliminary validation scenario defined in [13], . In this sce-
nario, we have a stationary node and a moving node. In the beginning of the
simulation, the nodes start close to each other, and their distance increases
throughout the simulation period. In this way we stimulate the algorithm with a
wide range of SNR values. The algorithm is then compared in terms of through-
put with other RA algorithms implemented in ns-3 such as Minstrel-HT (MIN)
and the Ideal (ID) algorithm. All the other main simulation configuration pa-
rameters are presented in Table 1.

Table 1: Simulation Configuration Parameters.
Configuration Parameter Value

Wi-Fi Standard IEEE 802.11n
Propagation Delay Model Constant Speed
Propagation Loss Model Friis
Frequency 5180 MHz
Channel Bandwidth 20 MHz
Transmission Power 20 dBm
Wi-Fi MAC Ad-hoc
Traffic UDP, generated above link capacity
Packet Size 1400 Bytes of UDP Payload

5.3 Training and Hyperparameter Tuning

DARA was trained and evaluated on a ASUS ROG G14 Laptop with a Ryzen 9
5900HS (8 cores up to 4.6 GHz), 32 GB RAM and a NVIDIA RTX 3060 GPU.
In this illustrative example the hyperparameter configuration chosen is defined
in Table 2. The simulations were 60 seconds long, for a total of 15 episodes.

The hyperparameter tuning is an essential part of any machine learning
model training. To this end, we assess how different values could benefit the
final DARA performance. In this work, comparisons between different values
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Table 2: DQN Learning Algorithm main Parameters.
Parameter Value

Observation Space One-dimensional scaled float (0.0-1.0)
Action Space One-dimensional integer (0-7)
Optimiser Adam
Loss Function Mean Square Error
Epsilon Greedy Fixed at 0.1
Discount Factor Fixed at 0.5
Replay buffer size of 106

Batch Size 64

of learning rate and the hidden layer architecture of the neural network were
carried out.

These comparisons were not extensive, thus the performance of DARA could
be further improved with a more in depth tuning, despite the simple scenario,
which shows that good results are achievable with few training episodes. How-
ever, the objective of this work is to show that RateRL can be used to compare
different hyperparamenter configurations and assess their impact in the perfor-
mance of the algorithm.
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Fig. 3: Hyperparameter tuning trainings.

Figure 3a shows the cumulative reward over 15 training episodes with 4
different learning rate configurations, using two hidden layers with 32 units each.
The results show that a learning rate of 0.01 is consistently better than the other
options. After defining the used learning rate value, additional trainings were
performed to fine tune the hidden layer architecture.
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Figure 3b shows the results of this training, with 5 different options being
evaluated. Despite the similarities in performance it was decided to choose as
the final configuration the one which finished with highest cumulative reward
by the end of the 15 episodes training. Therefore, a learning rate of 0.01 and a
neural network with 3 hidden layers of 16 units each was defined.

5.4 Simulation Results

Using the resulting policy from the training that was detailed in the previous
sections, we used RateRL to evaluate how the performance of DARA is compared
to other popular RA algorithms such as Minstrel and Ideal. Fig 4a shows the
throughput throughout the simulation period and Fig 4b its complementary
cumulative distribution function.

The results show that RateRL can be used to evaluate the performance and
comparison of RL-based RA algorithms with other state of the art RA solutions.
The average throughput of Ideal was of 13.45 Mbit/s and Minstrel was of 13.07
Mbit/s. DARA achieved an average throughput of 13.52 Mbit/s, an increase
of 3.4% over Minstrel and similar throughput when compared with Ideal. To
conclude, we managed to successfully implement train and evaluate DARA using
RateRL.
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Fig. 4: Simulation Results using the resulting hyperparamenter configuration.

6 Conclusion

This paper presented RateRL, the first framework designed for assiting the devel-
opment, validation and evaluation of RL-based RA algorithms. We demonstrated
the use of RateRL in the whole development cycle of an RL-based RA algorithm,
using the state of the art DARA algorithm as a use case. Our objective with
RateRL is to provide a framework for developing future RL-based RA solutions
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and enable their direct comparison with state of the art or related solutions. The
RateRL framework is open source and it is publicly available on Gitlab 1.

As future work, we plan to migrate to ns3-ai to support other popular ML
frameworks. Also, we aim to extend RateRL to use other popular RL algorithms
such as Deep Deterministic Policy Gradient and Proximal Policy optimisation.

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e Tecnologia, under the PhD grant 2022.10093.BD.

References

1. Alliche, R.A., Barros, T.D.S., Aparicio-Pardo, R., Sassatelli, L.: Prisma: a packet
routing simulator for multi-agent reinforcement learning. In: 2022 IFIP Networking
Conference (IFIP Networking). pp. 1–6. IEEE (2022)

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

3. Byeon, S., Yoon, K., Yang, C., Choi, S.: Strale: Mobility-aware phy rate
and frame aggregation length adaptation in wlans. In: IEEE INFOCOM
2017 - IEEE Conference on Computer Communications. pp. 1–9 (2017).
https://doi.org/10.1109/INFOCOM.2017.8056965

4. Chen, S.C., Li, C.Y., Chiu, C.H.: An experience driven design for ieee
802.11ac rate adaptation based on reinforcement learning. In: IEEE INFO-
COM 2021 - IEEE Conference on Computer Communications. pp. 1–10 (2021).
https://doi.org/10.1109/INFOCOM42981.2021.9488876

5. Cho, S.: Reinforcement learning for rate adaptation in csma/ca wireless networks.
In: Advances in Computer Science and Ubiquitous Computing: CSA-CUTE 2019.
pp. 175–181. Springer (2021)

6. FietKau, F.: Minstrel HT: New rate control module for 802.11n [LWN.net] (3
2010), https://lwn.net/Articles/376765, [Accessed 20-May-2022]

7. Gaw lowicz, P., Zubow, A.: Ns-3 meets openai gym: The playground for machine
learning in networking research. In: Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
pp. 113–120 (2019)

8. Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman, S.,
Wang, K., Gonina, E., Wu, N., Kokiopoulou, E., Sbaiz, L., Smith, J., Bartók,
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