
Short Code-Based One-out-of-Many
Proofs and Applications

Xindong Liu1,2 and Li-Ping Wang1,2(B)

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS, Beijing, China

{liuxindong,wangliping}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. In this work, we propose two novel succinct one-out-of-many
proofs from coding theory, which can be seen as extensions of the Stern’s
framework and Veron’s framework from proving knowledge of a preimage
to proving knowledge of a preimage for one element in a set, respectively.
The size of each proof is short and scales better with the size of the public
set than the code-based accumulator in [35]. Based on our new construc-
tions, we further present a logarithmic-size ring signature scheme and a
logarithmic-size group signature scheme. Our schemes feature short sig-
nature sizes, especially our group signature. To our best knowledge, it is
the most compact code-based group signature scheme so far. At 128-bit
security level, our group signature size is about 144 KB for a group with
220 members while the group signature size of the previously most com-
pact code-based group signature constructed by the above accumulator
exceeds 3200 KB.

Keywords: code-based cryptography · one-out-of-many proofs ·
set-membership proofs · ring signatures · group signatures

1 Introduction

Code-based cryptography is the study of cryptosystems based on error-correcting
codes that originated from the pioneering work of McEliece [29]. It is able to resist
quantum attacks and is widely regarded as an important research branch in
post-quantum cryptography. In particular, NIST’s recent call for post-quantum
standardization has propelled advancements in this area.

Zero-knowledge proofs are a fundamental primitive in cryptography. In 1993,
Stern proposed the first code-based zero-knowledge argument of knowledge
(ZKA oK) based on the hardness of the syndrome decoding (SD) problem [38].
This proof enables one to demonstrate knowledge of a low-weight preimage for
a syndrome. Later, Veron introduced a ZKAoK for the general syndrome decod-
ing (GSD) problem, which is the “dual” problem of the SD problem [39]. Sub-
sequently, several optimization schemes have been proposed within this frame-
work [5,7,11,31,39], as well as applied to other hard problem settings [20,24,26].
c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14602, pp. 370–399, 2024.
https://doi.org/10.1007/978-3-031-57722-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57722-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-57722-2_12

Short Code-Based One-out-of-Many Proofs and Applications 371

Moreover, variants of the Stern protocol or the Veron protocol have been utilized
to construct numerous advanced cryptographic schemes, such as proofs of valid
opening for code-based commitment schemes [35], verifiable encryption [34], ring
signatures [9,10,30], group signatures [1,8,17] and accumulators [3,35].

An important tool in zero-knowledge proofs is one-out-of-many proofs, which
enable one to demonstrate knowledge of an opening to a commitment within a list
of commitments. This concept is closely related to some primitives such as set-
membership proofs and ring signatures. Groth and Kohlweiss initially provided
an efficient one-out-of-many proof based on discrete logarithms and applied it
in ring signatures [21]. Subsequently, Esgin et al. constructed a lattice-based
one-out-of-many proof [16]. In 2022, Lyubashevsky et al. further constructed a
more efficient lattice-based one-out-of-many proof and based on this proof, they
proposed a logarithmic ring signature and a logarithmic group signature [28].

However, similar constructions in code-based cryptography are not practical.
In 2015, Ezerman et al. proposed a construction for proving knowledge of a
secret for one syndrome in a public set, and applied it to build a code-based
group signature scheme [17]. The group signature size is linear to the number N
of group members. While it has a short signature size with a small N , as N grows
to 220, its signature size increases to 19 MB under the 128-bit security level. The
similar construction can be found in [2,8]. In 2019, Nguyen et al. put forward a
code-based Merkle-tree accumulator, which is a logarithmic-size set-membership
proof [35]. Based on this building block, the authors constructed logarithmic-size
ring signature and group signature schemes. In 2020, Beullers et al. developed a
general group-action based ring signature framework [6]. Subsequently, Barenghi
et al. and Chou et al. instantiated the group action using the code equivalence
problem [4] and the matrix code equivalence problem [13], respectively, and
proposed efficient ring signature schemes. However, no group signature scheme
has been constructed based on these two problems so far.

1.1 Our Contributions

Our main cryptographic results are summarized as follows (we describe them in
more detail in our technique overview):

• We propose a novel short code-based one-out-of-many proof. Our construction
can be seen as an extension of Stern’s framework from proving knowledge of a
preimage to proving knowledge of a preimage for one element in a public set.
The main advantage of our framework is that the growth rate of the proof
size relative to the public set size N is very low even compared to the code-
based accumulator (Asiacrypt 2019). This is because the term related to N
in the expression of the signature size of our schemes is simply determined by
the path of a log N -deep Merkle tree, that is 2λ log N , where λ is the security
level, and so is independent of the parameters of the hard problem. The code-
based accumulator achieves membership proof by proving knowledge of a hash
chain that is linearly related to the parameters of the regular SD problem.
This makes the coefficient of log N much larger than ours.

372 X. Liu and L.-P. Wang

• To further reduce the proof size, we propose a more efficient GSD-based
one-out-of-many proof based on Veron’s framework and optimization tech-
niques proposed in [23,31]. Then, we apply this one-out-of-many proof to the
construction of a logarithm-size ring signature. Next, we compare our ring
signature with other code-based ring signatures in Table 1.

• We construct a new set membership proof by transforming the framework of
building one-out-of-many proofs into the framework of building set member-
ship proofs. This transformation is similar to the ideas in [21]. Moreover, this
set membership proof serves as a building block in our group signature.

• Combining our GSD-based one-out-of-many proof and the set-membership
proof, we present a logarithm-size group signature, which is the most compact
code-based group signature scheme to date. We also make the comparison
with other code-based group signatures in Table 2. For convenience, we use
the parameter sets for SD problem in [18], and the parameter sets for the
McEliece encryption scheme in [12]. The above comparison indicates that the
signature sizes of both our ring signature and group signature schemes are
significantly shorter than previous schemes except the BBNPS in [4], whose
security relies on the code equivalence problem.

Table 1. Comparison of ring signature size (KB) under the 128-bit security level.

N asymptotic sig.size hardness assumption

28 212 220

ELLNW [17] 55 124 19273 O(N) SD

BGM [8] 134 205 19354 O(N) rank SD

NTWZ [35] 1189 1741 2847 O(log N) regular SD

BBNPS [4] 16 20 28 O(log N) code equivalence

Our work 55 65 83 O(log N) GSD

Table 2. Comparison of group signature size (KB) under the 128-bit security level.

N asymptotic sig.size Anonymity

28 212 220

ELLNW [17] 171 241 19391 O(N) CPA

BGM [8] 1322 1392 20542 O(N) CPA

NTWZ [35] 1570 2122 3228 O(log N) CCA

Our work 116 126 144 O(log N) CPA

1.2 Technical Overview

SD-Based One-out-of-Many Proofs. Our novel SD-based one-out-of-many
proof is an extension to Stern’s framework. To construct the protocol, we begin

Short Code-Based One-out-of-Many Proofs and Applications 373

by making a modification to the original Stern protocol. Let H ∈ F
(n−k)×n
2 and

s ∈ F
n−k
2 denote a matrix and a syndrome, respectively. To prove the possession

of a small-weight vector e ∈ F
n
2 such that He� = s�, a prover samples a random

vector r ∈ F
n
2 and a random permutation φ, and then sends commitments c1 =

Com(φ,Hr� + s�; ρ1), c2 = Com(φ(r); ρ2) and c3 = Com(φ(r + e); ρ3) to a
verifier. If the challenge ch is 1, the prover opens c2 and c3. If ch = 2, it opens c1
and c3. If ch = 3, it opens c1 and c2. The modified Stern protocol is depicted in
Fig. 1. The only difference between our protocol in Fig. 1 and the original Stern
protocol is that in the former c1 = Com(φ,Hr� +s�; ρ1) while in the latter c1 =
Com(φ,Hr�; ρ1). Clearly, this modification does not affect the completeness,
soundness, and zero-knowledge property of the modified protocol.

Observe two key facts: (1) The modified protocol’s c1 is related to the public
key s, while c2 and c3 are not related to s. (2) During the verification phase,
only when ch = 3, the verifier needs to use the public key s to check the value
of c1. These two observations inspire us to construct a one-out-of-many proof
based on our modified protocol.

For a statement composing of a matrix H and N syndromes (s1, · · · , sN), a
prover claims that it knows the small-weight preimage e of one of the syndromes
satisfying He� = s�

I for some I ∈ [N], [N] := {1, · · · , N}. To demonstrate
this, the prover begins by sampling a random mask vector r, a random permu-
tation φ and N random coins {bi}N

i=1 to simulate ci
1 = Com(φ,He� + s�

i ; bi)
for all i ∈ [N]. Subsequently, it samples two random coins ρ2 and ρ3 to gen-
erate c2 = Com(φ(r); ρ2) and c3 = Com(φ(r + e); ρ3). The prover then per-
mutes (c11, · · · , cN

1) in random order and sends them along with c2 and c3 to
a verifier. If the verifier returns 1, the prover will open c2 and c3 by revealing
(φ(r), φ(r + e), ρ2, ρ3). This does not leak any information about the witness
e and the index I. If the verifier returns 2, the prover will open cI

1 and c3 by
revealing (φ, r + e, ρ1, bI , ρ3). Since the verifier receives a random permutation
of (c11, · · · , cN

1) and only verifies whether cI
1 is in it, this also does not leak any

information about the index I and witness e. If the verifier returns 3, the prover
will open all {ci

1}N
i=1 and c2 by outputting φ, r and all random coins {bi}N

i=1.
Therefore, no information about the witness e and the index I is leaked.

In the above process, the prover sends N + 2 commitments ({ci
1}N

i=1, c2, c3)
during the commitment phase. In the response phase, when the received chal-
lenge is 3, the prover needs to open these N + 2 commitments by outputting
N + 2 random coins. Therefore, the proof size grows linearly with N . To reduce
the proof size, we use a seedtree to generate N random coins required for these
N commitments {ci

1}N
i=1, and compress these commitments into a root using a

Merkle tree. Specifically, the prover first samples a random seed, and then uses
a pseudo-random number generator (PRNG) to iteratively generate N random
coins required for the N commitments {ci

1}N
i=1. Subsequently, the prover arranges

these N commitments in lexicographical order and compresses the sorted list into
a root using a Merkle tree. This trick is inspired by [6]. Next, the prover sends
(root, c2, c3) to the verifier. If the verifier returns 1, the prover’s output remains
unchanged. If the verifier returns 2, the prover opens cI and c3 by outputting

374 X. Liu and L.-P. Wang

Fig. 1. The modified Stern protocol. Let B(n, t) denote the set of vectors v ∈ F
n
2 such

that its Hamming weight w(v) = t, Sn denote the symmetric group of all permutations
of n elements and Com denote a commitment scheme with the binding and hiding
property.

(φ, r + e, ρ1, bI , ρ3) and the path of cI in the Merkle tree. So the length of the
path is log N . If the verifier returns 3, the verifier opens all {ci

1}N
i=1 and c2 by

outputting (φ, r) and seed.

GSD-Based One-out-of-Many Proofs. In 1997, Veron pointed that the
GSD-based protocol with a ternary challenge space has lower communication
cost than the Stern protocol [39]. The GSD problem is to find two vectors x ∈ F

k
2

and e ∈ B(n, t) such that y = xG + e given a matrix G ∈ F
k×n
2 and a vector

y ∈ F
n
2 . Although the security proof of this construction [39] has been pointed

out to have an issue [22], it has been fixed by Gaborit et al. [5]. The fixed pro-
tocol still maintains low communication cost. This improvement is due to the
use of the GSD problem instead of the SD problem. In fact, the hardness of two
problems is equivalent, while the only difference lies in the use of a generator
matrix in the former and a parity-check matrix in the latter. Inspired by this, we
construct a GSD-based one-out-of-many proof. Additionally, we use three tech-
niques, namely small-weight vector compression functions [31], seedtrees and
Merkle trees [23] to reduce the communication cost of multi-iteration protocols.
Seedtrees are used to generate random objects required while Merkle trees are
employed to compress commitments in multi-iteration protocols.

Our GSD-based one-out-of-many proof naturally lead to a ring signature
scheme by the Fiat-Shamir transform [19]. Specifically, each user i has a public-
private key pair (yi, (xi, ei)), where yi = xiG + ei. The signature of user i for
a message μ is a zero-knowledge proof using our GSD-based one-out-of-many
proof for the pair (xi, ei) satisfying the above equation, where μ is the input in
the random oracle in the Fiat-Shamir heuristic.

Short Code-Based One-out-of-Many Proofs and Applications 375

Set-Membership Proofs. First we briefly introduce the code-based commit-
ment scheme [33]. For a message m ∈ {0, 1}k2 , one initially chooses two random
vectors v ∈ F

k1
2 , e ∈ B(n, t), and obtains a McEliece-type commitment

ComMcE(m; (v, e)) = (v||m)G + e,

where G =
(
G1

G2

)
∈ F

k×n
2 is randomly generated, G1 ∈ F

k1×n
2 ,G2 ∈ F

k2×n
2 , k =

k1 + k2. To open a commitment c, one reveals m,v, e and a receiver verifies if
c = (v||m)G + e.

In our set-membership proof, the public information includes a public set I =
{α1, · · · , αN} and a commitment c for some αi. A prover’s goal is to demonstrate
that c is a commitment to an element in the set I. To achieve this, the prover
first generates [c1 = c+ComMcE(α1, (0,0)), · · · , cN = c+ComMcE(αN , (0,0))],
and then proves that one of ({ci}N

i=1) is a commitment to 0. This is equivalent
to proving that a prover knows a certain ci having the form of vG1 + e, where
e ∈ B(n, t) and i ∈ [N].

Group Signatures. We use the enc-then-prove framework to construct our
group signature scheme. This framework typically requires three cryptographic
layers: a secure signature scheme, a semantically secure encryption scheme and
a zero-knowledge protocol connecting the first two layers. Let’s now explain the
construction of the three components used in our group signature scheme.

Consider a group of size N , with each user being denoted by an integer
i ∈ [N]. For each i, the public key of the User i is (G,yi = xiG+ei) ∈ F

k×n
2 ×F

n
2 ,

and the private key is (xi, ei) ∈ F
k
2 × B(n, t).

The Signature Layer. The construction in this layer is similar to our ring
signature. User i uses our GSD-based one-out-of-many proof to prove that it has
a pair (xi, ei) ∈ F

k
2 × B(n, t) satisfying xiG + ei = yi.

The Encryption Layer. To achieve the traceability of group signatures, User
i encrypts its index i using the randomized McEliece encryption scheme [36] as
follows:

ct = EncMcE(bin(i), (z, s)) = (z||bin(i))GMcE + s,

where GMcE ∈ F
�×m
2 is the public key of McEliece encryption scheme, bin(i) is

the binary representation of i with length �2, z ∈ F
�1
2 , � = �1+�2 and s ∈ B(m,w).

Then, User i needs to prove that ct is an encryption to an index in the set
{1, · · · , N}. This is similar to our set-membership proof. Specifically, User i first
generates the set

[ct1 = ct + EncMcE(1, (0,0)), · · · , ctN + EncMcE(N, (0,0))],

and proves that cti is the encryption of 0, which means that cti has the form of
(z||0)GMcE + s, where z ∈ F

�1
2 and s ∈ B(m,w).

The Third Layer. User i must prove that it encrypts its own index i honestly,
which requires combining the former one-out-of-many proof with the latter set-
memberships proof. The overarching concept is to pair the N + 2 commitments

376 X. Liu and L.-P. Wang

from the former proof with the N +2 commitments from the latter proof respec-
tively, forming N +2 pairs sequentially from 1 to N +2. Then shuffle the last N
commitment pairs related to {yi}N

i=1 and {cti}N
i=1, and send them along with

another two pairs to a verifier. The remaining steps are similar to our GSD-based
one-out-of-many proof, with the difference being what needs to be revealed and
verified is the commitment pair.

Finally, we obtain a logarithmic-size group signature through the Fiat-Shamir
transform, and we also prove its correctness, traceability, and CPA-anonymity.

1.3 Roadmap

The rest of the article is organized as follows. Section 2 provides some required
preliminaries for our study. In Sect. 3, we present our novel SD-based and GSD-
based one-out-of-many protocols. Our logarithmic-size ring signature scheme
and its security proof is provided in Sect. 4. In Sect. 5, we give our logarithmic-
size group signature scheme. Finally, we choose our parameter sets for our ring
signature scheme and group signature scheme in Sect. 6.

2 Preliminaries

2.1 Hard Problems

For integers a, b and a ≤ b, the notation [a; b] denotes the set {a, · · · , b}. If a = 1,
then it simplifies to [b]. Bold lowercase and uppercase letters denote row vectors
and matrices respectively. The transpose of a vector x is represented by x�. Let
B(n, t) be a set of vectors v ∈ F

n
2 such that the Hamming weight w(v) = t.

For a set X, x
$← X means that x is sampled from X randomly and x

$, ζ←− X
denotes x is sampled from X using the seed ζ. Let O(·) denote a random oracle
and AO(·) denote that an algorithm A has access to O(·).
Problem 1 (SD Problem). On input a matrix H $← F

(n−k)×n
2 and a syndrome

s ∈ F
n−k
2 , the syndrome decoding problem SD(n, k, t) asks to find a vector e ∈ F

n
2

such that s� = He� and e $← B(n, t).

We only present search version of SD problem. In [32], a reduction from the
search version to the decision version is provided. Its dual problem is as follows.

Problem 2 (GSD Problem). On input a matrix G $← F
k×n
2 and a vector y ∈ F

n
2 ,

the general syndrome decoding problem GSD(n, k, t) asks to find a vector x ∈ F
k
2

and a vector e ∈ F
n
2 such that y = xG + e, x $← F

k
2 and e $← B(n, t).

The hardness of the GSD problem is equivalent to that of the SD problem [39].

Problem 3 (DOOM Problem). On input a matrix H $← F
k×n
2 and a set of

N syndromes {si}N
i=1, the decoding one-out-of-many problem DOOM(n, k, t,N)

asks to find a vector ei ∈ F
n
2 for some i ∈ [N] such that s�

i = He�
i and

ei
$← B(n, t).

Short Code-Based One-out-of-Many Proofs and Applications 377

As [37] stated, a variant of information set decoding algorithms can be
adapted to the DOOM(n, k, t,N) problem, resulting in a speedup factor of
approximately

√
N . We give the dual version of the DOOM problem.

Problem 4 (GDOOM Problem). On input a matrix G $← F
k×n
2 and a set of

N vectors {yi}N
i=1, the general decoding one-out-of-many problem GDOOM(n,

k, t,N) asks to find a vector xi ∈ F
k
2 and a vector ei ∈ F

n
2 for some i ∈ [N] such

that yi = xiG + ei,xi
$← F

k
2 and ei

$← B(n, t).

2.2 Merkle Trees

A Merkle tree is a binary tree that compresses a list of data into a value. It is con-
structed layer by layer from bottom to top using a collision-resistant hash func-
tion. Each node in each layer is a hash value of the concatenation of its associated
child nodes. In [6] a special type of Merkle trees called index-hiding Merkle trees
was introduced. This tree has the characteristic of sorting the leaf nodes in lexi-
cographical order, rather than based on their indices. Let H : {0, 1}∗ → {0, 1}2λ

denote a collision-resistant hash function, and D = (d0, · · · , d2�−1) denote a data
list. A Merkle tree includes the following algorithms.

1. Mtree(D) → (root, tree): With a data list D as input, set M�,j = H(dj) for
j ∈ [0, 2� − 1], and iteratively calculate

Mi,j = H(Mi+1,2j−1,Mi+1,2j), i ∈ [0, � − 1], j ∈ [0, 2i − 1].

Output M0,0 as the root.
2. IH-Mtree(D) → (root, tree): With a data list D as input, set M�,j = H(dj)

for j ∈ [0, 2� − 1], and iteratively calculate

Mi,j = H((Mi+1,2j−1,Mi+1,2j)lex), i ∈ [0, � − 1], j ∈ [0, 2i − 1].

Output M0,0 as the root.
3. Gpath(tree, B) → path: With the structure of a tree and a subset B of D as

input, output a list of intermediate nodes that cover all D \B. Here, one says
that a node set U covers a leaf set L if the union of the leaves in a subtree
rooted at each node u ∈ U is exactly the set L.

4. Rebuild(path, B) → root′: With a subset B and a path as input, output a
rebuilt root′.

There are two important properties about Merkle trees: the binding property
and the index-hiding property of the index-hiding Merkle trees. The binding
property means that for any subset S that does not belong to the set D, finding
a path such that Rebuild(S,path) = Mtree(D) is the same as discovering a
collision in H. The index-hiding property means that for any subset B belonging
to the set D, the path of index-hiding Merkle trees will not reveal any information
about the set B.

378 X. Liu and L.-P. Wang

Lemma 1. [6] For a Merkle tree generated by a data list D, there exists an
algorithm F that uses the tree and a pair (S, path) satisfying S �⊂ D and
Rebuild(S, path) = root to generate a collision in H.

Lemma 2. [6] Given an integer N = 2� and two distributions X1 and X2 over
{0, 1}∗, the distribution LI , for any I ∈ [N], is defined as

LI =

⎡
⎢⎢⎢⎣ (aI ,path, root)

dI
$← X1,

di
$← X2,∀1 ≤ i ≤ N, i �= I,

(tree, root) ← IH-Mtree(D),
path ← Gpath(tree, I).

⎤
⎥⎥⎥⎦ ,

where D = (d1, · · · , dN). Then LI = LJ for ∀I, J ∈ [N].

2.3 Seedtrees

A seedtree is also a completely balanced binary tree, but its construction differs
from that of a Merkle tree. In this case, a sender starts by selecting a seed as
the root of a tree. Then, a pseudo-random number generator is used to create
intermediate nodes from top to bottom. By sending some intermediate nodes,
the sender reveals specific leaf nodes without disclosing any information about
the remaining leaves. Let PRNG : {0, 1}λ → {0, 1}2λ represent a pseudo-random
number generator. A seedtree includes the following algorithms.

1. Stree(root, N) → (l0, · · · , l2�−1) : With a seed root and an integer N as input,
set M0,0 = root and iteratively compute

(Mi+1,2j−1,Mi+1,2j) = PRNG(Mi,j), i ∈ [0, � − 1], j ∈ [0, 2i − 1].

Define (M�,0, · · · ,M�,2�−1) as leaf nodes (l0, · · · , l2�−1) and then output them.
2. Oseeds(root, ch) → seedinter: With a root and a challenge ch as input, return

a set seedinter that covers all the leaves with index i such that chi = 1.
3. Recover(seedinter, ch) → {li}i,s.t.chi=1: With a set seedinter and a challenge

ch as input, return all leaf nodes rooted at the nodes in seedinter.
4. Simseeds(ch) → seedinter: With a challenge ch as input, return a set seedinter

via random sampling, enabling seedinter to cover all leaves with index i satis-
fying chi = 0.

Lemma 3. [6] Given an integer N and a challenge ch, the distributions X1 and
X2 are defined by

X1 =

⎡
⎣ seedinter, {leafi}chi=0

seed ← {0, 1}λ,
{leafi}N

i=1 ← Stree(root, N),
seedinter ← Oseeds(seedroot, ch).

⎤
⎦ and

X2 =
[
seedinter, {leafi}chi=0

{leafi}chi=0 ← {0, 1}λ,
seedinter ← Simseeds(ch).

]
.

For any adversary who queries an oracle Q times, the advantage of distinguishing
the two distributions X1 and X2 is at most Q/2λ.

Short Code-Based One-out-of-Many Proofs and Applications 379

3 Short One-out-of-Many Proofs from Coding Theory

We first propose an SD-based one-out-of-many proof along with the security
proof. To achieve a lower communication cost, we introduce a GSD-based one-
out-of-many proof, in which we decrease the communication cost by employing
optimization techniques [23,31].

3.1 The SD-Based One-out-of-Many Proof

In this subsection, we put forward our SD-based one-out-of-many proof in
Fig. 2 for proving knowledge of the preimage for one syndrome in a public set
(s1, · · · , sN). More specifically, the proof is a ZKAoK for the following relation:

R = {(H, s1, · · · , sN), (eI , I)| for some I ∈ [N], s�
I = He�

I , eI ∈ B(n, t)}, (1)

where H ∈ F
(n−k)×n
2 and si ∈ F

n−k
2 for all i ∈ [N].

Our idea stems from a key observation that in the modified Stern protocol
in Fig. 1, the commitment c1 = Com(δ,Hr� + s�; ρ1) needs to be verified in
two different ways, in which one is related to the syndrome s while the other is
unrelated to s. Based on this, we replace c1 with the following set

(Com(δ,Hr� + s�
1 ; b1), · · · ,Com(δ,Hr� + s�

N ; bN)),

while keeping c2 and c3 unchanged, and compress it into a root using an index-
hiding Merkle tree. Then, the root, c2 and c3 are sent to a verifier.

When the challenge is 1, the verifier checks c2 and c3 as the original Stern
protocol. When the challenge is 2, the verifier checks the root and c3 by using
the path of the index-hiding Merkle tree, r+ eI and δ. When the challenge is 3,
the verifier calculates all leaf nodes using r and checks the root and c2 by leaf
nodes and δ.

In the following we first show that our protocol in Fig. 2 satisfies perfect com-
pleteness. That is, if P, which possesses the witness (eI , I), faithfully executes
the protocol, V will output “accept” with a probability of 1. If ch = 1, V only
needs to repeat the calculation process of c2 and c3, and so it always outputs
“accept”. If ch = 2, V needs to reconstruct the root using the I-th leaf node
and repeat the calculation process of c3. The reconstructed root is the same as
the one constructed using all leaves, and hence it always outputs “accept”. If
ch = 3, V only needs to repeat the calculation process of the root and c2, and
also it always outputs “accept”.

Next, the following Theorems 1 and 2 state that our protocol in Fig. 2 is
sound and zero-knowledge.

Theorem 1. Assuming that Com is a computational binding commitment
scheme and the hash function H used in the Merkle tree is collision-resistant,
the protocol in Fig. 2 is an argument of knowledge with soundness error 2/3.

380 X. Liu and L.-P. Wang

Proof. Assuming there is an adversary A who is accepted with a probability
greater than 2/3, i.e., A can effectively respond all three challenges. Then, we
can construct an extractor E which either breaks the binding property of Com,
or outputs a collision in H, or e ∈ B(n, t) such that He� = s�

I for a certain
I ∈ [N]. Formally, given a CMT(c1, c2, c3) and its three valid responses

RSP1 = (w1,w2, ρ2, ρ3),RSP2 = (w3, ξδ, b,path, ρ3),RSP3 = (ξs, ξr, ξ
′
δ, ρ2),

each of them corresponds to distinct challenges ch = 1, ch = 2 and ch = 3
respectively. E first calculates

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π1
$,ξδ←− Sn,p1

$,ξr←− F
n
2 , π2

$,ξ′
δ←− Sn;

(b′
1, · · · , b′

N) = Stree(ξs, N);
leaf ′ = (Com(π2,Hp�

1 + s�
1 ; b′

1), · · · ,Com(π2,Hp�
1 + s�

N ; b′
N));

R′
1 = IH-Mtree(leaf ′);

R′
2 = Rebuild(path,Com(π1,Hw�

3 ; b)).

Due to the validity of these responses, we have
⎧⎨
⎩

c1 = R′
1 = R′

2,w2 ∈ B(n, t);
c2 = Com(w1; ρ2) = Com(π2(p1); ρ2);
c3 = Com(w1 + w2; ρ3) = Com(π1(w3); ρ3).

Then, E checks if (w1, ρ2) �= (π2(p1), ρ2). If so, E breaks the binding property
of Com. Similarly, E checks if (w1 + w2, ρ3) �= (π1(w3), ρ3). If neither of these
two inequalities holds true, we have

w1 = π2(p1),w1 + w2 = π1(w3). (2)

Next, E checks if Com(π1,Hw�
3 ; b) �= leaf ′

i for ∀i ∈ [N]. If so, it finds a
collision in H by employing the Merkle tree extractor in Lemma 1 with the
input (tree,Com(π1,Hw�

3 ; b), path). Otherwise, there exists an index I ∈ [N]
satisfying Com(π1,Hw�

3 ; b) = leaf ′
I . Furthermore, E checks if (π1,Hw�

3 , b) �=
(π2,Hp�

1 + s�
I , bI). If so, E breaks the binding property of Com. Otherwise, E

gets π1 = π2, Hw�
3 = Hp�

1 + s�
I and b = bI . From this and Eq. (2), we deduce

that Hπ−1
1 (w�

2) = s�
I , where π−1

1 (w2) ∈ B(n, t). This means that E outputs the
witness e = π−1

1 (w2) ∈ B(n, t) such that He = sI , I ∈ [N].
�
Theorem 2. The protocol in Fig. 2 is honest-verifier zero-knowledge, that is,
there exists a simulator Sim, such that for any statement-witness pair (s, w)
belonging to the relation (1), any ch ∈ {1, 2, 3} and any adversary A that accesses
the oracle Q times, the following holds

∣∣Pr[AO(P(s, w, ch)) → 1] − Pr[AO(Sim(s, ch)) → 1]
∣∣ ≤ 2Q

2λ
.

Short Code-Based One-out-of-Many Proofs and Applications 381

Fig. 2. The SD-based one-out-of-many proof Πh = (Ph = (Ph
1 , Ph

2), Vh = (Vh
1 , Vh

2)).

Proof. To simplify the proof, we use the random oracle O∗(·) to instantiate the
hash function, the algorithm Stree, and Com, where ∗ denotes the instantiated
object. The simulator Sim is constructed as follows:
Case ch = 1:

1. Sim selects the following random objects:

w1
$← F

n
2 ,w2

$← B(n, t), {ρ2, ρ3} $← {0, 1}λ, c1
$← {0, 1}2λ.

2. Sim lets CMT = (c′
1, c

′
2, c

′
3), where

c′
1 = c1, c

′
2 = Com(w1; ρ2), c′

3 = Com(w1 + w2; ρ3).

382 X. Liu and L.-P. Wang

3. Sim lets RSP = (w1,w2, ρ2, ρ3) and returns (CMT, 1,RSP).

Case ch = 2:

1. Sim selects the following random objects:

w3
$← F

n
2 , {b, ξδ, ρ3, {leafi}N

i=2} $← {0, 1}λ, c2
$← {0, 1}2λ, π1

$,ξδ←− Sn.

2. Sim sets leaf1 = Com(π1,Hw�
3 ; b) and obtains (tree, root) = IH-Mtree(leaf).

3. Sim lets CMT = (c′
1, c

′
2, c

′
3), where

c′
1 = root, c′

2 = c2, c
′
3 = Com(π1(w3); ρ3).

4. Sim runs the algorithm GPath(tree, 1) to retrieve the path.
5. Sim lets RSP = (w3, ξδ, b,path, ρ3) and returns (CMT, 2,RSP).

Case ch = 3:

1. Sim selects the following random objects:

{ξs, ξr, ξδ, ρ2} $← {0, 1}λ, c3
$← {0, 1}2λ,v2

$,ξr←− F
n
2 , π2

$,ξδ←− Sn.

2. Sim sets leaf = (Com(Hp�
1 +s�

1 ; b1), · · · ,Com(Hp�
1 +s�

N ; bN)) and calculates
its root, where (b1, · · · , bN) = Stree(ξs, N).

3. Sim lets CMT = (c′
1, c

′
2, c

′
3), where

c′
1 = root, c′

2 = Com(π2(v2); ρ2), c′
3 = c3.

4. Sim lets RSP = (ξs, ξr, ξδ, ρ2) and returns (CMT, 3,RSP).

If Com is statistically hiding, then two CMTs generated by Sim and a honest
prover, respectively, are statistically indistinguishable. Therefore, we only need
to check the case of RSP.

ch = 1: Since Sim draws (w1,w2) at random from F
n
2 × B(n, t), both RSPs

generated by a honest prover and Sim respectively, follow the random distribu-
tion on F

n
2 × B(n, t).

ch = 2: Set five simulators {Simi}5i=1 to prove that Sim and a honest prover
are indistinguishable. Sim1 and Sim5 represent a honest prover and Sim, respec-
tively. Let Ei denote AO(Simi(s, ch)) = 1, for i ∈ [5].

Sim2: The only difference between Sim2 and Sim1 is that {bi}N
i=1 are ran-

domly sampled from {0, 1}λ instead of being generated by the OStree(·) algorithm
Stree with an input ζs. If ζs has not been queried by A to the oracle OStree(·),
Sim2 and Sim1 are indistinguishable. Thus, if OStree(·) is accessed Q times and
the probability of colliding with ζs is 2λ for each query, the probability of collid-
ing with ζs after Q queries is Q/2λ. Thus, we have |Pr[E2] − Pr[E1]| ≤ Q/2λ.

Sim3: The only difference between Sim3 and Sim2 is that {leafi}N
i=1,i �=I are

randomly sampled from {0, 1}2λ instead of being generated by OCom(·) with
the tuple (π1,Hr� + s�

i ; bi) for i �= I. If all tuples have not been queried by A
to the oracle OCom(·), Sim3 and Sim2 are indistinguishable. We use Qcomi

to

Short Code-Based One-out-of-Many Proofs and Applications 383

represent the number of times OComi(·) is accessed. Since the minimum entropy
of bi is 1/2λ, the minimum entropy of tuple (π1,Hr� + s�

i ; bi) is at most 1/2λ.
Therefore, the probability of collision with the tuple in each query is at most
1/2λ. Furthermore, since

∑N
i=1 Qleafi ≤ Q, we have |Pr[E3] − Pr[E2]| ≤ Q/2λ.

Sim4: There are two differences between Sim4 and Sim3. Firstly, c3 is ran-
domly sampled from {0, 1}2λ. Secondly, leafI = Com(π1,Hw�

3 ; bI), where w3 is
randomly sampled from F

n
2 . Since w3 and c3 follows the random distribution as

the real transcript, we have Pr[E4] = Pr[E3].
Sim5: The only difference between Sim5 and Sim4 is that 1 is used instead

of I in witness. Lemma 2 states that regardless of whether the selected index
is 1 or I, the root and path follow the same distribution. Therefore, we have
Pr[E5] = Pr[E4].

Thus, we have
∣∣Pr[AO(P(s, w, 2)) → 1] − Pr[AO(Sim(s, 2)) → 1]

∣∣ ≤ 2Q
2λ .

ch = 3: Since a honest prover does not use the witness, Sim can perfectly
simulate RSP.

In summary, we obtain the required result.
�

3.2 The GSD-Based One-out-of-Many Proof

We first propose a GSD-based one-out-of-many proof in one-iteration in Fig. 3.
This protocol is for the following relation:

R = {(G, {yi}N
i=1), (x, e, I)| forsome I ∈ [N],yI = xG + e,x ∈ F

k
2 , e ∈ B(n, t)},

(3)
where G ∈ F

k×n
2 and yi ∈ F

n
2 for all i ∈ [N]. Next, we present its multi-iteration

version in Fig. 4 by using additional optimization techniques such as commit-
ments compression [23,31], seedtrees [6,23] and small-weight vector compression
functions [31]. In the following we first explain how to use them to obtain the
multi-iteration version, which is called the GSD-based one-out-of-many proof.

Commitments Compression: The soundness error of the GSD-based one-
out-of-many proof in one-iteration in Fig. 3 is 2/3, and so this protocol needs
to be repeated κ times to reduce the soundness error. Since three commitments
(cj

1, c
j
2, c

j
3), j ∈ [κ] need to be output in each iteration, the total cost of commit-

ments is 3κ|Com |. To reduce the total cost of commitments, we optimize the
above protocol by using three Merkle trees Tree1, Tree2 and Tree3 to compress
(c11, · · · , cκ

1), (c12, · · · , cκ
2) and (c13, · · · , cκ

3) as root1, root2 and root3 respectively,
where (cj

1, c
j
2, c

j
3) denotes the commitment of the j-th iteration. The prover sends

CMT = H(root1, root2, root3). Since the verifier can reconstruct two out of the
three commitments (cj

1, c
j
2, c

j
3) in each iteration, the prover transmits those com-

mitments that cannot be computed by the verifier through certain intermediate
nodes of the tree. In summary, this will reduce the cost of commitments from
3κ|Com | to |H| + 5κ|Com |

6 .

Seedtrees: In one-iteration protocol, a set of seeds needs to be generated for
sampling random objects and so certain seeds are revealed based on the chal-
lenge. To reduce the communication cost of seeds, we use a set of master seeds

384 X. Liu and L.-P. Wang

along with a set of seedtrees to generate κ sets of seeds in κ iterations. During
the response phase, we provide those revealed seeds by outputting certain inter-
mediate nodes in the seedtree. If the probability of a seed being transmitted in
one iteration is 1/p, then using a seedtree reduces the transmission cost of this
seed by about 1/2p.

Small-Weight Vector Compression: Since the protocol in Fig. 3 may trans-
mit a small weight vector, we employ a small vector compression function in
multi-iteration version to reduce the cost of transmitting small weight vectors
from n to approximately n/2.

By using the above optimization techniques, a multi-iteration version is pro-
posed in Fig. 4. As mentioned in [6], to ensure a tighter security proof and avoid
multi-target attacks [14], we use a “salt”, a 2λ-bit prefix string, in these seedtrees
to distinguish the random oracles used in the seedtrees of different iterations.
The “salt” has a negligible impact on practice.

The following theorem provides the security of the protocol in Fig. 4.

Theorem 3. The protocol described in Fig. 4 is an argument of knowledge with
the perfect completeness and honest-verifier zero-knowledge.

Proof. Completeness: This protocol has perfect completeness, which is imme-
diately obtained by the correctness of the seedtrees, Merkle trees, and index-
hiding Merkle trees.

Soundness: Assume there is an adversary A who is accepted with a probability
> (2/3)κ, i.e., A is able to successfully answer all three challenges in some
iteration j where j ∈ [κ]. We build an extractor E which either breaks the binding
property of Com, or outputs a collision in H, or outputs x ∈ F

k
2 , e ∈ B(n, t) such

that xG+e = yI for some I ∈ [N]. First, E obtains the seeds, random coins and
the commitment of the j-th iteration by RSP1,RSP2,RSP3 and the algorithms
of seedtrees and Merkle trees.

{ξj
s , ξ

j
u, ξj

δ , ξ
j
δ′ , ρ

j
1, ρ

j
2, c

j
1, c

j
2, c

j
3} ←− (RSP1,RSP2,RSP3).

Then, E performs the following steps:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(bj
1, · · · , bj

N) = Stree(ξj
s , N);

pj
1

$,ξj

δ′←− F
n
2 , πj

1

$,ξj

δ′←− Sn,pj
2

$,ξj
u←− F

k1
2 ,p3

2

$,ξj
δ←− F

n
2 , πj

2

$,ξj
δ←− Sn;

leafj = (Com(πj
2(p

j
2G1 + y1) + pj

3; b
j
1), · · · ,Com(πj

2(p
j
2G1 + yN) + pj

3; b
j
N));

Rj
1 = IH-Mtree(leafj);

Rj
2 = Rebuild(pathj ,Com(wj

2 + wj
3; b

j)).

Due to the validity of these responses, we have
⎧⎨
⎩

cj
1 = Rj

1 = Rj
2,w

j
3 ∈ B(n, t);

cj
2 = Com(πj

1,p
j
1; ρ

j
2) = Com(πj

2,p
j
3; ρ

j
2);

cj
3 = Com(wj

2, ρ
j
3) = Com(πj

1(w
j
1G1) + pj

1; ρ
j
3).

Short Code-Based One-out-of-Many Proofs and Applications 385

Fig. 3. The one-iteration GSD-based one-out-of-many proof Πg = (Pg = (Pg
1 , Pg

2),
Vg = (Vg

1 , Vg
2)).

E first checks if (πj
1,p

j
1, ρ

j
2) �= (πj

2,p
j
3, ρ

j
2). If so, E breaks the binding property

of Com. Similarly, E checks if (wj
2, ρ

j
3) �= (πj

1(w
j
1G1)+pj

1, ρ
j
3). If neither of these

two inequalities holds true, we have

πj
1 = πj

2,p
j
1 = pj

3,w
j
2 = πj

1(w
j
1G1) + pj

1. (4)

386 X. Liu and L.-P. Wang

Fig. 4. The GSD-based one-out-of-many proof Πoom = (Poom = (Poom
1 , Poom

2), Voom =
(Voom

1 , Voom
2)). Let ζ inter

∗ = (ζ inter
s , ζ inter

u , ζ inter
δ , ζ inter

ρ1 , ζ inter
ρ2).

For convenience, in later proof we let πj = πj
1,p

j = pj
1. E then checks

if Com(wj
2 + wj

3; b
j)) �= leafj

i for ∀i ∈ [N]. If indeed, by employing the
Merkle tree extractor in Lemma 1 with input (treej ,Com(wj

2 + wj
3; b

j)),path),
it outputs a collision in H. Otherwise, there exists an index I ∈ [N] sat-
isfying Com(wj

2 + wj
3; b

j) = leafj
I and E further checks if (wj

2 + wj
3, b

j) �=

Short Code-Based One-out-of-Many Proofs and Applications 387

(πj(pj
2G

j
1 + yj

I) + pj , bj
I). If so, E breaks the binding property of Com. Oth-

erwise, E gets wj
2 +wj

3 = πj(pj
2G1 +yj

I)+pj and bj = bj
I and so it deduces that

(wj
1 − pj

2)G1 + (πj)−1(wj
3) = yI by Eq. (4), where (πj)−1(wj

3) ∈ B(n, t). This
means that for some I ∈ [N], E outputs the witness (wj

1 − pj
2, (π

j)−1(wj
3)).

Honest-Verifier Zero-Knowledge: Assume that A has accessed the oracle
O∗(·) a total of Q times, where O∗(·) instantiates the hash function, algorithm
Stree, and Com. Let Ei denote the AO(Simi(s, ch)) = 1, for i = 1, · · · , 6. Sim
is built as follows:

Sim first runs⎧⎨
⎩

θ ← {0, 1}2λ, ζ interδ ← Simseeds({j}chj �=1, θ);
ζ interρ1

← Simseeds({j}chj �=1, θ), ζ interρ2
← Simseeds({j}chj �=2, θ);

ζ inters ← Simseeds({j}chj=2, θ), ζ interu ← Simseeds({j}chj=2, θ).

Then, Sim obtains random coins by
⎧⎪⎨
⎪⎩

{ζj
ρ1

}chj �=1 ← Recover(ζ interρ1
, {j}chj �=1); {ζj

ρ2
}chj �=2 ← Recover(ζ interρ2

, {j}chj �=2);

{ζj
s}chj=2 ← Recover(ζ inters , {j}chj=2); {ζj

u}chj=2 ← Recover(ζ interu , {j}chj=2);

{ζj
δ}chj �=1 ← Recover(ζ interδ , {j}chj �=1).

For j = 1 to κ : Sim performs
Case chj = 1:

1. Sim samples wj
1

$← F
k
q , cj

1
$← {0, 1}2λ and sets pj

1

$,ξj
δ←− F

n
2 , πj

1

$,ξj
δ←− Sn.

2. Sim sets cj
2 = Com(πj

1,p
j
1; ρ

j
2) and cj

3 = Com(πj
1(w

j
1G1) + pj

1; ρ
j
3).

3. Sim sets rspj = wj
1.

Sim computes CMT := H(C1, C2, C3), where

C1 ← Mtree(c11, · · · , cκ
1), C2 ← Mtree(c12, · · · , cκ

2), C3 ← Mtree(c13, · · · , cκ
3).

and obtains pathi = Gpath(Mtreei, {j}chj=i) for i = 1, 2, 3. It sets

RSP = ({rspi}κ
i=1,path1,path2,path3, ζ

inter
∗)

and returns (CMT, ch,RSP, θ).
Case chj = 2:

1. Sim chooses the following random objects:

wj
2

$← F
n
2 ,wj

3
$← B(n, t), bj $← {0, 1}λ; leafj

i
$← {0, 1}2λ, ∀i ∈ [2; N], cj

2
$← {0, 1}2λ.

2. Sim sets leafj
1 = Com(wj

2 + wj
3; b

j) and (treej , rootj) = IH-Mtree(leafj).
3. Sim sets cj

1 = rootj and cj
3 = Com(wj

2; ρ
j
3).

4. Sim runs Gpath(treej , 1) to retrieve the path and sets rspj =
(wj

2,w
j
3, b

j ,pathj).

388 X. Liu and L.-P. Wang

Case chj = 3:

1. Sim samples the following random objects:

pj
2

$,ξj
u←− F

k1
2 ;pj

3

$,ξj
δ←− F

n
2 ;πj

2

$,ξj
δ←− Sn, cj

3
$← {0, 1}2λ.

2. Sim sets leafj = (Com(πj
2(p

j
2G1 + y1) + pj

3; b
j
1), · · · ,Com(πj

2(p
j
2G1 + yN) +

pj
3; b

j
N)) and calculates its rootj , where (bj

1, · · · , bj
N) = Stree(ξj

s , N).
3. Sim sets cj

1 = rootj and cj
2 = Com(πj

2,p
j
3; ρ

j
2).

Similar to the proof of Theorem 2, we only need to check the case of RSP. We
use a sequence of simulators {Simi}6i=1 to prove that Sim and an honest prover
are indistinguishable, in which Sim1 and Sim6 represent the honest prover and
Sim, respectively.

Sim2: The only difference between Sim2 and the honest prover is that the
tuple internal seeds ζ inter∗ are generated by the algorithm Simseeds with the input
ch intead of being generated by the algorithms Stree and Oseeds with inputs
ζroot∗ and ch. According to Lemma 3, the advantage of distinguishing between
these two tuples internal seeds is Q/2λ when the oracle OStree(·) is accessed Q
times. Therefore, we have |Pr[E2] − Pr[E1]| ≤ Q/2λ.

Observe that, if ζ inter∗ has not been queried, when chj = 1 and chj = 3, Sim2

can perfectly simulate. We only prove the case of chj = 2.
Sim3: The only difference between Sim3 and Sim2 is that {bj

i}N
i=1 are ran-

domly sampled from {0, 1}λ instead of being generated by OStree(·) with the
input ζj

s , where ζj
s is generated by OOseeds(ζ inters). If ζj

s has not been queried
by A to the oracle OStree(·), Sim3 and Sim2 are indistinguishable. Thus, if
OStree(·) is accessed Q times and the probability of colliding with ζj

s each query
is 2λ, the probability of colliding with ζj

s after Q queries is Q/2λ. Thus, we have
|Pr[E3] − Pr[E2]| ≤ Q/2λ.

Sim4: The only difference between Sim3 and Sim2 is that {leafj
i}N

i=1,i �=I are
randomly sampled from {0, 1}2λ instead of being generated by OCom(·) with
the tuple (δj(pj

2G + yi) + pj
3; b

j
i) for i �= I. If all tuples have not been queried

by A to OCom(·), Sim3 and Sim2 are indistinguishable. Let Qcomi
represent

the number of times OComi(·) is accessed. Since the minimum entropy of bj
i is

1/2λ, the minimum entropy of tuple (δj(pj
2G + yi) + pj

3; b
j
i) is at most 1/2λ.

Hence, the probability of collision with the tuple in each query is at most 1/2λ.
Furthermore, since

∑N
i=1 Qcomi

≤ Q, we have |Pr[E4] − Pr[E3]| ≤ Q/2λ.
Sim5: There are two differences between Sim5 and Sim4. Firstly, cj

3 is ran-
domly sampled from {0, 1}2λ. Secondly, leafj

I = Com(wj
2+wj

3; b
j
I), where wj

2 and
wj

3 are randomly sampled from F
n
2 and B(n, t) respectively. Since wj

2 and wj
3

follows the random distribution as the real transcript, we have Pr[E5] = Pr[E4].
Sim6: The only difference between Sim6 and Sim5 is that 1 is used instead

of I in witness. Lemma 2 states that regardless of whether the selected index
is 1 or I, the root and path follow the same distribution. Therefore, we have
Pr[E6] = Pr[E5].

Short Code-Based One-out-of-Many Proofs and Applications 389

Thus, we have
∣∣Pr[AO(P(s, w, ch)) → 1] − Pr[AO(Sim(s, ch)) → 1]

∣∣ ≤ 3Q
2λ .

�
Communication Cost: (1) The cost of commitments is 2λ(5κ/6+1). (2) The
cost of seeds is about (κ/3)(20λ/3) + 2λ. (3) The cost of vectors and the path
of the Merkle tree is about (κ/3)(3n

2 + k + 2λ log N).

3.3 Our Set-Membership Proof

A set-membership proof is a concept similar to an one-out-of-many proof. It
allows one to prove that an element in a public set satisfies a given property,
i.e. given a publicly set I and a property G, one proves the existence of an
element αi such that αi ∈ I and G(αi) holds. Consider an example where a
commitment c = ComMcE and a public set I = {α1, · · · , αN} are given. The
goal is to demonstrate that c is a commitment to an element in I and so our
set-membership proof can be achieved by the protocol in Fig. 4 with the input
of the set [c1 = c + ComMcE(α1; (0,0)), · · · , cN = c + ComMcE(αN ; (0,0))] and
public commitment key G.

4 Our Code-Based Logarithmic-Size Ring Signature
Scheme

A ring signature enables a ring member to sign a message on behalf of the ring
anonymously. Our GSD-based one-out-of-many proof can be transformed into a
ring signature scheme through Fiat-Shamir transform. Specifically, each user has
a public-private key pair (yi, (xi, ei)), where yi = xiG+ ei and ei is small. The
signature for a message μ is our GSD-based one-out-of-many proof for (xi, ei)
satisfying Eq. (3), where μ is the input of the random oracle in Fiat-Shamir
heuristic. Our ring signature scheme is presented in Fig. 5.

Fig. 5. Our ring signature scheme. Set R := (pk1, · · · , pkN).

First, we introduce the definition and security requirements of a ring signa-
ture scheme.

390 X. Liu and L.-P. Wang

Definition 1. A ring signature scheme contains four polynomial-time algo-
rithms RS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify),

– pp ← RS.Setup(1λ) : Taking a security parameter 1λ as input, output the
public parameters pp.

– (pk, sk) ← RS.KeyGen(pp,N) : Taking the public parameter pp and the
number N of ring users as input, publish a pair of public-private keys (pki, ski)
for each user i ∈ [N].

– σ ← RS.Sign(R,M, sk) : Taking the list of public keys R = (pk1, · · · , pkN),
a private key sk and a message M as input, generate a signature σ.

– b ← RS.Verify(R,M, σ) : Taking the list of public keys R, a message M ,
and a signature σ as input, output b either 1 (accept) or 0 (reject).

A ring signature needs to satisfy three properties: correctness, unforgeability,
and anonymity. Correctness ensures that a valid signature can always be verified.
Unforgeability guarantees that only users in the ring can generate valid signa-
tures. Anonymity ensures that the output signature does not leak the identity
of the signer.

Definition 2 (Correctness). A ring signature scheme achieves correctness if
for any λ ∈ N, N = poly(λ), j ∈ [N] and every message M , the following holds:

Pr

⎡
⎢⎢⎣RS.Verify(R,M, σ) = 1

pp ← RS.Setup(1λ),
(pki, ski) ← RS.KeyGen(pp),∀i ∈ [N],

R = (pk1, · · · , pkN),
σ ← RS.Sign(R,M, skj).

⎤
⎥⎥⎦ = 1.

Definition 3 (Unforgeability w.r.t. insider corruption). A ring signature
scheme RS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is unforgeable
if the advantage of A is negligible in the following game:

1. pp ← RS.Setup(1λ), (pki, ski) ← RS.KeyGen(pp,N),∀i ∈ [N];
2. A can have access to the corrupted oracle Co(·) with any pkj ∈ R and Co(·)

returns the skj to A and adds pkj to the set CU ;
3. A can have access to the RS.Sign(·) with (pkj ,M) and then RS.Sign(·)

returns a signature σ using the secret key skj ;
4. A outputs (R∗,M∗, σ∗) such that RS.Verify(R∗,M∗, σ∗) = 1, where

(R∗,M∗) has never been asked and R∗ ∩ CU = ∅.
The advantage of breaking unforgeability is

AdvUnf
A (λ) = Pr[RS.Verify(R,M, σ) = 1].

Definition 4 (Anonymity). A ring signature scheme RS = (RS.Setup,
RS.KeyGen, RS.Sign,RS.Verify) is anonymous if the advantage of A is neg-
ligible in the following game:

Short Code-Based One-out-of-Many Proofs and Applications 391

1. pp ← RS.Setup(1λ), (pki, ski) ← RS.KeyGen(pp,N),∀i ∈ [N];
2. A selects a tuple (M,pki0 , pki1), i0, i1 ∈ [N];
3. σ ← RS.Sign(M, skib

), b $← {0, 1};
4. A returns a b′.

The advantage of breaking anonymity is

AdvAnon
A (λ) = |Pr[b = b′] − 1/2|. (5)

Theorem 4. Our ring signature scheme in Fig. 5 achieves correctness,
anonymity and unforgeability with respect to insider corruptions in the random
oracle model.

Proof. Correctness: The correctness in Fig. 5 can be directly inferred from the
completeness in Fig. 4.

Anonymity: Since our GSD-based one-out-of-many proof is zero-knowledge, it
implies that the protocol is witness-indistinguishable. As a result, the anonymity
in Fig. 5 can be obtained immediately.

Unforgeability: Without providing specific details we only provide the proof
framework as follows. The challenger first selects an index j∗ and set the pkj∗

as the challenge instance. The rest pkj are generated as the same as the real

RS.KeGen. If A queries RS.Sign(·) with pkj∗ , the challenger uses the simulator
of Fig. 4 to output the signature. Otherwise, the challenger honestly generates
the signature. Under the condition that j∗ has not been queried with Co(·) and
A outputs a forged signature about pkj∗ , the challenger is able to extract the
solution to the challenge problem via rewind techniques.
�

5 Code-Based Group Signatures

Our GSD-based one-out-of-many proof can be applied in the construction of
a group signature. However, unlike ring signatures, a group signature scheme
cannot be obtained by directly applying the Fiat-Shamir transform to our one-
out-of-many proofs. Therefore, we first construct a ZKAoK that allows a signer
to prove both its membership in the group and the honest encryption of its own
identity using the public key of the openers. Then, we utilize the Fiat-Shamir
transform on the ZKAoK to get our group signature scheme. The overarching
concept of this ZKAoK is to combine our GSD-based one-out-of-many proof and
our set-memberships proof. We first give the definition and security requirements
of a group signature.

Definition 5. A group signature scheme contains five polynomial-time algo-
rithms (GS.Setup,GS.KeyGen,GS.Sign,GS.Verify,GS.Open) in which:

– (pp,mpk,msk) ← GS.Setup(1λ) : Taking a security parameter λ as input,
output the public parameters pp and the group manager’s public-secret key
pair (mpk,msk).

392 X. Liu and L.-P. Wang

– (pk, sk) ← GS.KeyGen(pp,N) : Taking the public parameter pp and the
number N of group members as input, publish a pair of public and private
keys (pki, ski) for each user i, i ∈ [N].

– σ ← GS.Sign(R,mpk,M, sk) : Taking the list of public keys R = (pk1, · · · ,
pkN), the manager’s public key mpk, a private key sk and a message M as
input, generate a signature σ.

– b ← GS.Verify(R,M, σ) : Taking the public key R, a message M , and a
signature σ as input, output b either 1 (accept) or 0 (reject).

– i ← GS.Open(R,msk,M, σ) : Taking the public key R, the group manager’s
secret key msk, a message M and a group signature σ as input, output an
index i ∈ [N] or ⊥, indicating failure.

A group signature scheme needs to achieve three requirements: correctness,
anonymity and traceability. We give the relaxed anonymity requirement, namely
CPA-anonymity.

Definition 6 (Correctness). A group signature scheme is correct if for ∀λ ∈
N, N = poly(λ), j ∈ [N] and any message M , the following is true:

Pr

⎡
⎢⎢⎣

GS.Verify(R, M, σ) = 1
GS.Open(msk, R, M, σ) = j.

(pp, mpk, msk) ← GS.Setup(1λ),
(pki, ski) ← GS.KeyGen(pp), ∀i ∈ [N],

R = (pk1, · · · , pkN),
σ ← GS.Sign(R, mpk, M, skj).

⎤
⎥⎥⎦ = 1.

Definition 7 (CPA-anonymity). A group signature scheme GS = (GS.
Setup,GS.KeyGen,GS.Sign,GS.Verify,GS.Open) is CPA-anonymous if
the advantage of any PPT adversary A is negligible in the following game:

1. (pp,mpk,msk) ← GS.Setup1λ);
2. (pki, ski) ← GS.KeyGen(pp,N),∀i ∈ [N];
3. A selects a tuple (M,pki0 , pki1), i0, i1 ∈ [N];

4. σ ← GS.Sign(R,mpk,M, skib
), b $← {0, 1};

5. A outputs a guess b′.

The advantage of A in breaking CPA-anonymity is denoted by

AdvAnon
A (λ) = |Pr[b = b′] − 1/2|.

Definition 8 (Traceability). A group scheme GS = (GS.Setup,GS.,
KeyGen,GS.Sign,GS.Verify,GS.Open) is traceable if the advantage of any
PPT A is negligible in the following game:

1. (pp,mpk,msk) ← GS.Setup(1λ);
2. (pki, ski) ← GS.KeyGen(pp,N),∀i ∈ [N];
3. A can have access to the corrupted oracle Co(·) with any pkj ∈ R, and Co(·)

returns the skj to A and adds pkj to the set CU ;

Short Code-Based One-out-of-Many Proofs and Applications 393

4. A can have access to the GS.Sign(·) with (pkj ,M) and GS.Sign(·) returns
a signature σ using the secert key skj ;

5. A outputs (R∗,M∗, σ∗) such that GS.Verify(R∗,M∗, σ∗) = 1, where
(R∗,M∗) have never been asked and R∗ ∩ CU = ∅.
The advantage of breaking traceability is denoted by

AdvTrac
A (λ) = Pr

[
GS.Verify(R,mpk,M∗, σ∗) = 1,
GS.Open(R,msk,M∗, σ∗) /∈ CU.

]
.

CPA-McEliece: We review the randomized McEliece encryption scheme [36].
It includes the following three algorithms: KeyGenMcE, EncMcE, and DecMcE .

– (pk = GMcE, sk = (S,G′,P)) ← KeyGenMcE(1λ) : With an integer λ as
input, select a generator matrix G′ of a random w-error-correcting (m, �)
code, and sample a random matrix S ∈ F

�×�
2 and a random m-dimension

permutation matrix P, where m = O(λ), � = O(λ), w = O(λ). Output the
encryption key as GMcE = SG′P and the decryption key as (S,G′,P).

– ct ← EncMcE(GMcE,m) : With a plaintext m ∈ {0, 1}�2 and the GMcE as
input, sample two random vectors z ∈ F

�1
2 and s ∈ B(m,w), where � = �1+�2.

Output the ciphertext ct = (z||m)G + s.
– m ← DecMcE(ct, sk) : With the ciphertext ct and sk as input, compute

m′ = S−1DG′(ctP−1), where DG′ is the error-correcting algorithm. Parse
the m′ = (z,m) ∈ F

�1
2 × F

�2
2 and outputs m.

The above scheme’s CPA-security is based on the following two problems.

Problem 5 (Decisional McEliece problem [36]). Given a matrix G ∈ F
k×n
2 , deter-

mine whether it is randomly sampled or generated by the KeyGenMcE.

Problem 6 (Decisional Learning Parity with (fixed-weight) Noise problem [15]).
Given a matrix G ∈ F

k×n
2 and a vector y ∈ F

n
2 , determine whether y is randomly

generated or generated by xG + e, where x ∈ F
k
2 and e ∈ B(n, t).

5.1 The Underlying Protocol of Our Group Signature

In this subsection, we construct a ZKAoK in Fig. 6 to act as the foundational
component of our group signature scheme. We first give an overview of our
construction. Let k, n, � = �1 + �2, m denote integers, and bin(j) denote the
binary representation of j with length �2. The public input includes two matrices

G ∈ F
k×n
2 ,GMcE =

(
G1

McE

G2
McE

)
∈ F

�×m
2 , any vector yi ∈ F

n
2 , i ∈ [N] and a

ciphertext ct ∈ F
m
2 . The protocol allows one to prove the following relation in

zero-knowledge

− xG + e = yI ∧ x ∈ F
k
2 , e ∈ B(n, t), (6)

− (z||bin(I))GMcE + s = ct ∧ z ∈ F
�1
2 , s ∈ B(m,w), (7)

− I ∈ [N]. (8)

394 X. Liu and L.-P. Wang

Fig. 6. The underlying ZKAoK ΠGS = (PGS = (PGS
1 , PGS

2), VGS = (VGS
1 , VGS

2)) of our
group signature scheme. Use � to denote (G,GMcE,y1, · · · ,yN , ct).

Short Code-Based One-out-of-Many Proofs and Applications 395

To prove Eqs. (6) and (8), we can utilize our GSD-based one-out-of-many
proof with the public input (G, {y}N

i=1). Likewise, to prove Eqs. (7) and (8), we
can employ our set-membership proof with the public input (GMcE, ct). To prove
Eqs. (6), (7), and (8) simultaneously, we need to merge these two proofs. The
overarching concept is to pair the N+2 corresponding commitments from the for-
mer proof with the N +2 commitments from the latter proof in sequential order,
and then compress the last N pairs of commitments related to ({yi}N

i=1, ct) into
a single root using the IH-Mtree. Next, the prover sends the root along with
the remaining two pairs to the verifier. The rest steps are similar to the Fig. 4,
with the difference being that what needs to be revealed and verified is the
commitment pair. The protocol for this relation (6)(7)(8) is in Fig. 6.

Theorem 5. The protocol in Fig. 6 is an argument of knowledge with the perfect
completeness and zero-knowledge.

Proof. We only provide the framework of the proof. Completeness: This can be
obtained from the correctness of the Merkle tree and seedtree. Soundness: If a
adversary can be accepted with a probability greater than 2/3, then we proceed
as in Theorem 3. Namely, we construct an extractor to extract (I,x, e, z, s) from
three valid responses. Zero-knowledge: Using the similar steps in Theorem 3, we
can build a simulator for this protocol.
�
Communication cost: (1) The cost of commitments is about 2λ(5κ/6 + 1).
(2) The cost of seeds is about (κ/3)(20λ/3) + 2λ. (3) The cost of vectors and
the path of Merkle tree is about (κ/3)(3n

2 + 3m
2 + k + � + 2λ log N).

5.2 Our Code-Base Logarithmic-Size Group Signature Scheme

Our group signature scheme is described in Fig. 7, and its correctness can be
directly inferred from the completeness in Fig. 6.

The security of our group signature is guaranteed by Theorems 6 and 7. The
proofs for these theorems can be found in [27, Section 5.2].

Theorem 6. Our group signature scheme in Fig. 7 is CPA-anonymous based
on the hardness of DMcE(m, �, w) and DLPN(m, �1, w) problems, and the zero-
knowledge property of protocol in Fig. 6.

Theorem 7. Our group scheme satisfies full traceability based on the hardness
of GSD problem in the random oracle model.

6 Concrete Instantiation

We choose parameter sets for our ring signature and group signature schemes
under the 128-bit security level. The parameters are set as follows:

1. The parameters (n, k, t) for GSD problem and the parameters (m, �, w) for
McEliece encryption scheme are set to achieve the 128-bit security level.

396 X. Liu and L.-P. Wang

Fig. 7. Our group signature scheme.

2. To ensure the one-wayness of the public and private keys, the parameters
(n, k, t,N) for GDOOM problem 4 are set to achieve the 128-bit security
level.

3. The repetition number κ of the protocols in Fig. 4 and Fig. 6 is set to 220 in
order to achieve soundness error 2−128.

4. We use cSHAKE to instantiate the hash functions in our scheme and
the Merkle tree, as well as the pseudorandom number generator in the
seedtree [25].

5. The signature size of our ring signature scheme is equal to the proof size in
Fig. 4, i.e. 2λ(5κ

6 + 2) + κ
3 (20λ

3 + 3n
2 + k + 2λ log N).

6. The signature size of our group signature scheme is equal to the proof size in
Fig. 6 plus the size of ct, i.e. 2λ(5κ

6 +2)+ κ
3 (20λ

3 + 3n
2 +k+ 3m

2 +�+2λ log N)+m.

We set (n, k, t) = (1280, 640, 132), (1300, 650, 135), (1360, 680, 141) for N =
26, 212, 221, respectively, and (m, �, w) = (3488, 2720, 64) as in [12]. Then, we
present the signature sizes of our ring signature scheme and group signature
scheme under different N in Table 3 and Table 4.

Short Code-Based One-out-of-Many Proofs and Applications 397

Table 3. Ring signature sizes for N .

N (user) PK size Signature Size

26 0.240 KB 51KB

212 0.247 KB 65KB

221 0.255 KB 87KB

Table 4. Group signature sizes for N .

N (user) PK size Signature Size

26 0.240 KB 112 KB

212 0.247 KB 126 KB

221 0.255 KB 148 KB

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions that substantially improved the quality of
this paper. This research was supported by the National Natural Science Foundation
of China under Grant No. 62372446, the National Key Research and Development
Program of China under Grant No. 2018YFA0704703 and the Key Research Program
of the Chinese Academy of Sciences, Grant No. ZDRW-XX-2022-1.

References

1. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature
scheme. Des. Codes Crypt. 82, 469–493 (2017)

2. Assidi, H., Ayebie, E.B., Souidi, E.M.: An efficient code-based threshold ring sig-
nature scheme. J. Inf. Secur. Appl. 45, 52–60 (2019)

3. Ayebie, E.B., Souidi, E.M.: New code-based cryptographic accumulator and fully
dynamic group signature. Des. Codes Crypt. 90(12), 2861–2891 (2022)

4. Barenghi, A., Biasse, J.F., Ngo, T., Persichetti, E., Santini, P.: Advanced signature
functionalities from the code equivalence problem. Int. J. Comput. Math. Comput.
Syst. Theory 7(2), 112–128 (2022)

5. Bettaieb, S., Bidoux, L., Blazy, O., Gaborit, P.: Zero-knowledge reparation of the
véron and AGS code-based identification schemes. In: ISIT 2021, pp. 55–60. IEEE
(2021). https://doi.org/10.1109/ISIT45174.2021.9517937

6. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

7. Bidoux, L., Gaborit, P., Kulkarni, M., Sendrier, N.: Quasi-cyclic stern proof of
knowledge. In: ISIT 2022, pp. 1459–1464. IEEE (2022). https://doi.org/10.1109/
ISIT50566.2022.9834642

8. Blazy, O., Gaborit, P., Mac, D.T.: A rank metric code-based group signature
scheme. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds.) CBCrypto 2021. LNCS,
vol. 13150, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
98365-9 1

9. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. In: Baek, J.,
Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 203–219. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01446-9 12

10. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory.
In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 387–403.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 21

https://doi.org/10.1109/ISIT45174.2021.9517937
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1109/ISIT50566.2022.9834642
https://doi.org/10.1109/ISIT50566.2022.9834642
https://doi.org/10.1007/978-3-030-98365-9_1
https://doi.org/10.1007/978-3-030-98365-9_1
https://doi.org/10.1007/978-3-030-01446-9_12
https://doi.org/10.1007/978-3-030-25510-7_21

398 X. Liu and L.-P. Wang

11. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

12. Chen, L., Moody, D., Liu, Y.K.: Post-quantum cryptography round 4 submissions.
NIST (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-
4-submissions

13. Chou, T., et al.: Take your MEDS: digital signatures from matrix code equivalence.
In: Mrabet, N.E., Feo, L.D., Duquesne, S. (eds.) AFRICACRYPT 2023. LNCS,
vol. 14064, pp. 28–52. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
37679-5 2

14. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme and
related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 699–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 24

15. Döttling, N.: Cryptography based on the Hardness of Decoding. Ph.D. thesis, Karl-
sruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014 (2014)

16. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

17. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group
signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 12

18. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022. LNCS, vol. 13508, pp. 541–572. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15979-4 19

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-47721-7
12

20. Gaborit, P., Schrek, J., Zémor, G.: Full cryptanalysis of the chen identification pro-
tocol. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 35–50. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 3

21. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

22. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) CCS 2018, pp. 525–537. ACM (2018). https://doi.org/10.1145/
3243734.3243805

https://doi.org/10.1007/978-3-642-19574-7_12
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-662-48797-6_12
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-25405-5_3
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805

Short Code-Based One-out-of-Many Proofs and Applications 399

24. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

25. Kelsey, J., Chang, S.J., Perlner, R.: Sha-3 derived functions: cshake, kmac, tuple-
hash, and parallelhash. NIST special publication 800, 185 (2016)

26. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013),
https://doi.org/10.1007/978-3-642-36362-7 8

27. Liu, X., Wang, L.P.: Short code-based one-out-of-many proofs and applications.
Cryptology ePrint Archive, Paper 2024/093 (2024), https://eprint.iacr.org/2024/
093, https://eprint.iacr.org/2024/093

28. Lyubashevsky, V., Nguyen, N.K.: BLOOM: bimodal lattice one-out-of-many proofs
and applications. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol.
13794, pp. 95–125. Springer, Cham (2022), https://doi.org/10.1007/978-3-031-
22972-5 4

29. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244,
114–116 (1978)

30. Melchor, C.A., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold
ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7),
4833–4842 (2011)

31. Melchor, C.A., Gaborit, P., Schrek, J.: A new zero-knowledge code based identi-
fication scheme with reduced communication. In: ITW 2011. pp. 648–652. IEEE
(2011), https://doi.org/10.1109/ITW.2011.6089577

32. Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. thesis, Verlag
nicht ermittelbar (2013)

33. Morozov, K., Roy, P.S., Sakurai, K.: On unconditionally binding code-based com-
mitment schemes. In: IMCOM, p. 101. ACM (2017). https://doi.org/10.1145/
3022227.3022327

34. Morozov, K., Takagi, T.: Zero-knowledge protocols for the McEliece encryption. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 180–193.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3 14

35. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving
cryptographic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11922, pp. 25–55. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34621-8 2

36. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the mceliece
cryptosystem without random oracles. Des. Codes Crypt. 49, 289–305 (2008)

37. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25405-5 4

38. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

39. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8, 57–69 (1997)

https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-642-36362-7_8
https://eprint.iacr.org/2024/093
https://eprint.iacr.org/2024/093
https://eprint.iacr.org/2024/093
https://doi.org/10.1007/978-3-031-22972-5_4
https://doi.org/10.1007/978-3-031-22972-5_4
https://doi.org/10.1109/ITW.2011.6089577
https://doi.org/10.1145/3022227.3022327
https://doi.org/10.1145/3022227.3022327
https://doi.org/10.1007/978-3-642-31448-3_14
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4

	Short Code-Based One-out-of-Many Proofs and Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Roadmap

	2 Preliminaries
	2.1 Hard Problems
	2.2 Merkle Trees
	2.3 Seedtrees

	3 Short One-out-of-Many Proofs from Coding Theory
	3.1 The SD-Based One-out-of-Many Proof
	3.2 The GSD-Based One-out-of-Many Proof
	3.3 Our Set-Membership Proof

	4 Our Code-Based Logarithmic-Size Ring Signature Scheme
	5 Code-Based Group Signatures
	5.1 The Underlying Protocol of Our Group Signature
	5.2 Our Code-Base Logarithmic-Size Group Signature Scheme

	6 Concrete Instantiation
	References

