
Updatable, Aggregatable, Succinct
Mercurial Vector Commitment

from Lattice

Hongxiao Wang1 , Siu-Ming Yiu1(B) , Yanmin Zhao1 , and Zoe L. Jiang2

1 The University of Hong Kong, Hong Kong, China
{hxwang,smyiu,ymzhao}@cs.hku.hk

2 Harbin Institute of Technology, Shenzhen, China
zoeljiang@hit.edu.cn

Abstract. Vector commitments (VC) and their variants attract a lot
of attention due to their wide range of usage in applications such as
blockchain and accumulator. Mercurial vector commitment (MVC), as
one of the important variants of VC, is the core technique for building
more complicated cryptographic applications, such as the zero-knowledge
set (ZKS) and zero-knowledge elementary database (ZK-EDB). However,
to the best of our knowledge, the only post-quantum MVC construction
is trivially implied by a generic framework proposed by Catalano and
Fiore (PKC ’13) with lattice-based components which causes large aux-
iliary information and cannot satisfy any additional advanced properties,
that is, updatable and aggregatable.

A major difficulty in constructing a non-black-box lattice-based MVC
is that it is not trivial to construct a lattice-based VC that satisfies a
critical property called “mercurial hiding”. In this paper, we identify
some specific features of a new falsifiable family of basis-augmented SIS
assumption (BASIS) proposed by Wee and Wu (EUROCRYPT ’23) that
can be utilized to construct the mercurial vector commitment from lattice
satisfying updatability and aggregatability with smaller auxiliary infor-
mation. We first extend stateless update and differential update to the
mercurial vector commitment and define a new property, named updat-
able mercurial hiding. Then, we show how to modify our constructions to
obtain the updatable mercurial vector commitment that satisfies these
properties. To aggregate the openings, our constructions perfectly inherit
the ability to aggregate in the BASIS assumption, which can break the
limitation of weak binding in the current aggregatable MVCs. In the end,
we show that our constructions can be used to build the various kinds of
lattice-based ZKS and ZK-EDB directly within the existing framework.

Keywords: Vector commitment · Mercurial commitment · Lattice ·
Zero-knowledge elementary database

1 Introduction

Vector commitment (VC) [8,20] allows the committer to commit a vector of
messages and later opens the commitment at one or multiple specific indices. In
c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14602, pp. 3–35, 2024.
https://doi.org/10.1007/978-3-031-57722-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57722-2_1&domain=pdf
http://orcid.org/0009-0005-2983-7239
http://orcid.org/0000-0002-3975-8500
http://orcid.org/0000-0002-7765-4905
http://orcid.org/0000-0002-8944-7444
https://doi.org/10.1007/978-3-031-57722-2_1

4 H. Wang et al.

general, a VC should have these properties: succinct, binding, and hiding. The
succinct property means that the sizes of the commitment and the opening are
polylogarithmic with the dimension of the vector. The binding property requires
that one cannot open the commitment at the same index to different values.
The hiding property means that no one can learn the committed vector from
the commitment until it is revealed. There are many variants of VC proposed,
for example, updatable VC [8,25,26,28] supports the committer to update the
message inside the commitment and provide the update information for the
verifier to update the corresponding commitment and opening. The functional
VC [3,19,28] allows opening the commitment to a function of the committed
data. Subvector commitment (SVC) [14,16], also named aggregatable VC [28]
supports the committers to aggregate the openings to different indices as one
opening.

Furthermore, one of the most important variants of VC is the mercurial vec-
tor commitment (MVC) [8,20] which introduces the mercurial property. The
MVC allows the committer to generate a hard commitment of the input vec-
tor messages or a soft commitment of nothing. The hard commitment can be
both hard and soft opened only to the unique value at each index, while the
soft commitment can only be soft opened to any value. Furthermore, mercurial
hiding requires that others cannot distinguish between the soft commitment and
hard commitment with their associated openings. There are also many variants
of MVC, such as the updatable MVC [8] and the aggregatable MVC [17]. The
updatable MVC supports updating for both hard and soft commitment. The
main difference between updatable MVC and updatable VC is that the old open-
ings (even to the soft commitment) can be updated to the new openings to the
new hard commitment via the update information; The aggregatable MVC allows
the committer to aggregate hard and soft openings. The existing aggregatable
MVC [17] is constructed in the Algebraic Group Model (AGM) model conceptu-
ally similar to the weak binding [14] which requires that the adversary is unable
to generate the commitment without input the message and is only suitable for
applications with external protocol constraints or consensus mechanisms, e.g.
blockchain. This means that the existing aggregatable MVC does not suffice to
build a secure zero-knowledge elementary database (ZK-EDB) straightforwardly.

Applications of MVC: MVC leads to many cryptography applications such as
(l-ary) zero-knowledge set (ZKS) and zero-knowledge elementary database (ZK-
EDB) [8,9,20] in which both utilize the soft commitment to denote non-existent
elements and the soft openings to prove non-membership. The updatable MVCs
enable to build the updatable ZKS and ZK-EDB [8,21] and the aggregatable
MVCs can be used to construct ZKS and ZK-EDB with batch verification [17].
Unfortunately, to our best known, there is still a huge gap in (l-ary) ZKS or
ZK-EDB between supporting updatability and batch verification and resisting
the quantum computer attack.

Overall, the existing mercurial vector commitments satisfying advanced prop-
erties, i.e. updatable and aggregatable [8,17,20] are constructed from Diffie-
Hellman (DH) assumptions and RSA assumptions which cannot resist the attack

Updatable, Aggregatable, Succinct MVC from Lattice 5

of quantum computers. Although there exists a generic construction [8] of MVC
which trivially implies the lattice-based MVC with the existing lattice-based
components [18,25,28], it leads to large auxiliary information and cannot sup-
port such advanced properties, due to its black-box framework.

To solve these problems, informally, we consider that the main challenge of
constructing non-black-box lattice-based vector commitments satisfying “mercu-
rial hiding”, i.e., MVC, lies in two aspects: (1) how to construct lattice-based vec-
tor commitments that satisfy hiding ; (2) how to add indistinguishable redundant
items into the commitments that support generating valid and indistinguishable
(with the hard openings) openings, i.e., soft openings without trapdoors and
messages. To address this, we find that the VC based on the BASIS assumption
proposed by Wee and Wu [28] supports hiding the commitment. Thus, we focus
on solving the former challenge based on their constructions.

We refer to Table 1 for a summary of the current state of the art.

Table 1. Comparison to current works on MVC. For each scheme, we report the
size of the public parameters pp, the size of commitment C, the size of the auxiliary
information aux, and the size of opening π as a function of the security parameter λ and
the length l of the input vector. Constants and non-dominant terms are omitted and
poly(·) represents some arbitrary polynomial. We also indicate the assumption (AS) of
each scheme based on and whether the scheme can support update (UD) and aggregate
(AG).

Scheme AS UD AG |pp| |C| |aux| |π|
[8] RSA � � O(λl) O(λ) O(λl) O(λ)

[17] l-DHE �a � O(λl) O(λ) O(λl) O(λ)

[18] + [28]b SIS � � l2poly(λ, log l) O(λ2 · H)c O(λ2l · H) O(λ2 · H)

Cons. A.1d SIS � � l2poly(λ, log l) O(λ2 · H) O(λ2l · H) O(λ2 · H)

Cons. 3.1 BASIS � � l2poly(λ, log l) O(λ2 · H) O((λ2 + λl) · H) O(λ2 · H)
aAlthough it allows the committer to update the hard commitment, the soft commit-
ment cannot update to a hard commitment.
bA lattice-based MVC can be trivially built by lattice-based components (e.g. [18]
and [28]) in the generic framework [8].
cTo simplify, we denote H = log2 λ + log2 l.
dThe succinct version of Construction A.1 described in the full version of this paper [27]
is used to compare.

1.1 Our Contributions

In this paper, we construct a lattice-based mercurial vector commitment satisfy-
ing updatability and aggregatability based on the BASIS assumption. Although
the structured version of the BASIS assumption (denoted BASISstruct) is not a
standard lattice-based assumption, it is a falsifiable assumption [24,28]. Follow-
ing the existing framework, our constructions can be used to directly build the

6 H. Wang et al.

lattice-based ZKS and ZK-EDB which support updating and batch verification.
We summarize the main contributions of our work in the following.

– Succinct mercurial vector commitment: We provide two constructions
of the non-black-box lattice-based mercurial vector commitment. One is based
on the standard Short Integer Solution (SIS) and satisfies updatability. The
other is based on BASISstruct assumption and supports updating and aggre-
gating which its auxiliary information has been greatly reduced by a level com-
pared to the other standard SIS-based constructions. As an additional contri-
bution, we also revisit the lattice-based mercurial commitment and transform
it into transparent setup in the full version of this paper.

– Updatable mercurial vector commitment: We generalize the definition
of updatable MVC [8] and first introduce stateless update and differentially
update from the VC [25,28] to MVC. Then, we first extend the stronger prop-
erties for updatable MVC, named updatable mercurial hiding and updatable
hiding. Last, we provide two constructions of differentially updatable MVC
respectively based on SIS and BASISstruct that satisfy updatable mercurial
hiding and can be extended to updatable hiding.

– Aggregatable mercurial vector commitment: We propose the first con-
struction of aggregatable mercurial vector commitment which can break the
limitation of the AGM model and weak binding. It is also the first construc-
tion from lattice. We divide the mercurial binding into the same-set binding
and different-set binding. Like [28], our construction supports aggregating
the openings to the bounded message and achieves the same set binding and
different set weak binding.

– Application for ZKS (ZK-EDB): We show the applications of our con-
structions at a high level. Our construction of succinct MVC is the stan-
dard one that can be used to build the lattice-based l-ary ZKS (ZK-EDB)
straightly in the generic framework [20] and even the partially succinct MVC
can also be directly used to build the ZKS (ZK-EDB). Following the frame-
work [8,17,21], our updatable MVC and aggregatable MVC can be utilized
to build the updatable ZKS (ZK-EDB) with batch verification.

1.2 Technique Overview

In this section, we provide a general overview of our technique for extending
the vector commitment based on the BASIS assumption to mercurial vector
commitment from lattices as well as the family of BASIS assumption. In the
following description, we denote DZm be the discrete Gaussian distribution over
Z

m and x = A−1(t) ∈ Z
m
q as a random vector distributed over the discrete

Gaussian conditioned on Ax = t for the matrix A ∈ Z
n×m
q and the target

vector t ∈ Z
n
q . Let e1 = [1, 0, ..., 0]T ∈ Z

n
q be the first standard basis vector.

By Theorem 2.5, if there exists a short matrix R satisfying AR = G where
G = In ⊗ gT is the gadget matrix and gT = [1, 2, ..., 2�log q�] , the matrix R is
the gadget trapdoor for A and can be used to efficiently sample x ← A−1(t)
by the algorithm SampPre(A,R, t, s) with some Gaussian width s.

Updatable, Aggregatable, Succinct MVC from Lattice 7

A General Framework. We begin by describing a general framework of vector
commitments based on the BASIS assumption [28].

– Setup: The public parameters pp including a collection of l matrices
A1, ...,Al ∈ Z

n×m
q and a trapdoor T = B−1

l (Gl) for Bl as follows.

Bl =

⎡
⎢⎣

A1

. . .
Al

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ , T =

⎡
⎢⎢⎢⎣

T1

...
Tl

TG

⎤
⎥⎥⎥⎦

– Commit: The commitment to a vector x = (x1, ..., xl) ∈ Z
l
q is the vector

c = Gĉ where

[v1, ...,vl, ĉ]T ← SampPre(Bl,T,−x ⊗ e1, s1)

which e1 = [1, 0..., 0]T is the first standard basis vector and the auxiliary
information is aux = (v1, ...,vl).

– Open: An opening to index i ∈ [�] is vi from aux = (v1, ...,vl).
– Verify: A valid opening to index i ∈ [�] and message xi need satisfy the

following condition

‖vi‖ ≤ β, c = Aivi + xie1

For correctness, by the SampPre in Theorem 2.5, we have

⎡
⎢⎣

−x1e1
...

−xle1

⎤
⎥⎦ =

⎡
⎢⎣

A1

. . .
Al

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ ·

⎡
⎢⎢⎢⎣

v1

...
vl

ĉ

⎤
⎥⎥⎥⎦

For binding, Denote Ai as Ai with the first row removed. The BASIS assump-
tion is that it is hard to find a short vector z where Aiz = 0 for any i ∈ [�]
even give the related matrix Bl and its trapdoor T = B−1

l (Gl). Therefore, if
the BASIS assumption holds, for all i ∈ [�], there is no adversary can generate a
commitment c with two openings vi, v′

i to different message xi, x′
i (xi �= x′

i).
For private openings, by the Lemma 2.4, the commitment c is statistically

close to uniform over Zn
q and for each i ∈ [�], the opening vi is statistically close

to A−1
i (c − xie1).

We observe the following features for the above constructions:

– The property of private openings implies that there exists a simulating algo-
rithm that can generate the fake commitment c′ without any message and
fake openings v′

i only with xi and the trapdoor of Ai. The fake commitment
and openings are valid and the distribution of them is statistically close to
the real ones.

8 H. Wang et al.

– If we extend Bl to B′
l, the trapdoor T′ of B′

l can also be extended from the
trapdoor T of Bl as follows,

B′
l =

⎡
⎢⎣

[A1|D1]
. . .

[Al|Dl]

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ , T′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1

0
...

Tl

0
TG

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The validity of the trapdoor T′ is guaranteed by |T′| = |T| and B′
lT

′ = G
(by Theorem 2.5).
Therefore, if we use [Ai|Di], B′

l, T′ to replace Ai, Bl, T in the above con-
struction, the properties of correctness, binding, private openings still hold
under the BASIS assumption.

Our Approach. We adopt the strategy of replacing as mentioned before to
construct the main part of mercurial vector commitment and keep the condition
of c = [Ai|Di]vi + xie1 in the verification phase.

We provide two algorithms to generate statistically indistinguishable Di in
the commitment (c,D = (D1, ...,Dl)) for each i ∈ [�]: one is Di = AiRi,
and the other is Di = G − AiR′

i which Ri and R′
i are randomly sampled

over {0, 1}m×m′
(indistinguishability is guaranteed by Lemma 2.3). When Di =

G − AiR′
i, R′

i is the trapdoor for [Ai|Di] and a valid vi can be sampled from
SampPre([Ai|Di],R′

i, c−xie1, s) which is also statistically close to [Ai|Di]−1(c−
xie1) (by Theorem 2.5). Therefore, we need an additional check for Di = AiRi to
differ between soft commitments and hard commitments in the hard verification
and take Ri as the additional part in the hard opening.

The correctness and (mercurial) binding still hold after the above operations
and we extend the private openings to the mercurial hiding by the following
statistically close distributions for each i ∈ [�]:

{(Gĉ,vi) : [v1, ...,vl, ĉ]T ← SampPre(B′
l,T

′,−x ⊗ e1, s)}
{(Gĉ,vi) : ĉ ← D

Zm′ ,vi ← [Ai|Di]−1(Gĉ − xie1)}
{(Gĉ,vi) : ĉ ← D

Zm′ ,vi ← SampPre([Ai|Di],R′
i,Gĉ − xie1, s)}

Following the two instantiations of BASIS assumption, we provide two con-
structions of our lattice-based mercurial vector commitment.

– If A1, ...,Al are independently sampled, the above construction is based on
the BASISrand which can be reduced to standard SIS assumption. Therefore,
D1, ...,Dl are independent with each other and the size of D = (D1, ...,Dl)
is linear with the dimension of x. It leads that the construction of mercurial
vector commitment is partially succinct. But it can be transformed into suc-
cinct by a standard vector commitment. The formal description and analysis
are shown in the full version of this paper.

Updatable, Aggregatable, Succinct MVC from Lattice 9

– If A1, ...,Al are structured by Ai = WiA where Wi ∈ Z
n×n
q is a random

invertible matrix for each i ∈ [�] and A ∈ Z
n×m
q is sampled randomly. This

construction is based on the BASISstruct assumption. And we set Di = WiD̂
where D̂ = AR or D̂ = G−AR and R is randomly sampled over {0, 1}m×m′

.
Thus, with the public matrix Wi for each i ∈ [�], D = (D1, ...,Dl) can be
represented by D̂ whose size does not depend on the dimension of x. It leads
to this construction of mercurial vector commitment being fully succinct. We
provide the full details in Sect. 3.

Updatable MVC. We extend stateless update and differential update in vector
commitment [25,28] to mercurial vector commitment. In the vector commitment
based on BASIS assumption, to update the message x in the commitment c
and the associated openings vi to x′, we can first construct the target vector
u = −x̄ ⊗ e1 where x̄ = x′ − x = (x′

1 − x1, ..., x
′
l − xl) is the difference between

the updated messages and old message, then compute the commitment c̄ and
the openings v̄i of x̄. and send the update information Ui = {c̄, v̄i} for users
holding old commitment c and old opening vi to update. Both vi and v̄i are
valid that satisfying

c = Aivi + xie1, c̄ = Aiv̄i + x̄ie1

By the linear homomorphism of BASIS assumption, c′ = c+c̄ is the commitment
to x′ = x̄ + x with short opening v′

i = v̄i + vi.
However, in the mercurial vector commitment, to update the soft com-

mitment i.e. add the message to a hard commitment, we have to sample a
new D′ in the updated commitment which leads to a different target vector
ū = (ū1, ..., ūl)T as follows:

ūi = −x̄ie1 + (Di − D′
i)vi,2

where vi,2 is phased from the old opening vi = [vi,1|vi,2]T.
Thanks to the indistinguishability between D′

i and Di for each i ∈ [�],
our contributions of updatable mercurial vector commitment achieve a stronger
property, named updatable mercurial hiding which was proposed by Catalano et
al. [8] in mercurial commitment, and we extend this property to mercurial vector
commitment. Informally speaking, the property requires that even given the old
commitment (c,D) with its opening vi, the updated commitment (c′,D′) with
it opening v′

i, and the update information Ui = {c̄,D′, v̄i}, the adversary still
cannot learn the type of old commitment. To prove this property, we define and
provide the additional simulating update algorithms for the fake commitment
and openings. The technique of update can be applied in both SIS-based MVC
and BASISstruct-based MVC. We provide the full details of them in the full version
of this work, and Sect. 3.1 respectively, and an extension to support updatable
hiding in the full version of this paper.

10 H. Wang et al.

Aggregatable MVC. To beak the limitation of the existing constructions only
supports mercurial weak binding which the adversary has to use the Hard com
algorithm (input some messages, possibly adversarially chosen) to generate the
commitment rather than chosen arbitrarily during the attack. For the (mercurial)
vector commitment based on BASISstruct assumption, there exists an aggregate
algorithm for the bounded message x ∈ Z

l
p, in which each entity of the target

vector u is replaced from −Wixie1 to −Wixiui where ui is randomly sampled
over Z

n
q . For any set S ⊆ [�], we have

∑
i∈S

W−1
i c = A

∑
i∈S

vi +
∑
i∈S

xiui

Therefore, v̂ =
∑

i∈S vi is the aggregated opening to all the indices in S. The
security and the correctness are guaranteed by the leftover hash lemma and min-
entropy. We show a detailed construction in Sect. 3.2 and a full analysis in the
full version of this work.

1.3 Related Work

The first mercurial commitment based on the DH assumption was proposed by
Chase et al. [9]. Then, Catalano et al. [7] presented trapdoor mercurial commit-
ments (TMC) based on a one-way function with higher efficiency but weaker
assumption. Later Libert et al. [18] proposed the first lattice-based mercurial
commitment that supports the commitment to a single message x ∈ {0, 1}l. Lib-
ert and Yung [20] proposed the concept of MVC and gave two constructions on
it based on l-DHE (Diffie-Hellman Exponent) assumption and RSA assumption,
respectively, which support commit on a l-length vector with compact proofs for
both hard opening and soft opening.

Subsequently, Catalano et al. [8] provided a generic construction for MVC
with a standard MC and a standard VC. Briefly speaking, to make a mercurial
vector commitment to a vector x = (x1, .., xl), it first uses the standard MC to
make the mercurial commitment (ci,Di) of xi for each i ∈ [�] and then uses the
standard VC to make the vector commitment C of ((c1,D1), ..., (cl,Dl)) and
put all the mercurial commitments into the auxiliary information. During the
phase of opening and verification, the vector commitment must be opened to the
mercurial commitment (ci,Di) on the index i then the mercurial commitment to
xi and finally verify both openings. The drawbacks of the generic construction
are that (1) the size of the auxiliary information is large; (2) it is hard to extend
other advanced properties into their framework.

The concept of VC was first proposed by Catalano and Fiore in [8]. They
provided two different constructions of VC based on computational DH (CDH)
assumptions and RSA assumptions. They also introduced many applications
of VC and MVC, such as verifiable databases, zero-knowledge elementary
databases, and universal dynamic accumulators. Subsequently, Lai and Mala-
volta [16] first proposed the primitive of SVC and presented two constructions
under variants of the root assumption and the CDH assumption. Following their

Updatable, Aggregatable, Succinct MVC from Lattice 11

work [14,20], Li et al. [17] proposed the first definitions and constructions of
MSVC based on the assumption l -DHE in the AGM model and Random Ora-
cle (ROM). They introduced a hash function to aggregate the openings to the
subvector. We can find that the above non-black-box constructions of MVCs are
almost based on the l -DHE assumption and the RSA assumption.

Recently, a lot of work [1,3–6,12,25,28] has been done on lattice-based VC,
which is regarded as the most possible candidate for the post-quantum cryptog-
raphy primitive. Therefore, with the lattice-based MC [18] and VC (e.g. [28]),
the black-box lattice-based MVC can be built trivially. Among them, Wee and
Wu [28] proposed a variant of the SIS assumption, named BASIS assumption
to build the lattice-based VC. Compared to standard SIS-based VC, their con-
structions support more advanced properties, e.g., updatable, aggregatable, and
functional opening. Our work is mainly based on their assumptions.

2 Preliminaries

2.1 Notation

Let λ ∈ N denote the security parameter. For a positive integer l, denote the set
(1, ..., l) by [�]. For a positive integer q, we denote Zq as the integers modulo q. We
use bold uppercase letters to denote matrices like A and bold lowercase letters
to denote vectors like x. We use non-boldface letters to refer to the components:
x = (x1, ..., xl) and x[S] := (xi, i ∈ S) to be the subvector of x indexed by S.
‖x‖ is denoted as the infinity norm of the vector x. When X is a matrix, ‖X‖ :=
maxi,j |Xi,j |. For matrices A1, ...,Al ∈ Z

n×m
q , let diag(A1, ...,Al) ∈ Z

nl×ml
q be

the block diagonal matrix with blocks A1, ...,Al along the main diagonal (and
0 elsewhere). We denote poly(λ) as a fixed function that is O(λc) for some c ∈ N

and negl(λ) as a function that is o(λ−c) for all c ∈ N.

2.2 Lattice Preliminaries

Lattice. Let B ∈ R
n×n be a full-rank matrix over R. Then the n-dimensional

lattice L generated by B is L = L(B) = {Bz : z ∈ Z
n}. If A ∈ Z

n×m
q for integers

n, m, q, we define L⊥(A) = {x ∈ Z
m
q : Ax = 0 mod q}.

Definition 2.1 (SIS Assumption [2]). Let λ be a security parameter, and
n,m, q, β be lattice parameters. The short integer solution assumption SISn,m,q,β

holds if for all efficient adversaries A,

Pr

⎡
⎣Ax = 0 ∧ 0 < ‖x‖ ≤ β

∣∣∣∣∣∣
A $← Z

n×m
q ;

x ← A(1λ,A)

⎤
⎦ = negl(λ)

Discrete Gaussian over Lattice. For integer m ∈ N, let DZm,s be the discrete
Gaussian distribution over Z

m with width parameter s ∈ R
+. For a matrix

A ∈ Z
n×l
q and a vector v ∈ Z

n
q , we donate A−1

s (v) as the random variable
x ← DZm,s conditioned on Ax = v mod q. We extend A−1

s to matrices by
applying A−1

s to each column of the input.

12 H. Wang et al.

Lemma 2.2 (Gaussian Tail Bound [13]). A sample from a discrete Gaus-
sian with parameter s is at most s

√
m away from its center with overwhelming

probability,
Pr[‖r‖ > s

√
m|r ← DZm,s] ≤ 2−m

Lemma 2.3 (Leftover Hash Lemma [15]). Let n, m, q be lattice parameters
and suppose m ≥ 2n log q. Then, the statistical distance between the following
distributions is at most 2−n:

{(A,Ar) : A $← Z
n×m
q , r $← {0, 1}m} ≈ {(A,u) : A $← Z

n×m
q ,u $← Z

n
q }

When sampling a matrix R = [r1|...|rm′] ∈ Z
m×m′

where ri
$← {0, 1}m for

all i ∈ [m′], we will use the notation R $← {0, 1}m×m′
.

Lemma 2.4 (Discrete Gaussian Preimages [28]). Let n, q be lattice param-
eters and take m ≥ 2n log q. Take matrices A ∈ Z

n×m
q and B ∈ Z

n×l
q where

l = poly(n log q). Let C = [A|B]. Then for all target vectors t ∈ Z
n
q and all

width parameters for s ≥ log m, the distribution of {v : v ← C−1
s (t)} is statis-

tically close to the distribution {[v1|v2]T : v2 ← DZl,s,v1 ← A−1
s (t − Bv2)}.

Trapdoor. Our constructions will use the gadget trapdoors introduced in [23]
and adapted in [28]. For any positive integer k, let Ik denote the identity matrix
of order k. Let n be a positive integer, q ∈ poly(n) be a modulus, and m′ =
n(log q� + 1). Define the gadget matrix G = In ⊗ (1, 2, ..., 2�log q) ∈ Z

n×m′
q .

Theorem 2.5 (Gadget Trapdoor [23,28]). Let n, m, q, m′ be lattice parame-
ters. Then there exist efficient algorithms (TrapGen, SampPre) with the following
syntax:

– (A,R) ← TrapGen(n,m, q): On input the lattice dimension n, the modulus
q, and the number of samples m, the trapdoor-generation algorithm outputs a
matrix A ∈ Z

n×m
q together with a trapdoor R ∈ Z

m×m′
q .

– u ← SampPre(A,R,v, s): On input a matrix A ∈ Z
n×m
q , a trapdoor

R ∈ Z
m×m′
q , a target vector v ∈ Z

n
q , and a Gaussian width parameter s,

the preimage sampling algorithm outputs a vector u ∈ Z
m
q satisfying Au = v.

Moreover, for all m ≥ O(n log q), the above algorithms satisfy the following
properties:

– Trapdoor distribution: The matrix A output by TrapGen(n, q,m) is statisti-
cally close to uniform over Z

n×m
q . Moreover, AR = G and ‖R‖ = 1.

– Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Z
n×m
q (i.e.,

AR = G). Then, for all s ≥ √
mm′‖R‖ω(

√
log n)), and all target vectors

v ∈ Z
n
q , the distribution of u ← SampPre(A,R,v, s) is statistically close to

A−1
s (v).

Remark 2.6. More generally, the above properties hold if AR = HG for some
invertible matrix H ∈ Z

n×n
q . In this case, we refer to H as the tag.

Updatable, Aggregatable, Succinct MVC from Lattice 13

Remark 2.7. In the other situation, for m = m̄+m′ and some m̄ > m′. A trap-
door for matrix A ∈ Z

n×m
q can be a matrix R ∈ Z

m̄×m′
such that A[R|Im′]T = G

and ‖R‖ = 1. In particular, if A = [Ā|G − Ā · R], where Ā ∈ Z
n×m̄
q , then R is

a trapdoor for A.

2.3 BASIS Assumption

Definition 2.8 (BASIS Assumption [28]). Let λ be a security parameter and
n,m, q, β be lattice parameters. Let s be a Gaussian width parameter. Let Samp
be an efficient sampling algorithm that takes a security parameter λ and a matrix
A ∈ Z

n×m
q as input and outputs a matrix B ∈ Z

n′×m′
q along with auxiliary

information aux. We say that the basis-augmented SIS (BASIS) assumption holds
with respect to Samp if for all efficient adversaries A,

Pr

⎡
⎣Ax = 0 ∧ 0 < ‖x‖ ≤ β

∣∣∣∣∣∣
A

$← Z
n×m
q ;

(B, aux) ← Samp(1λ,A),T ← B−1
s (G′

n);
x ← A(1λ,A,B,T, aux)

⎤
⎥⎦ = negl(λ)

In other words, it requires that SIS assumption is hard with respect to A even
given a trapdoor T for the related matrix B.

Instantiation 2.9 (BASISrand Assumption [28]). Let λ be a security param-
eter and n,m, q, β be lattice parameters. Let s be a Gaussian width parameter
and l be a dimension. The BASIS assumption with random matrices (BASISrand)

is that: the sampling algorithm Samp(λ,A) samples i∗ $← [�], Ai
$← Z

(n+1)×m
q

for all i ∈ [�]/i∗, a $← Z
m
q , sets Ai∗ ←

[
aT

A

]
, and outputs

Bl =

⎡
⎢⎣

A1

. . .
Al

∣∣∣∣∣∣∣

−Gn+1

...
−Gn+1

⎤
⎥⎦ , aux = i∗

Instantiation 2.10 (BASISstruct Assumption [28]). The parameters are the
same as BASISrand. The BASIS assumption with structured matrices (BASISstruct)

is that: the sampling algorithm Samp(λ,A) samples Wi
$← Z

n×n
q for all i ∈ [�]

and outputs

Bl =

⎡
⎢⎣

W1A
. . .

WlA

∣∣∣∣∣∣∣

−Gn

...
−Gn

⎤
⎥⎦ , aux = (W1, ...,Wl)

Remark 2.11 (Hardness and Parameter Choices of BASIS [28]). The
BASISrand assumption can be reduced to the standard SIS assumption and the
BASISstruct assumption is conceptually similar to k-R-ISIS assumption [3] in which
some instances are as hard as standard SIS. While BASISstruct assumption offers
more structure and potentially more power to the adversary, it is believed to

14 H. Wang et al.

provide a similar level of security as the standard SIS assumption because there
are no known concrete attacks specifically targeting the structured nature of
BASISstruct, and no faster combinatorial attacks on BASISstruct compared to stan-
dard SIS have been discovered. However, for now, there is not an analogous
reduction for the BASISstruct assumption or k-R-ISIS assumption to standard
lattice assumption.

Following [28], to further support the security claims of BASISstruct, its param-
eter choices can be the same as BASISrand which means the quality of the basis
decreases with the dimension. It is conjectured that its security is compara-
ble with the hardness of SIS with a noise-bound polynomially scaling with the
dimension of the vector that is similar to the q-type assumptions over groups [11].

2.4 Mercurial Vector Commitment

We provide the definition of (trapdoor) mercurial vector commitment.

Definition 2.12 (Mercurial Vector Commitment [20]). A succinct (trap-
door) mercurial vector commitment over message space M comprises the fol-
lowing algorithms:

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and the dimension
of vector l, and it outputs the public parameter pp and a trapdoor key tk
optionally.

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a vector
message x ∈ Ml, and it outputs a hard commitment (c,D) and auxiliary
information aux.

– πi ← Hard open(pp, xi, i, aux): Input the public parameter pp, the message xi,
the index i, and the auxiliary information aux, and it outputs a hard opening
πi to prove that xi is committed at the index i in the hard commitment.

– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the
message xi, the index i, commitment (c,D), and the hard opening πi, and it
outputs 0 or 1 to indicate whether πi is a valid hard opening.

– {(c,D), aux} ← Soft com(pp): Input the public parameter pp, and it outputs
a soft commitment (c,D) that is not bound to any vector message, and the
corresponding auxiliary information aux.

– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux, it outputs the soft opening τi. If flag = hard and x �= xi at the index i,
the algorithm aborts and outputs ⊥.

– 0/1 ← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-
mitment pair (c,D), the message x, the index i, and soft opening τi, it outputs
0 or 1 to indicate whether τi is a valid soft opening.

– {(c,D), aux} ← Fake com(pp, tk): Input the public parameter pp and trap-
door key tk, it outputs the fake commitment pair (c,D) and its corresponding
auxiliary information aux.

Updatable, Aggregatable, Succinct MVC from Lattice 15

– π ← Equiv Hopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it outputs the hard equivocation π.

– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it outputs the soft equivocation τ .

Remark 2.13 (Proper MVC [18]). Including all currently known construc-
tions, the soft opening of a hard commitment is a proper part of the hard open-
ing to the same message. Therefore, Soft verify performs a proper subset of the
tests done by Hard verify. Such mercurial (vector) commitments are called proper
mercurial (vector) commitments.

Correctness. The correctness of a trapdoor mercurial vector commitment is as
follows. Specifically, for all security parameters λ, all vector message x ∈ Ml,
and the public parameters pp ← Setup(1λ, 1l), the following conditions must
hold with an overwhelming probability.

– For a hard commitment {(c,D), aux} ← Hard com(pp,x), a hard
opening πi ← Hard open(pp, xi, i, aux) and a soft opening τi ←
Soft open(pp, hard, xi, i, aux) for the hard commitment, there must have
Hard verify(pp, xi, i, (c,D), πi) = 1 and Soft verify(pp, x, i, (c,D), τi) = 1.

– For a soft commitment {(c,D), aux} ← Soft com(pp), a soft opening
τi ← Soft open(pp, soft, x, i, aux) for the soft commitment, there must have
Soft verify (pp, x, i, (c,D), τi) = 1.

– For a fake commitment {(c,D), aux} ← Fake com (pp, tk), where tk is the
trapdoor key for the scheme, a hard equivocation π ← Equiv Hopen (pp, tk, xi,
i, aux) and a soft equivocation τ ← Equiv Sopen(pp, tk, xi, i, aux) for the
fake commitment, there must have Hard verify(pp, xi, i, (c,D), π) = 1 and
Soft verify(pp, x, i, (c,D), τ) = 1.

Mercurial Binding. For a proper mercurial vector commitment, given the
public parameter pp, for any adversary A outputs a commitment (c,D), an
index i ∈ [�] and the openings to some values (x, π), (x′, π′) (or (x, τ), (x′, π′)),
the following probability should be negl(λ).

Pr

⎡
⎣
Hard verify(pp, xi, i, (c,D), πi) = 1

∧ xi �= x′
i ∧

Soft verify(pp, x′
i, i, (c,D), π′

i) = 1

∣∣∣∣∣∣
pp ← Setup(1λ, 1l);

{(c,D), i, (xi, πi), (x
′
i, π

′
i)} ← A(1λ, 1l, pp)

⎤
⎦

Mercurial Hiding. Given the public parameter pp, for any x, and an index
i, no efficient adversary can distinguish between hard commitment with its soft
opening {x,Hard com(pp,x),Soft open(pp,Hard, x, i, aux)} and soft commitment
with its soft opening {x,Soft com(pp),Soft open(pp,Soft, x, i, aux)}. Generally,
use an equivocation game to prove.

16 H. Wang et al.

Equivocation Game. There are three related conditions for equivocation games
that have to be satisfied by mercurial commitments. Each is defined by a pair of
games, one real and one ideal. Given the public parameter pp and the trapdoor
tk, no adversary A can distinguish between them.

– Hcom Hopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [�]. In the real game, A will receive (c,D) ← Hard com(pp,x) and πi ←
Hard open (pp, xi, i, aux). While in the ideal game, A will obtain (c,D) ←
Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, xi, i, aux).

– Hcom Sopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [�]. In the real game, A will receive (c,D) ← Hard com(pp,x) and τi ←
Soft open (pp, hard, xi, i, aux). While in the ideal game, A will obtain (c,D) ←
Fake com(pp, tk), τi ← Equiv Sopen(pp, tk, xi, i, aux).

– Scom Sopen Equivocation: In the real game, A will get (c,D) ← Soft com(pp)
and choose xi for some index i ∈ [�], finally receive τi ← Soft open (pp, soft, xi,
i, aux). While in the ideal game, A first obtains (c,D) ← Fake com(pp, tk),
then chooses xi for some index i ∈ [�], finally receives τi ← Equiv Sopen(pp,
tk, xi, i, aux).

Succinctness. A mercurial vector commitment is succinct if there exists a uni-
versal polynomial poly(·) such that for all λ ∈ N, |(c,D)| = poly(λ, log l), and
|πi| = poly(λ, log l) for all i ∈ [�].

3 Succinct Mercurial Vector Commitments Based
on BASIS

In this section, we show how to construct a non-black-box succinct mercurial vec-
tor commitment based on BASISstruct assumption. Then we describe the variants
of our constructions that satisfy updatability and aggregatability.

Construction 3.1 (MVC Based on BASISstruct). Let λ be a security param-
eter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters. Let m′ =
n(log q� + 1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ) be Gaus-
sian width parameters. Let l be the vector dimension. The detailed construction
is shown as follows.

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and a vector dimen-
sion l, it first obtains (A,R) ← TrapGen(1n, q,m). Then for each i ∈ [�],

it samples an invertible matrix Wi
$← Z

n×n
q . Next, it completes Ri =

RG−1(W−1
i G) ∈ Z

m×m′
q for each i ∈ [�] and constructs Bl ∈ Z

nl×(lm+m′)
q

and R̃ ∈ Z
(lm+m′)×lm′
q as follows:

Bl =

⎡
⎢⎣

W1A
. . .

WlA

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ , R̃ =

[
diag(R1, ...,Rl)

0m′×lm′

]
(3.1)

Updatable, Aggregatable, Succinct MVC from Lattice 17

After that, it samples T ← SampPre(Bl, R̃,Gnl, s0). It outputs the public
parameters pp = {A,W1, ...,Wl,T} and the trapdoor key tk = R̃ optionally.

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a mes-
sage x ∈ Z

l
q, it first phases T as (T1, ...,Tl,TG)T where Ti ∈ Z

m×m′l
q for

each i ∈ [�] and TG ∈ Z
m′×m′l
q , then samples R̂ $← {0, 1}m×m′

and constructs

B′
l ∈ Z

nl×(l(m+m′)+m′)
q , T′ ∈ Z

(l(m+m′)+m′)×m′l
q as follows,

B′
l =

⎡
⎢⎣

[W1A|W1AR̂]
. . .

[WlA|WlAR̂]

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ , T′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1

0m′×m′l

...
Tl

0m′×m′l

TG

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Next, it constructs the target vector u and uses T′ to sample the preimage
as follows,

u =

⎡
⎢⎣

−x1W1e1
...

−xlWle1

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

v1

...
vl

ĉ

⎤
⎥⎥⎥⎦ ← SampPre (B′

l,T
′,u, s1) (3.2)

where e1 = [1, 0, ..., 0]T ∈ Z
n
q is the first standard basis vector. Last, it com-

putes c = Gĉ ∈ Z
n
q , D = AR̂ ∈ Z

n×m′
q . It outputs the hard commitment

(c,D) and the auxiliary information aux = {x,v1, ...,vl, R̂}.
– πi ← Hard open(pp, xi, i, aux): Input the public parameter pp, the message xi,

the index i, and the auxiliary information aux = {x,v1, ...,vl, R̂}. It outputs
the hard opening πi = {vi, R̂}.

– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the
message xi, the index i, the hard commitment (c,D), and the hard opening
πi, check if the following conditions hold to verify the opening.

‖vi‖ ≤ β, W−1
i c = [A|D]vi + xie1 (3.3)

‖R̂‖ ≤ 1, D = AR̂ (3.4)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(c,D), aux} ← Soft com(pp): Input the public parameter pp, it first samples

ĉ ← D
Zm′ ,s1

and R̂ $← {0, 1}m×m′
, then computes c = Gĉ and D = G−AR̂.

It outputs the soft commitment (c,D) and aux = {c, R̂}.
– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈

{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux.

18 H. Wang et al.

If flag = hard and x equals xi in aux, then it outputs vi in aux; Otherwise, it
outputs ⊥.
If flag = soft, it uses trapdoor R̂ with tag Wi to sample the preimage as
follows,

vi ← SampPre([WiA|WiG − WiAR̂], R̂, c − xiWie1, s1)

and outputs the soft opening τi = vi.
– 0/1 ← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-

mitment pair (c,D), the message x, the index i, and soft opening τi, check if
Eq. 3.3 holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– {(c,D), aux} ← Fake com(pp, tk): Input the public parameter pp and trap-

door key tk. It first samples ĉ ← D
Zm′ ,s1

, R̂ $← {0, 1}m×m′
and then com-

putes c = Gĉ, D = AR̂. It generates the fake commitment pair (c,D) and
the auxiliary information aux = {c, R̂}.

– π ← Equiv Hopen(pp, tk, x, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it uses Ri from tk to sample the preimage as follows,

v ← SampPre([WiA|WiAR̂],Ri, c − xiWie1, s1) (3.5)

It generates the equivocation hard opening π = {v, R̂}.
– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux, it
computes the Eq. 3.5 to obtain v. It generates the equivocation soft opening
τ = v.

Theorem 3.2 (Correctness). For n = λ, m = O(n log q), s0 =
O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m + m′) + m′ · s1,

then the Construction 3.1 is correct.

Proof. Suppose polynomial l = l(λ), m ≥ m′ = O(n log q), for all x ∈ Z
l
q and

index i ∈ [�]. Let {pp, tk} ← Setup(1λ, 1l) where pp = {A,W1, ...,Wl,T}.
Let {(c,D), aux} ← Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux).
Let {(c,D), aux} ← Soft com(pp) and τi ← Soft open(pp, flag, x, i, aux). Let
{(c,D), aux} ← Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, x, i, aux), and
τi ← Equiv Sopen (pp, tk, xi, i, aux). Consider Hard verify(pp, xi, i, (c,D), πi) and
Soft verify(pp, x, i, (c,D), τi):

Following the same parameters and constructions of Bl and R̃ in BASISstruct,
we have ‖T‖ ≤ √

lm + m′ · s0.
By the construction and Lemma 2.2, ‖T′‖ = ‖T‖ ≤ √

lm + m′ · s0,
‖R̂‖ = 1 and ‖Ri‖ = 1. Suppose s1 ≥ √

(l(m + m′) + m′)lm′‖T′‖ ·
ω(

√
log(nl)) = O(l3/2m3/2 log(nl) · s0) (opening to hard commitment), s1 ≥√

(m + m′)m′‖R̂‖ · ω(
√

log(n)) = O(m log(n)) (opening to soft commitment),
and s1 ≥ √

(m + m′)m′ ‖Ri‖ · ω(
√

log(n)) = O(m log(n)) (opening to fake
commitment). Then, by Theorem 2.5 and Remark 2.6, if the opening vi is

Updatable, Aggregatable, Succinct MVC from Lattice 19

generated by Hard open, Soft open or Equiv Hopen, it should satisfy W−1
i c =

[A|D]vi + xie1 and ‖vi‖ ≤ √
l(m + m′) + m′ · s1 ≤ β so the verification algo-

rithm accepts with overwhelming probability. ��
Theorem 3.3 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), and s0 = O(lm2 log(nl)). Under the BASISstruct assumption with
parameters (n − 1,m, q, 2(m + m′)β, s0, l), Construction 3.1 satisfies mercurial
binding.

Proof. Since our construction is a proper mercurial vector commitment in which
the hard opening contains its corresponding soft opening as a proper subset.
Thus, we only need to consider the hard-soft case. We now define a sequence of
hybrid experiments:

– Hyb0: This is the real mercurial binding experiment:
• The challenger starts by sampling (A,R) ← TrapGen(1n, q,m) Wi

$←
Z

n×n
q for each i ∈ [�]. Then it constructs R̃ and Bl following the Eq. 3.1.

It samples T ← SampPre(Bl, R̃,Gnl, s0). Last, the challenger sends the
public parameters pp = {A,W1, ...,Wl,T} to the adversary A.

• The adversary A outputs a hard commitment pair (c,D), an index i ∈ [�]
and openings (x,v, R̂), (x′,v′).

• The output of the experiment is 1 if x �= x′ and satisfy the following
conditions:

‖v‖, ‖v′‖ ≤ β, ‖R̂‖ ≤ 1, AR̂ = D

W−1
i c = [A|D]v + xe1, W−1

i c = [A|D]v′ + x′e1
(3.6)

– Hyb1: Same as Hyb0 except the challenger samples T ← (Bl)−1
s0

(Gnl) without
using the trapdoor R̃ so the public parameters pp is sampled independently
of R.

– Hyb2: Same as Hyb1 except the challenger samples A $← Z
n×m
q .

For an adversary A, we write Hybi(A) to denote the output distribution of
execution of experiment Hybi with adversary A. We omit the proof of Hyb0(A) ≈
Hyb1(A) ≈ Hyb2(A) because they are given in [28] and same as ours. We now
analyze the last step.

Lemma 3.4. Under the BASISstruct assumption with parameters (n −
1,m, q, 2(m + m′)β, s0, l), for all efficient adversary A, Pr[Hyb2(A) = 1] =
negl(λ).

Proof. Suppose there exists an adversary A where Pr[Hyb2(A) = 1] = ε for
some non-negligible ε. And an algorithm B will use A to break the BASISstruct
assumption.

B first receives the challenge A ∈ Z
(n−1)×m
q , Bl ∈ Z

nl×(lm+m′)
q , T ∈

Z
(lm+m′)×lm′
q and aux = (W1, ...,Wl), then generate the public parameters

pp = {A,W1, ...,Wl,T} and send it to A. The adversary A can output a

20 H. Wang et al.

hard commitment (c,D), a hard opening (x,v, R̂) and its corresponding soft
opening (x′,v′) for x �= x′ on some index i ∈ [�], satisfying the Eq. 3.6. Thus,
‖v − v′‖ ≤ 2β and [A|D](v − v′) = (x′ − x)e1. Since x �= x′, so that v − v′ �= 0
and we have [

aT

A

]
[Im|R̂](v − v′) =

[
x′ − x
0n−1

]

Let z = [Im|R̂](v−v′), since Az = 0 and ‖z‖ ≤ 2(m+m′)β, z is a valid solution
for B to break the BASISstruct assumption with non-negligible probability. ��
By the lemmas in [28] and Lemma 3.4, we can conclude that for all efficient
adversaries A, Pr[Hyb0(A) = 1] ≤ negl(λ). Thus, mercurial binding holds. ��
Theorem 3.5 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), then Construction 3.1
satisfies statistical Hcom Hopen Equivocation, Hcom Sopen Equivocation, and
Scom Sopen Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A,W1, ...,Wl,T} via the real protocol, and tk = R̃ is the trapdoor. Then
we prove the mercurial hiding of our proposed construction from the following
aspects.

For Hcom Hopen Equivocation. Firstly, D and R are generated in the
same way in fake and hard commitments. Then, by Theorem 2.5, the distri-
bution of {v1, ...,vl, ĉ} from SampPre(B′

l,T
′,u, s1) is statistically close to the

distribution (B′
l)

−1
s1

(u) which the target vector u is the same as Eq. 3.2.
Let Ā = diag([W1A|W1D], ..., [WlA|WlD]), then B′

l = [Ā| − 1l ⊗ G].
Since s1 ≥ log(l(m + m′)), by Lemma 2.4, the distribution of {v1, ...,vl, ĉ} ←
(B′

l)
−1
s1

(u) is statistically close to the distribution
{
ĉ ← D

Zm′ ,s1
, {v1, ...,vl} ← Ā−1

s1

(
u + (1l ⊗ Gĉ)

)}

where ĉ is generated in the same way as fake commitment and each vi is dis-
tributed to ([WiA|WiD])−1

s1
(−xiWie1 + Gĉ).

Then extend the trapdoor Ri to R′
i by filling in some 0. By Theorem 2.5,

the distribution of vi ← ([WiA|WiD])−1
s1

(−xiWie1 + Gĉ) is statistically close
to the distribution of vi ← SampPre([WiA|WiD],R′

i,−xiWie1 + Gĉ, s1) in
the hard equivocation (since s1 ≥ √

(m + m′)m′‖R′
i‖ · ω(

√
n) = O(m log n)).

This leads to fake commitments and hard equivocation having exactly the same
distribution as hard commitments and their corresponding hard openings.

For Hcom Sopen Equivocation. Follow the same arguments as
Hcom Hopen Equivocation.

For Scom Sopen Equivocation. We note that ĉ are generated in the same
way for both fake and soft commitments. By Lemma 2.3, the distributions of D
in fake commitment and D′ in soft commitments are

{
D = AR̂|R̂ $← {0, 1}m×m′}

,
{
D′ = G − AR̂′|R̂′ $← {0, 1}m×m′}

Updatable, Aggregatable, Succinct MVC from Lattice 21

both statistically close to uniform over Z
n×m′
q . Thus, the adversary’s

view remains statistically the same if we generate D in fake commit-
ments from Soft com instead of Fake com in the ideal experiment. More-
over, by Theorem 2.5, the distribution of the soft opening vi ← SampPre
([WiA|WiD′], R̂′,−xiWie1 +Gĉ, s1) and the distribution of the soft equivoca-
tion vi ← SampPre([WiA|WiD′], Ri,−xiWie1 + Gĉ, s1) are both statistically
close to ([WiA|WiD′])−1

s1
(−xiWie1+Gĉ). This leads to fake commitments and

soft equivocation having exactly the same distribution as soft commitments and
their corresponding soft openings. ��
Remark 3.6 (Succinctness). In Construction 3.1, for n = λ, m = O(n log q),
m′ = n(log q� + 1) ≤ m, Gaussian parameters s0 = O(lm2 log(nl)), s1 =
O(l3/2m3/2 log(nl) · s0) = O(l5/2m7/2 log2(nl)), bound β =

√
l(m + m′) + m′ ·

s1 = O(l3n4 log2(nl) log4 q), lattice modulus q = β ·poly(n) and log q = O(log λ+
log l). We have the following parameter sizes:

– Commitment size: A commitment to a vector x ∈ Z
l
q is (c,D) ∈ Z

n
q ×Z

n×m′
q

where
|c| = O(n log q) = O(λ · (log λ + log l))

|D| = O(nm′ log q) = O(λ2 · (log2 λ + log2 l))

– Opening size: A (hard) opening is (v, R̂) ∈ Z
m+m′
q × Z

m×m′
q where

|v| = O((m + m′) log β) = O(λ · (log2 λ + log2 l))

|R̂| = O(mm′) = O(λ2 · (log2 λ + log2 l))

– Public parameters size: The public parameters are pp = {A,W1, ...,Wl,T}
where A ∈ Z

n×m
q , Wi ∈ Z

n×n
q , T ∈ Z

(lm+m′)×lm′
q and |pp| = l2 ·poly(λ, log l).

– Auxiliary information size: An auxiliary information for (hard) commitment
is aux = {x,v1, ...,vl, R̂} and |aux| = O((λ2 + λl)(log2 λ + log2 l)).

Therefore, Construction 3.1 is a succinct mercurial vector commitment.

3.1 Updatable Mercurial Vector Commitments

In this section, we describe a variant of Construction 3.1 that supports differen-
tial update and satisfies updatable mercurial hiding. The concepts of stateless
update and differential update are proposed in the vector commitment [25,28]
and we first extend them to the mercurial vector commitment.

The definition of updatable mercurial vector commitment was proposed by
Catalano et al. [8] and we extend their definition to update both hard and
soft commitment to all (multiple) indices. Specifically, the original definition of
updatable mercurial commitment [21] requires updating both types of commit-
ment to the hard (updated) commitment. But Catalano’s definition and con-
structions only support updating the commitment on a single index which may
break the integrity and consistency of the soft commitment, e.g. it should update

22 H. Wang et al.

the soft commitment to the whole vector for one time instead of one index by
one. If some index of the soft commitment fails to update, this commitment
cannot be interpreted as either a hard commitment or a soft commitment.

As an additional contribution, there exists a stronger property of updatable
mercurial commitment first proposed by Catalano et al. [8], named updatable
mercurial hiding and updatable hiding. We first formalize them in the mercurial
vector commitment and show how our construction achieves updatable mercurial
hiding and its extension to achieve updatable hiding.

Definition 3.7 (Updatable Mercurial Vector Commitment). An updat-
able mercurial vector commitment is defined as a mercurial vector commitment
in Definition 2.12 with the following algorithms:

– {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux,x,x′): This algorithm is
run by the committer who produced (c,D) (and holds aux and flag). It takes
old message x, new message x′ as input and outputs an updated commitment
(c′,D′), an updated auxiliary information aux′ and an statement st. Regard-
less of the type of (c,D), the updated commitment (c′,D′) is always a hard
commitment.

– Ui ← Update open(pp, st, i): This algorithm is run by the committer who
holds a statement st. Given the index i, it outputs the update information
for the user who holds the opening of index i.

– {(c′,D′), π′
i} ← User update(pp, (c,D), i, πi, Ui): This algorithm is run by the

users who hold the old commitment (c,D) and the old opening πi at index
i. Given the update information Ui, it outputs the updated commitment
(c′,D′) and the updated opening πi which will be valid w.r.t (c′,D′) and x′

i.
The updated opening π′

i will be of the same type of πi.

The correctness of the updatable mercurial vector commitment is described
above. The mercurial binding is defined as usual, namely for any efficient adver-
sary it is computationally infeasible to open a commitment (even an updated
one) to two different messages at the same index. The mercurial hiding of the
updatable mercurial vector commitment needs not only to satisfy the old com-
mitment but also the updated one, namely even the adversary can see the update
information1,2.

To achieve global update, i.e. each user can directly update their holding
commitments and openings with the update information, the committer can
broadcast all update information {Ui}i∈[�].

Remark 3.8 (Stateless Updatable MVC). If Update com can be imple-
mented via Update com(pp, (c,D), aux, {xi, x

′
i}i∈[d]), the MVC is stateless updat-

able. Assuming that aux does not consist of vector x, with the same outputs of
1 We observe that the user can learn the type of the updated commitment which may

relax the zero-knowledge property in ZK-EDB. This issue has been fully discussed
in [8,21] and this paper will not follow it.

2 Note that since an updated commitment is always a hard commitment, we are
interested only in Hcom Hopen Equivocation and Hcom Sopen Equivocation for the
updated commitment.

Updatable, Aggregatable, Succinct MVC from Lattice 23

the original algorithm and the only difference is the inputs only involve the old
and new i-th entries xi, x′

i of the vector x instead of all entries of x.

Remark 3.9 (Differentially Updatable MVC). If Update com can be
implemented via Update com(pp, (c,D), aux, x̄), the MVC is differentially updat-
able. Assuming that aux does not consist of vector x, with the same outputs of
the original algorithm and the only difference is the inputs only involve the
difference between old and new vector x̄ = x′ − x instead of all entries of x.

There also exist more powerful security properties for the updatable mer-
curial commitment, named updatable mercurial hiding and updatable hiding
introduced by Catalano et al. [8]. Informally, their aims are to guarantee that
the message of the old commitment is still hidden even with the update informa-
tion, i.e. Updatable mercurial hiding requires after the update, the type of old
commitment is hidden; Updatable hiding says that the adversary cannot extract
any information from both the old commitment and the updated commitment
even given the update information. Although these properties can not make the
updatable ZK-EDB more secure3, Catalano et al. still think they are an impor-
tant property for the updatable mercurial commitment. We start by showing the
definition of updatable mercurial hiding:

Definition 3.10 (Updatable Mercurial Hiding). Given the public param-
eter pp, for any x and x′, and an index i, no PPT adversary can distinguish
between hard commitment with its soft commitment and soft commitment
with its soft commitment even after the commitment is updated and given the
updated commitment and update information. We first define the additional
equivocation algorithms for updating:

– {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)): This algorithm is run by the chal-
lenger who holds trapdoor key tk and produces (c,D) and aux. It outputs a
fake updated commitment (c′,D′), and a statement st.

– {Ui, aux
′} ← Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st): This algorithm is run
by the challenger who holds trapdoor key tk. It takes the old commitment
(c,D), the index i, the updated message x′

i, the auxiliary information aux,
and the statement st as input and outputs the fake update information Ui

and the updated auxiliary information aux′.

Then, we slightly modify the equivocation games for updatable mercurial
vector commitment and omit Hcom Sopen to simply.

– Hcom Hopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [�]. In the real game, A will receive the hard commitment c,D =
Hard com(pp,x) and the hard opening πi = Hard open (pp, xi, i, aux), then
A picks a vector x′ to update. And A will receive the updated commit-
ment (c′,D′) = Update com(pp, hard, (c,D), aux,x,x′), update information

3 For the structure of building the updatable ZK-EDB [21], the committed messages
are the commitments itself.

24 H. Wang et al.

Ui = Update open(pp, st, i) and obtain the updated opening π′
i = User update

(pp, (c,D), i, πi, Ui). While in the ideal game, A will obtain the fake commit-
ment (c,D) = Fake com(pp, tk) and the hard equivocation πi = Equiv Hopen
(pp, tk, xi, i, aux), then A picks a vector x′ to update, then A will receive
the fake updated commitment (c′,D′) = Equiv Ucom(pp, (c,D), tk) and fake
update information Ui = Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st) and obtain
the updated opening π′

i = User update(pp, (c,D), i, πi, Ui).
– Scom Sopen Equivocation: In the real game, A will get the soft commit-

ment (c,D) = Soft com(pp) and choose xi for some index i ∈ [�], then
receive the soft opening πi = Soft open (pp, soft, xi, i, aux). After that
A picks a vector x′ to update, then A will receive the updated com-
mitment (c′,D′) = Update com(pp, hard, (c,D), aux,x,x′), update informa-
tion Ui = Update open(pp, st, i) and obtain the updated opening π′

i =
User update (pp, (c,D), i, πi, Ui). While in the ideal game, A first obtains
(c,D) = Fake com (pp, tk), and chooses xi for some index i ∈ [�],
then receives πi = Equiv Sopen (pp, tk, xi, i, aux). After that, A picks a
vector x′ to update, then A will receive the fake updated commitment
(c′,D′) = Equiv Ucom(pp, (c,D), tk) and fake update information Ui =
Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st) and obtain the updated opening π′
i =

User update(pp, (c,D), i, πi, Ui).

We show how to construct a differentially updatable mercurial vector com-
mitment from Construction 3.1 which satisfies updatable mercurial hiding.

Construction 3.11 (Differentially Updatable MVC Based on
BASISstruct). Let λ be a security parameter and n = n(λ), m = m(λ), and
q = q(λ) be lattice parameters. Let m′ = n(log q� + 1), and β = β(λ) be the
bound. Let s0 = s0(λ), s1 = s1(λ) be Gaussian width parameters. Let l be the
vector dimension. Let x̄ = x′ − x which x′ is the update vector and x is the
old vector. We only present Update com, Update open algorithms below, and the
other algorithms are the same in Construction 3.1.

– {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄): Input the public
parameters pp = {A,W1, ...,Wl,T}, if flag = hard that implies (c,D) is
a hard commitment which c = Gĉ and D = AR̂, the auxiliary information
aux = ({vi}i∈[�], R̂), x̄ = x′ − x = (x̄1, ..., x̄l) ∈ Z

l
q;

If flag = soft and (c,D) is a soft commitment which c = Gĉ and D = G−AR̂.
And the auxiliary information aux = {c, R̂, {xi,vi}i∈S} means that the soft
commitment (c,D) has been opened to some message xi at some indices i ∈ S
(|S| can be 0 which means the commitment have not been opened). Let x̄i =

x′
i−xi for i ∈ S and x̄i = x′

i−xi where xi
$← Zq for i ∈ [�]/S. Then, it samples

other vi for i ∈ [�]/S via SampPre([WiA|WiG−WiAR̂], R̂, c−xiWie1, s1).

For both situation, it samples R̂′ $← {0, 1}m×m′
, phases vi = [vi,1 ∈

Z
m
q |vi,2 ∈ Z

m′
q]T for i ∈ [�] and constructs the target vector ū ∈ Z

nl
q ,

B̄′
l ∈ Z

nl×(l(m+m′)+m′)
q , T′ ∈ Z

(l(m+m′)+m′)×m′l
q as follows,

Updatable, Aggregatable, Succinct MVC from Lattice 25

ū =

⎡
⎢⎣

−x̄1W1e1 + W1D · v1,2 − W1AR̂′ · v1,2

...
−x̄lWlel + WlD · vl,2 − WlAR̂′ · vl,2

⎤
⎥⎦ (3.7)

B̄′
l =

⎡
⎢⎣

[W1A1|W1A1R̂′]
. . .

[WlAl|WlAlR̂′]

∣∣∣∣∣∣∣

−G
...

−G

⎤
⎥⎦ , T′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1

0m′×m′l

...
Tl

0m′×m′l

TG

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)
then, uses T′ to sample the preimage as [v̄1, ..., v̄l, ¯̂c]T ← SampPre(B̄′

l,T
′,

ū, s1). Last, it computes c̄ = G¯̂c, c′ = c + c̄, D′ = AR̂′ and v′
i = vi +

v̄i for all i ∈ [�]. It outputs the updated hard commitment (c′,D′), the
updated auxiliary information (updated opening) aux′ = ({v′

i}i∈[�], R̂′) and
the statement st = {{v̄i}i∈[�], R̂′, c̄,D′}.

– Ui ← Update open(st, i): Input the statement st = {{v̄i}i∈[�], R̂′, c̄,D′} and
index i ∈ [�], it outputs Ui = {c̄, R̂′, v̄i,D′}.

– {π′
i, (c

′,D′)} ← User update(pp, (c,D), πi, i, Ui): Input the public parameters
pp = {A,W1, ...,Wl,T}, the old commitment (c,D), the opening πi, the
index i ∈ [�], and the update information Ui = {v̄i, R̂′, c̄,D′}. It computes
c′ = c+ c̄, and v′

i = vi + v̄i. Last it outputs the updated commitment (c′,D′)
and the updated hard opening π′ = {v′

i, R̂
′} if π is a hard opening or the

updated soft opening π′ = v′
i if π is a soft opening.

– {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)): Input the public parameters pp =
{A,W1, ...,Wl,T} and trapdoor key tk, and the old commitment (c,D),

it first samples ¯̂c ← D
Zm′ ,s1

, R̂′
i

$← {0, 1}m×m′
, then computes c̄ = G¯̂c,

c′ = c + c̄ and D′ = AR̂′. Finally, it outputs the fake updated commitment
(c′,D′) and the statement st = {c̄, c′,D′, R̂′}.

– {Ui, aux
′} ← Equiv Uopen(pp, tk, i, x′

i, aux, st): Input the public parame-
ters pp = {A1, ...,Al,T}, the trapdoor key tk, the index i, the updated
message x′

i, the old commitment (c,D), the auxiliary information aux =
{c, R̂, {xj ,vj}j∈S} which the fake commitment has been opened to some
message xj at some indexes j ∈ S (0 ≤ |S| ≤ l), and the statement
st = {c̄, c′,D′, R̂′}. If i ∈ [�]/S, it first samples vi ← D

Zm+m′,s1 and then
constructs the target vector as

ui = Wic′ − x′
iWie1 − [WiAi|WiAiR̂′]vi

and then phases Ri from tk to sample the preimage as v̄i = SampPre
([WiAi|WiAiR′],Ri,ui, s1). Next, it computes v′

i = v̄i +vi. Finally, it out-
puts the update information Ui = {c̄, R̂′, v̄i,D′} and the updated auxiliary
information aux′ = {v′

i, R̂
′}.

26 H. Wang et al.

Theorem 3.12 (Correctness). For n = λ, m = O(n log q), s0 =
O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m + m′) + m′ · s1,

then Construction 3.11 is correct.

Proof. We only show the correctness of Update com, Update open and
User update. Suppose polynomial l = l(λ), x ∈ Z

l
q, m ≥ m′ =

O(n log q), for all x ∈ Z
l
q and index i ∈ [�]. Let {pp, tk} ←

Setup(1λ, 1l) where pp = {A,W1, ...,Wl,T}. Let {(c,D), aux} ←
Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux). Let {(c,D), aux} ←
Soft com(pp) and τi ← Soft open(pp, flag, x, i, aux). Let {(c,D), aux} ←
Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, x, i, aux), and τi ← Equiv Sopen
(pp, tk, xi, i, aux). Let {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄)
and Ui ← Update open(st, i). Let {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)) and
{Ui, aux

′} ← Equiv Uopen(pp, tk, i, x′
i, aux, st). Let {π′

i, (c
′,D′)} ← User update

(pp, (c,D), πi, i, Ui). Consider Hard verify(pp, xi, i, (c′,D′), π′
i):

By Theorem 3.2, for old commitment (c = Gĉ,D), for all i ∈ [�], we phase
vi = [vi,1|vi,2]T and have

W−1
i Gĉ − xie1 = Avi,1 + D · vi,2, ‖vi‖ ≤ β (3.9)

Suppose s1 ≥ √
(l(m + m′) + m′)lm′‖T′‖ · ω(

√
log(nl)), by Theorem 2.5 and

invertible matrix Wi, we have

W−1
i G¯̂c − x̄ie1 + D · vi,2 − AR̂′ · vi,2 = [A|AR̂′]v̄i, ‖v̄i‖ ≤ β (3.10)

For Gĉ′ = G(¯̂c + ĉ), x′
i = x̄i + xi, v′

i = v̄i + vi, we add Eq. 3.9 and Eq. 3.10 as

W−1
i Gĉ′ − x′

ie1 = Avi,1 + AR̂′ · vi,2 + [A|AR̂′]v̄i = [A|AR̂′]v′
i

where ‖v′
i‖ ≤ 2β. Therefore the verification will accept the update hard com-

mitment and its hard (soft) opening if we set the norm bound on the opening to
kβ, which can support up to k updates. Besides, similar to [28], we can set the
norm bound and the modulus to be super-polynomial to support an arbitrary
polynomial number of updates. ��
Theorem 3.13 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), q is prime and s0 = O(lm2 log(nl)), s1 = O(l3/2m3/2 log(nl) ·
s0). Under the BASISstruct assumption with parameters (n − 1,m, q, 2k(m +
m′)β, s0, l), the Construction 3.11 is mercurial binding.

Proof (Sketch). We briefly show that the updated commitment and opening
satisfy mercurial binding. The proof of the mercurial binding is basically the
same as Theorem 3.3. Namely, given the public parameter pp, if the adversary
A can generate a hard (updated) commitment (c,D) and two valid (updated)
openings (vi, xi, R̂), (v′

i, x
′
i) at same index i to different message which xi �= x′

i.
Then there exist an algorithm B can use ‖[Im|R̂](v − v′)‖ ≤ 2k(m + m′)β as a
solution to break the BASISstruct. ��

Updatable, Aggregatable, Succinct MVC from Lattice 27

Theorem 3.14 (Updatable Mercurial Hiding). For n = λ, m = O(n log q),
q is prime, s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), then Construc-
tion 3.11 satisfies statistical Hcom Hopen Equivocation, Hcom Sopen Equivoca-
tion, and Scom Sopen Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A,W1, ...,Wl,T} via the real protocol, and tk = R̃ = diag(R1, ...,Rl)
is the trapdoor key. Then we prove the updatable mercurial hiding of the con-
struction from the following aspects.

For Hcom Hopen Equivocation. For any message vector x and x′, we show
that the distribution of fake commitments, hard equivocations, updated fake
commitments, and update information is statistically close to that of hard com-
mitments, hard openings, updated commitments, and update information.

Firstly, by Theorem 3.5, we can know that the distribution of fake commit-
ments and hard equivocations is statistically close to the distribution of hard
commitments (c,D) and hard openings v. Then, note that R̂ and D are gener-
ated in the same way in both updated commitments and fake updated commit-
ments. By Theorem 2.5, the distribution of the rest of the update information
and updated hard commitment {v̄1, ..., v̄l, ¯̂c} from SampPre (B̄′

l,T
′, ū, s1) in

Eq. 3.7 is statistically close to the distribution (B̄′
l)

−1
s1

(ū).
Let Ā = diag([W1A1|W1D′], ..., [WlA|WlD′]), then B̄′

l = [Ā| − 1l ⊗ G].
Since s1 ≥ log(l(m + m′)), by Lemma 2.4, the distribution of {v̄1, ..., v̄l, ¯̂c} ←
(B̄′

l)
−1
s1

(u) is statistically close to the distribution
{
¯̂c ← D

Zm′ ,s1
, {v̄1, ..., v̄l} ← Ā−1

s1

(
ū + 1l ⊗ G¯̂c

)}

which ¯̂c is the same as fake updated commitment.
Since Ā = diag([W1A1|W1D′], ..., [WlA|WlD′]), this leads to that each

v̄i is distributed to ([Ai|D′
i])

−1
s1

(ūi + G¯̂c). For ūi is the same in Eq. 3.7, c′ =
Gĉ+G¯̂c and Eq. 3.9 holds in the hard commitment, we have ui in fake updated
commitment

ūi + G¯̂c = ui = c′ − x′
ie1 − [Ai|AiR̂′

i]vi

And thanks to Theorem 2.5, the distribution of ([Ai|D′
i])

−1
s1

(ūi+G¯̂c) is statis-
tically close to the distribution of v̄i ← SampPre([Ai|D′

i],Ri,ui, s1) in the fake
updated information. This leads to fake updated commitments and fake update
information having exactly the same distribution as updated commitments and
update information.

For Hcom Sopen Equivocation. Follow the same arguments as Hcom Hopen
Equivocation.

For Scom Sopen Equivocation. For any message vector x and x′, we show
that the distribution of fake commitments, soft equivocations, updated fake com-
mitments, and update information is statistically close to that of soft commit-
ments, soft openings, updated commitments, and update information.

28 H. Wang et al.

The proof is nearly identical to that of the proof of Hcom Hopen Equivoca-
tion. By Theorem 3.5, we can know that the distribution of fake commitments
and soft equivocations is statistically close to the distribution of soft commit-
ments (c,D) and soft openings v. After that, the steps of updating for the soft
commitment are the same as the hard commitment. Therefore, the distribution
of fake updated commitments and fake update information is statistically close
to the distribution of updated commitments and update information. ��
Remark 3.15 (Succinctness). In Construction 3.11, if we choose the same
parameters in Remark 3.6, after k times update, the sizes of the updated com-
mitment |(c′,D′)| and the updated opening |v′

i| is log k times that of the old
commitment |(c,D)| and openings |vi| in Remark 3.6. The size of the update
information |Ui| = |(c̄, R̂′, v̄i,D′)| is the same as the sum between the size of
the old commitment |(c,D)| and openings |(vi, R̂)| in Remark 3.6. Therefore,
the Construction 3.11 is a succinct updatable mercurial vector commitment.

Borrowing the idea of [8], we show how to use a standard vector commitment
(supporting hiding) to construct an updatable mercurial vector commitment that
supports updatable hiding in the full version of this work.

3.2 Aggregatable Mercurial Vector Commitment

In this section, we provide a variant of Construction 3.1 that supports aggregat-
ing. The existing aggregatable mercurial vector commitment [17] is a pairing-
based construction in the AGM model and the ROM model, which restricts the
ability of the adversary to perform only the algebraic operation for the group
elements, and cannot generate one, so the only way for the adversary to gener-
ate the commitment is to run the Hard com algorithm with some message. The
restriction in AGM is similar to the notation of weak binding introduced by
Gorbunov et al. [14].

Construction 3.1 perfectly inherits the property of aggregatable in BASISstruct
that supports the aggregation of the openings to the bounded message and satis-
fies the same-set binding, which can break the limitation of AGM (weak binding)
and ROM in the existing construction [17]. Additionally, like [28], our construc-
tion supports different-set weak binding as well.

We start by defining the notion of aggregatable mercurial vector commitment,
and leave the proof part in the full version of this paper.

Definition 3.16 (Aggregatable MVC). An aggregatable mercurial vector
commitment is a standard mercurial vector commitment in Definition 2.12 with
the additional algorithms as follows:

– Π̂ ← Aggregate(pp, flag, (c,D), S, {xi, πi}i∈S): Input the public parameter pp,
the flag flag, the commitment (c,D), the index set S, the message xi and the
opening πi for i ∈ S. It outputs the aggregated opening Π̂.

Updatable, Aggregatable, Succinct MVC from Lattice 29

– 0/1 ← Aggre verify(pp, flag, (c,D), S, {xi}i∈S , Π̂): Input the public parameter
pp, the flag flag, the commitment (c,D), the index set S and the message xi

for i ∈ S and the aggregated opening Π̂. It outputs 0/1 to indicate whether
Π̂ is valid or not.

The correctness is that for an honestly generated aggregated opening from
Aggregate, Aggre verify should be accepted with overwhelming probability. The
succinctness is that for all λ ∈ N, the size of aggregated opening |Π̂| =
poly(λ, log l). The mercurial hiding is that no adversary can distinguish between
the aggregated hard opening and the aggregated soft opening. The definition of
binding is described in the full version of this work.

Construction 3.17 (Aggregatable MVC based on BASISstruct). Let λ be
a security parameter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters.
Let m′ = n(log q� + 1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ)
be Gaussian width parameters. Let l be the vector dimension. Let M = Zp be
the message space. The detailed construction is shown below.

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and the input length l,
it first runs the {pp, tk} ← Setup(1λ, 1l) in Construction 3.1. For each i ∈ [�],

it randomly samples a target vector ui
$← Z

n
q and then add all {ui}i∈[�] to

pp. It outputs pp = {A, {Wi}i∈[�], {ui}i∈[�],T} and a trapdoor key tk = R̃
optionally.

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a vector
x ∈ Z

l
p, it constructs B′

l and T′ like Hard com in Construction 3.1. Next it
constructs the target vector û and uses T′ to sample the preimage as follows,

û =

⎡
⎢⎣

−x1W1u1

...
−xlWlul

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

v1

...
vl

ĉ

⎤
⎥⎥⎥⎦ ← SampPre (B′

l,T
′, û, s1) (3.11)

Last, it computes c = Gĉ ∈ Z
n
q , D = AR̂ ∈ Z

n×m′
q . It outputs the hard

commitment (c,D) and the auxiliary information aux = {v1, ...,vl, R̂}.
– πi ← Hard open(pp, xi, i, aux): Same as the Construction 3.1, it generates the

hard opening πi = {vi, R̂}.
– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the

message xi, the index i, the commitment pair (c,D), and the hard opening
πi, check if the following conditions hold to verify the opening.

‖vi‖ ≤ β, W−1
i c = [A|D]vi + xiui (3.12)

‖R̂‖ ≤ 1, D = AR̂ (3.13)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(c,D), aux} ← Soft com(pp): Same as the Construction 3.1, it outputs the

soft commitment (c,D) and aux = {c, R̂}.

30 H. Wang et al.

– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux.
If flag = hard and x equals xi in aux, then it outputs vi in aux; Otherwise, it
outputs ⊥.
And if flag = soft, it uses R̂ with tag Wi to sample the preimage as follows,

vi ← SampPre([WiA|WiG − WiAR̂], R̂, c − xiWiui, s1)

and outputs the soft opening τi = vi.
– 0/1 ← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-

mitment pair (c,D), the vector x, the index i, and soft opening τi, check if
Eq. 3.12 holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– Π̂ ← Aggregate(pp, flag, (c,D), S, {xi, πi}i∈S): Input the public parameter pp,
the flag flag, the commitment (c,D), the index set S, and the message xi and
the opening πi for i ∈ S. It computes

v̂ =
∑
i∈S

vi

where vi is phased from πi for i ∈ S. If flag = hard, it outputs the aggregated
opening Π̂ = {v̂, R̂} which R̂ is phase from πi for i ∈ S; If flag = soft, it
outputs the aggregated opening Π̂ = v̂

– 0/1 ← Aggre verify(pp, flag, (c,D), S, {xi}i∈S , Π̂): Input the public parameter
pp, the flag flag, the commitment (c,D), the index set S, and the message xi

for i ∈ S and the aggregated opening Π̂. It first checks

‖v̂‖ ≤ |S|β,
∑
i∈S

W−1
i c = [A|D]v̂ +

∑
i∈S

xiui

If flag = hard, it also needs to check Eq. 3.4. If they hold, it outputs 1;
Otherwise, it outputs 0.

– {(c,D), aux} ← Fake com(pp, tk): Same as the Construction 3.1, it generates
the fake commitment pair (c,D) and the auxiliary information aux = {c, R̂}.

– π ← Equiv Hopen(pp, tk, x, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it uses Ri in tk to sample the preimage as follows,

v ← SampPre([WiA|WiAR̂],Ri, c − xiWiui, s1) (3.14)

It generates the equivocation hard opening π = (v, R̂).
– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux, it
computes the Eq. 3.14 to obtain v. It generates the equivocation soft opening
τ = v.

Updatable, Aggregatable, Succinct MVC from Lattice 31

4 Application: Lattice-Based ZK-EDB

In this section, we show the application of our constructions.
The main application of mercurial commitment is to build the ZKS and ZK-

EDB. ZKS was first proposed by Micali [22] and was first built by the mercurial
commitment in a structure of binary tree [9] which supports proving the mem-
bership of an element x for a set S without leaking any information (knowledge)
of the set after committing the set. In ZK-EDB, the data is extended to key-value
pairs (x, v) which users can query the key in the elementary database D. If the
queried key x belongs to the database D, the committer will return the proof
and the corresponding value v where v = D(x); Otherwise, return the proof and
⊥. Briefly speaking, to commit to a set (database), the structure of ZK-EDB or
ZKS is similar to the Merkle tree with commitment instead of the hash value in
each node. The proof of the membership consists of the openings of each node
in the path from the leaf node of the element to the root node. Thanks to the
mercurial property, the subtrees without any elements can be pruned so the size
of the tree can be greatly reduced.

l-ary mercurial commitment (mercurial vector commitment) was pro-
posed [10,20] and can be utilized to build the ZK-EDB or ZKS in a l-ary tree in
order to reduce the height of the trees as well as the size of the proof. Liskov and
Moses [21] proposed the updatable mercurial commitment to build an updat-
able ZK-EDB that supports the owner (committer) changing the element in
the ZK-EDB and the users (verifiers) updating their holding commitments and
the associated proofs. And Catalano et al. [8] extended the updatable mercurial
commitment to updatable l-ary mercurial commitment. Besides, Li et al. [17]
proposed the mercurial subvector commitment (aggregatable mercurial vector
commitment), which supports the aggregation of openings that can be utilized
to construct the ZK-EDB with batch verification. This allows users to verify the
aggregated proof once, instead of having to verify multiple proofs of the same
commitment.

However, the above constructions are mainly based on the l-DHE assump-
tion and RSA assumption which cannot resist the quantum computer attack.
The only lattice-based mercurial commitment proposed by Libert [18] can be
built ZK-EDB in a binary tree but cannot support building l-ary, updatable, or
aggregatable ZK-EDB.

Following their framework in [8,17,20,21], we’ll show how to build the lattice-
based l-ary ZK-EDB (ZKS) and its variants, including updatable and batch
verification via our proposed MVC at a high level.

In the general case, there are three phases in the ZK-EDB or ZKS: the com-
mitting phase, the opening phase, and the verification phase. In the committing
phase, the committer will build an l-ary tree and return the root of the tree as
the commitment of the database. As we mentioned above, building the tree, or
to say the committing phase is made more efficient by pruning subtrees in which
all the leaves corresponding to the keys are not in the database. Only the roots
of the pruned subtrees are kept in the tree with a soft commitment. For the key
x in the database D which D(x) �= ⊥, each corresponding leaf contains a hard

32 H. Wang et al.

commitment of the hash value of D(x), and other internal nodes in the tree will
contain a hard commitment of its l children (with corresponding hash value); In
the opening phase, to prove some key x in the database which D(x) = v �= ⊥,
the committer generates a proof of membership including all the hard openings
for the commitments belonging to the nodes in the path from the root to the leaf
x at the corresponding position opening in each commitment. To prove some key
x not in the database, i.e. D(x) = ⊥, the committer first generates the subtree
which x lies and is pruned before, and then generates a proof of non-membership
including all the soft openings for the commitment belonging to the nodes in the
path from the root to the leaf x; In the verification phase, the users will check
all the commitments and associated openings of the path from the leaf x to the
root. If D(x) = v �= ⊥, they run the hard verification algorithm; otherwise, they
run the soft verification algorithm.

To update a ZK-EDB, there are two additional phases: the updating ZK-
EDB phase and the user updating phase. In the updating ZK-EDB phase, the
ZK-EDB owner (committer) is allowed to change the value D(x) of the elements
and outputs the updated commitment with some update information for users.
During this phase, the owner first needs to update the commitment in the leaf x
and then update the commitments in all the nodes of the path from the leaf x to
the root. The updated database commitment is the updated commitment of the
root, while the update information of ZK-EDB contains the update information
for all the nodes involved in the update. In the user updating phase, the users
can use the update information from the owner to update their commitments
and the associated proofs. In particular, if users hold a proof for the key x′ �= x,
the updated proof for x′ should also be valid.

For batch verification, if the users query multiple keys at one time, the owners
(committer) can aggregate the openings for the same commitment in the node
and generate the aggregated proof during the opening phase. So, the users only
need to check the aggregated proof during the verification phase.

Overall, our constructions of MVC can be used to build the lattice-based
ZK-EDB which enables the ZK-EDB owner to commit, open, and update, and
allows the users to query, and batch verify without leaking any knowledge except
the query result at a post-quantum level.

Acknowledgements. This work is supported by National Natural Science Foun-
dation of China (No. 62202023, No. 62272131), HKU-SCF FinTech Academy,
Shenzhen-Hong Kong-Macao Science and Technology Plan Project (Category C
Project: SGDX20210823103537030), Theme-based Research Scheme of RGC, Hong
Kong (T35-710/20-R), and Shenzhen Science and Technology Major Project (No.
KJZD20230923114908017). We would like to thank the anonymous reviewers for their
constructive and informative feedback on this work.

References

1. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-based
blind signatures be practical? IACR Cryptol. ePrint Arch. 2021, 1565 (2021)

Updatable, Aggregatable, Succinct MVC from Lattice 33

2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108
(1996)

3. Albrecht, M.R., Cini, V., Lai, R.W., Malavolta, G., Thyagarajan, S.A.: Lattice-
based SNARKs: publicly verifiable, preprocessing, and recursively composable. In:
Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology–CRYPTO 2022: 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, 15–18 August 2022, Proceedings, Part II, pp. 102–132. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4 4

4. Albrecht, M.R., Fenzi, G., Lapiha, O., Nguyen, N.K.: SLAP: succinct lattice-based
polynomial commitments from standard assumptions. Cryptology ePrint Archive
(2023)

5. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.: Chainable functional commitments
for unbounded-depth circuits. In: Rothblum, G., Wee, H. (eds.) Theory of Cryp-
tography Conference, TCC 2023. LNCS, vol. 14371, pp. 363–393. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-48621-0 13

6. de Castro, L., Peikert, C.: Functional commitments for all functions, with transpar-
ent setup and from SIS. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, 23–27 April 2023, Pro-
ceedings, Part III, vol. 14006, pp. 287–320. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30620-4 10

7. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions
and efficient constructions. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, 4–7
March 2006, Proceedings 3, vol. 3876, pp. 120–144. Springer, Cham (2006). https://
doi.org/10.1007/11681878 7

8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) Public-Key Cryptography–PKC 2013: 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, 26
February–1 March 2013, Proceedings 16, vol. 7778, pp. 55–72. Springer, Cham
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

9. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 25

10. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. J. Cryptol. 26, 251–279 (2013)

11. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

12. Fisch, B., Liu, Z., Vesely, P.: Orbweaver: succinct linear functional commitments
from lattices. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023. CRYPTO 2023. LNCS, vol. 14082, pp. 106–131. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-38545-2 4

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

14. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for
multiple vector commitments. In: Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 2007–2023 (2020)

https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/978-3-031-30620-4_10
https://doi.org/10.1007/978-3-031-30620-4_10
https://doi.org/10.1007/11681878_7
https://doi.org/10.1007/11681878_7
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/11426639_25
https://doi.org/10.1007/11426639_25
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/978-3-031-38545-2_4

34 H. Wang et al.

15. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

16. Lai, R.W., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 18–22 August 2019, Proceedings, Part I 39, vol. 11692, pp. 530–560.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 19

17. Li, Y., Susilo, W., Yang, G., Phuong, T.V.X., Yu, Y., Liu, D.: Concise mercurial
subvector commitments: definitions and constructions. In: Baek, J., Ruj, S. (eds.)
Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Vir-
tual Event, 1–3 December 2021, Proceedings 26, vol. 13083, pp. 353–371. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-90567-5 18

18. Libert, B., Nguyen, K., Tan, B.H.M., Wang, H.: Zero-knowledge elementary
databases with more expressive queries. In: Lin, D., Sako, K. (eds.) Public-Key
Cryptography – PKC 2019. PKC 2019. LNCS, vol. 11442, pp. 255–285. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 9

19. Libert, B., Ramanna, S.C., et al.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions.
In: 43rd International Colloquium on Automata, Languages and Programming
(ICALP 2016) (2016)

20. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (eds.) Theory of Cryptography:
7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, 9–11
February 2010, Proceedings 7, vol. 5978, pp. 499–517. Springer, Cham (2010).
https://doi.org/10.1007/978-3-642-11799-2 30

21. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (eds.) Advances in
Cryptology-ASIACRYPT 2005: 11th International Conference on the Theory and
Application of Cryptology and Information Security, Chennai, India, 4–8 December
2005, Proceedings 11, vol. 3788, pp. 174–198. Springer, Cham (2005). https://doi.
org/10.1007/11593447 10

22. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual IEEE Sym-
posium on Foundations of Computer Science, 2003. Proceedings, pp. 80–91. IEEE
(2003)

23. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

24. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

25. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lat-
tices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 16

26. Tas, E.N., Boneh, D.: Vector commitments with efficient updates. arXiv preprint
arXiv:2307.04085 (2023)

27. Wang, H., Yiu, S.M., Zhao, Y., Jiang, Z.L.: Updatable, aggregatable, succinct
mercurial vector commitment from lattice. Cryptology ePrint Archive (2024)

https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-90567-5_18
https://doi.org/10.1007/978-3-030-17253-4_9
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-030-90456-2_16
http://arxiv.org/abs/2307.04085

Updatable, Aggregatable, Succinct MVC from Lattice 35

28. Wee, H., Wu, D.J.: Succinct vector, polynomial, and functional commitments from
lattices. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology–EUROCRYPT
2023: 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, 23–27 April 2023, Proceedings, Part III,
pp. 385–416. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-
4 13

https://doi.org/10.1007/978-3-031-30620-4_13
https://doi.org/10.1007/978-3-031-30620-4_13

	Updatable, Aggregatable, Succinct Mercurial Vector Commitment from Lattice
	1 Introduction
	1.1 Our Contributions
	1.2 Technique Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Lattice Preliminaries
	2.3 BASIS Assumption
	2.4 Mercurial Vector Commitment

	3 Succinct Mercurial Vector Commitments Based on BASIS
	3.1 Updatable Mercurial Vector Commitments
	3.2 Aggregatable Mercurial Vector Commitment

	4 Application: Lattice-Based ZK-EDB
	References

