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Abstract. We study network-agnostic secure multi-party computa-
tion (MPC) in the presence of computationally-bounded adversaries. A
network-agnostic protocol provides the best possible security guaran-
tees, irrespective of the type of underlying communication network. Pre-
vious MPC protocols in this regime either assume a setup for a common
reference string (CRS) and a threshold additively homomorphic encryp-
tion (Blum et al. CRYPTO 2020) or a plain public-key infrastructure
(PKI) setup (Bacho et al. CRYPTO 2023). Both these MPC protocols
perform circuit-evaluation over encrypted data and also deploy different
forms of zero-knowledge (ZK) proofs, along with other computationally-
expensive cryptographic machinery. We aim to build an MPC protocol
based on circuit evaluation on secret-shared data, avoiding ZK proofs and
other computationally-expensive cryptographic machinery and based on
a plain PKI setup.

To achieve our goal, we present the first network-agnostic verifiable
secret sharing (VSS) protocol with the optimal threshold conditions,
which is of independent interest. Previously, network-agnostic VSS is
known either with perfect security (Appan et al. IEEE IT 2023) where
the threshold conditions are not known to be optimal or with statistical
security (Appan et al. TCC 2023) where the threshold conditions are
optimal, but the parties need to perform exponential amount of compu-
tation and communication. Although our proposed MPC protocol incurs
higher communication complexity compared to state-of-the-art network-
agnostic MPC protocols, it offers valuable insights and motivates alterna-
tive directions for designing computationally inexpensive MPC protocols,
based on a plain PKI setup, which has not been explored in the domain
of network-agnostic MPC.
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1 Introduction

A secure multi-party computation (MPC) protocol [11,32,39,41] allows a set of
n mutually distrusting parties P = {P1, ..., Pn} with private inputs, to securely
compute any function of their inputs, without revealing any additional informa-
tion, even if a subset of the parties are under the control of an adversary who
may behave arbitrarily during the protocol execution. In any MPC protocol, the
parties exchange messages over an underlying communication network and the
network behaviour is assumed to be known beforehand to the parties. The more
popular synchronous MPC (SMPC) protocols are designed for a synchronous
network where the local clocks of the parties are assumed to be synchronized
and where there is a publicly-known upper bound on message delays. Unfortu-
nately, the security of such protocols breaks down completely even if a single
expected message fails to get delivered within the expected time-out. To deal
with this shortcoming, there is another category of MPC protocols, designed for
the asynchronous network model [9,10,37], where no assumption is made on the
message delays and where the messages can be delayed arbitrarily yet finitely,
with the guarantee that every message being sent is delivered eventually. Apart
from better modelling of real-world networks like the Internet, asynchronous
MPC (AMPC) protocols also have the advantage of running at the “actual”
speed of the underlying network. The downside is that AMPC protocols are
more complex, since in the absence of any known time-outs, the parties do not
know how long to wait for an expected message and waiting for messages from
all the parties may turn out to be an endless wait. Consequently, as soon a
party receives messages from a “subset” of parties, it has to process them and
in the process, messages from a subset of “slow” but potentially honest par-
ties may get ignored. Moreover, the resilience (namely the maximum number of
allowed corruptions) of AMPC protocols is poor compared to SMPC protocols.
A very recent and highly practically-motivated category of MPC protocols is
that of network-agnostic protocols [3,5,15,27], where the parties need not know
the behaviour of the underlying network and which provides the best possible
security guarantees, irrespective of the behaviour of the network.

Our Motivation: In this work, we focus on network-agnostic MPC protocols
with cryptographic security, where the adversary is assumed to be computa-
tionally bounded. Let ts and ta be the maximum number of parties which can
be corrupted by the adversary in the synchronous and asynchronous network
respectively, where ts < n

2 and ta < n
3 .1 The pioneering work of Blum et al. [15]

has shown that network-agnostic MPC protocols with cryptographic security is
possible only if ta + 2ts < n is satisfied. They also present a network-agnostic
MPC protocol with the condition ta + 2ts < n. The work of Blum et al. is fol-
lowed by the work of Deligios et al. [27] and Bacho et al. [5], who also present

1 The conditions ts < n
2

and ta < n
3

are necessary and sufficient for cryptographically-
secure SMPC [23] and AMPC protocols [33] respectively with full security. By full
security, we mean that the honest parties always get the correct output.
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network-agnostic MPC protocols with the condition ta+2ts < n. All these proto-
cols let the parties jointly perform secure circuit-evaluation. Namely, in all these
protocols the function to be securely computed is abstracted as an arithmetic
circuit over some algebraic structure, which could be a ring or a field and then
the parties securely and jointly evaluate each gate in the circuit. The evaluation
happens in such a way that the adversary does not learn any additional informa-
tion about the inputs of the honest parties, beyond what can be inferred from
the input and output of the corrupt parties. These protocols can be broadly
classified into two categories.

– Threshold-Encryption Based Approach: This approach was first pio-
neered for SMPC protocols in [23] and later also used for AMPC protocols in
[20,33,34]. The network-agnostic protocols of [5,15] follow this approach. Here
the circuit-evaluation happens over encrypted values, where each value during
the evaluation remains encrypted under some threshold linearly-homomorphic
encryption scheme. Informally, it is a special form of public-key encryption
scheme, where the encryption key is publicly available, but the decryption key
remains secret-shared among the parties, with each party holding a private
secret-share of the decryption key. Such a setup (of public encryption key and
private decryption-key shares) is assumed to be already available to the par-
ties, through some trusted entity. Doing circuit-evaluation using this approach
is computationally expensive and apart from the expensive setup of threshold
encryption, the protocols deploy other heavy cryptographic machinery such
as zero-knowledge (ZK) proofs, which are used to prove the “correctness" of
each message exchanged by the parties during the circuit evaluation.
The protocol of [15] deploys threshold homomorphic encryption and also
assumes a trusted setup for a common reference string (CRS). The CRS is uti-
lized to instantiate non-interactive ZK (NIZK) proofs for various tasks. The
protocol of [5] also deploys threshold homomorphic encryption and NIZK
proofs, but gets rid of the CRS setup assumption and instead assumes a
plain public-key infrastructure (PKI) set-up. The number of communication
rounds in these protocols is proportional to the multiplicative depth of the
underlying circuit.

– Garbled-Circuit Based Approach: This approach was first pioneered for
SMPC protocols in [8,25,41] and later for AMPC protocols in [22]. The
network-agnostic protocol of [27] uses this approach. This approach yields a
constant round protocol. To deploy this approach, the protocol of [27] requires
a trusted setup of a threshold homomorphic encryption scheme. Additionally,
the protocol also uses ZK proofs.

Evidently, the known protocols assume strong setup assumptions such as thresh-
old homomorphic encryption and deploy computationally-expensive crypto-
graphic machinery, such as ZK proofs, to name a few. Apart from the above
two approaches for secure circuit-evaluation, another well-known approach is
that of secret-shared circuit evaluation, used heavily both by SMPC [11,39]
and AMPC [9,10] protocols. In this approach, each value during the circuit-
evaluation remains verifiably secret-shared among the parties in such a way that
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the shares of the corrupt parties do not reveal any additional information to
the adversary. Such protocols are conceptually much simpler and typically do
not require any trusted setup. Moreover, they are computationally inexpensive,
based on the properties of polynomials over fields and avoid costly machin-
ery like ZK protocols for proving the correctness during circuit-evaluation. The
unconditionally-secure network-agnostic protocols of [2,3] are based on the app-
roach of the secret-shared circuit-evaluation. Even though the approach is well
studied in the literature, surprisingly, to the best of our knowledge, no one has yet
explored the feasibility of network-agnostic MPC protocols with cryptographic
security based on the approach of secret-shared circuit evaluation. This motivates
us to ask the following central question:

Does there exist an efficient network-agnostic MPC protocol with cryptographic
security and optimal threshold conditions, based on secret-shared

circuit-evaluation, without deploying any computationally-expensive
cryptographic machinery, such as ZK and any expensive setup such as

threshold homomorphic encryption?

Our Results. In this work, we make inroads to answer the above question by
presenting a network-agnostic MPC with the condition ta + 2ts < n, based on
the approach of secret-shared circuit-evaluation. Our protocol is in the plain
PKI model and requires the setup of only a linearly-homomorphic commitment
scheme. For simplicity, we use Pedersen’s commitment scheme, whose security is
based on the standard discrete log assumption in a cyclic group. To instantiate
the scheme, the only setup needed is the public knowledge of a generator of a
cyclic group, along with the public knowledge of a random element of the group.
We stress that unlike the setup of threshold homomorphic encryption which has
to generate both public as well as private components, the setup for Pedersen’s
scheme is relatively simpler, since it has to generate only public components. Our
protocol also avoids any kind of ZK proofs (and the associated setup assump-
tions) for proving the correctness of the messages exchanged among the parties.
A central pillar in our protocol is the first network-agnostic Verifiable Secret
Sharing (VSS) protocol [19] with cryptographic security, which is of independent
interest. VSS is in itself a very important cryptographic primitive and used for
a variety of important secure distributed-computing tasks. For example, it can
be used to instantiate a common-coin primitive [18,29] from scratch without any
setup, which is a central tool for designing Byzantine agreement (BA) protocols
with a constant expected time [29]. VSS also constitutes an important building
block for designing distributed key-generation (DKG) protocols [35]. Previously,
network-agnostic VSS is known either with perfect-security but with condition
ta + 3ts < n [3] or with statistical-security and condition ta + 2ts < n [2], but
where the parties need to perform an exponential amount of computation and
communication.

We outline our MPC protocol and compare it with the relevant MPC proto-
cols in Table 1. In the table, Rounds denotes the (expected) round complexity,
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while DM and cM denote the multiplicative depth and the number of multipli-
cation gates in the underlying circuit, representing the function to be securely
computed. Communication Complexity (CC) denotes the number of bits
communicated by the parties in the protocol for evaluating the multiplication
gates in the underlying circuit and κ denotes the computational security param-
eter. Setup denotes the setup assumptions, which include a plain public-key
infrastructure (PKI), a common reference string (CRS), a threshold homomor-
phic cryptosystem, or a homomorphic commitment.

Table 1. Summary of network-agnostic MPC protocols with cryptographic security.

Reference Rounds CC Setup

[15] O(DM ) O(cM · n3 · κ) CRS, PKI, Threshold Encryption
[27] O(κ) O(cM · n3 · κ) CRS, PKI, Threshold Encryption

[5] O(DM ) O(cM · n3 · poly(κ)) PKI, Threshold Encryption
This work O(DM ) O(cM · n7 · κ) PKI, Homomorphic Commitment

Although our protocol incurs higher communication complexity, it demon-
strates the feasibility of achieving MPC without relying on complex setup
assumptions, as well as computationally expensive cryptographic machinery.
Moreover, during the design of our protocol, we get an independent and impor-
tant cryptographic primitive, namely VSS. As explained in the next section,
our work shows the feasibility of performing secure circuit-evaluation on secret-
shared data with the condition ta+2ts < n and that too without deploying com-
plex cryptographic machinery. Prior secret-shared based protocols were either
with condition ta + 3ts < n [3] or with the condition ta + 2ts < n but requiring
exponential computation and communication [2].

1.1 Technical Overview

We assume that the function to be securely computed is abstracted as an arith-
metic circuit cir over a finite field, consisting of linear and non-linear (multipli-
cation) gates. The idea is then to securely evaluate cir in a secret-shared manner,
based on the paradigm of [11]. In this approach, each value during the evalu-
ation of cir is (verifiably) t-shared according to Shamir’s secret-sharing scheme
[40], where t denotes the maximum number of corrupt parties. Essentially, this
guarantees that an adversary controlling up to t parties gains no additional
information throughout the circuit evaluation process, as the shares held by the
corrupt parties do not reveal additional details about the underlying shared val-
ues. Since the parties will be unaware of the network type, the degree-of-sharing
t has to be set to always t = ts.

The linearity of Shamir’s secret-sharing guarantees that the linear gates in
cir can be evaluated non-interactively over secret-shared gate inputs. For eval-
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uating the multiplication gates over secret-shared inputs, we deploy the stan-
dard Beaver’s paradigm [7]. According to this paradigm, multiplication gates are
evaluated using randomly generated ts-shared multiplication-triples. The secret-
shared multiplication-triples are generated leveraging the framework proposed in
[21]. This framework demonstrates how to utilize any polynomial-based VSS and
a BA protocol to generate shared random multiplication-triples. Importantly, the
framework operates in both synchronous and asynchronous networks, assuming
that the participating parties possess knowledge of the exact network type. The
work by [3] introduces techniques for adapting the framework to achieve per-
fect security with condition ta + 3ts < n in a network-agnostic context. For
our purpose, we adapt the framework with condition ta + 2ts < n to achieve
cryptographic security. This requires network-agnostic BA and VSS protocols
with condition ta + 2ts < n. The BA protocol presented in [14] aligns well with
our objectives. The main challenge however is finding a network-agnostic VSS
protocol.

Informally, in a (polynomial-based) VSS protocol, there exists a designated
dealer D ∈ P with a t-degree polynomial as input, where t represents the max-
imum number of corrupt parties, possibly including D. The protocol allows D
to distribute points on this polynomial to the parties in a “verifiable” manner,
such that the view of the adversary remains independent of D’s polynomial for
an honest D (privacy property). In a synchronous VSS (SVSS) protocol, every
party has the correct point on the polynomial after some known time-out, say
T (correctness property). The verifiability ensures that even if D is corrupt, it is
bound to distribute points on some t-degree polynomial within time T (strong-
commitment property). It is well-known that cryptographically-secure SVSS is
possible iff t < n

2 [39]. In an asynchronous VSS (AVSS) protocol, the correct-
ness property guarantees that when D is honest, the honest parties will eventu-
ally receive points on D’s polynomial. However, a corrupt D may choose not to
invoke the protocol, and the parties cannot distinguish this situation from when
D’s messages are arbitrarily delayed. Therefore, the strong-commitment of AVSS
ensures that if D is corrupt and if at least one honest party obtains a point on
D’s polynomial, then all honest parties will eventually obtain their respective
points on this polynomial. It is well-known that cryptographically-secure AVSS
is possible iff t < n

3 [17].
Existing SVSS protocols become completely insecure in an asynchronous net-

work, even if a single anticipated message from an honest party encounters
a delay. Conversely, existing AVSS protocols work only when at most t < n

3
parties are corrupt, and become insecure if the number of corruptions exceeds
n
3 (which can happen in our context when the network behaves synchronously
where t < n

2 ). We are currently unaware of any cryptographically-secure VSS
protocol that provides the specific guarantees we seek, all while adhering to the
minimally intensive computational requirements. We propose a network-agnostic
cryptographically-secure VSS protocol that meets the aforementioned require-
ments, given that the condition ta + 2ts < n is met. Our VSS protocol satisfies
the correctness requirement of SVSS and AVSS in a synchronous and an asyn-
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chronous network, respectively. However, it only satisfies the strong-commitment
requirement of AVSS, even in a synchronous network. This is because a poten-
tially corrupt D may choose not to invoke the protocol, and the parties will
not be aware of the exact network type. We stress that this does not hinder us
from deploying our VSS protocol in the framework of [21]. Given that our VSS
protocol involves technical intricacies, we defer its explanation to Sect. 4 of our
paper.

The construction of the aforementioned VSS protocol necessitates the imple-
mentation of a Byzantine Broadcast protocol. Informally, a broadcast protocol
allows a designated party called a Sender to consistently distribute a message
among a set of parties which guarantees security in a synchronous network where
the adversary can corrupt up to t < n

2 parties, and also in an asynchronous net-
work, where the adversary can corrupt up to t < n

3 parties. Previous research
has presented secure broadcast protocols for both synchronous [28] and asyn-
chronous [16] networks. Additionally, previous studies by [5,15,27] have also
leveraged broadcast protocols in the network-agnostic setting. However, their
proposed protocols offer comparatively weaker consistency assurances in asyn-
chronous networks. For instance, the protocol introduced by [15] only ensures
that even though every honest party outputs some value, only a subset of hon-
est parties output the desired value, while the rest output some default value
in an asynchronous network. Consequently, we introduce an additional broad-
cast protocol designed to ensure security in both synchronous and asynchronous
networks, which can be safely integrated into our VSS protocol.

Other Related Works. As mentioned earlier, the domain of network-agnostic
cryptographic protocols is relatively new. The works of [1,13] present network-
agnostic cryptographically-secure atomic broadcast protocol. The work of [36]
studies Byzantine fault tolerance and state machine replication protocols for mul-
tiple thresholds, including ts and ta. The works of [30,31] study network-agnostic
protocol for the task of approximate agreement. The works of [12,26] have stud-
ied the problem of network-agnostic secure message transmission (SMT) over
incomplete graphs.

Paper Organization. The major contribution of the paper is the network-
agnostic VSS and so we mostly focus on it; the design of the preprocessing
phase protocol for generating the secret-shared multiplication-triples and the
MPC protocol mostly follows from [3] by adapting the techniques to the setting
of ta +2ts < n. Due to space constraints, the detailed formal security proofs are
not presented in this extended abstract and are deferred to the full version of
the paper.

2 Preliminaries and Definitions

We consider a network of n parties P = {P1, . . . , Pn}, where the distrust in the
system is modelled by a computationally bounded Byzantine (malicious) adver-
sary Adv, who can corrupt a subset of parties and force them to behave in any
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arbitrary fashion during the execution of a protocol. We assume a static adver-
sary, who decides the set of corrupt parties at the beginning of the protocol
execution.

We consider a communication model where the parties have access to local
clocks and are not aware apriori about the network conditions when executing
any protocol, where the underlying network could behave either in a synchronous
fashion or in an asynchronous fashion. In a synchronous network, every sent
message is delivered within some known time bound Δ. The protocols in this
model can be conveniently described as a sequence of communication rounds,
where for every r ∈ N with r ≥ 1, any message received in the time slot [rΔ, (r+
1)Δ] as per the local clock of the receiving party is regarded as a round-r message.
Moreover, in this model, it is assumed that the adversary Adv can control up to
ts parties.

In an asynchronous network, the local clocks of the parties are not synchro-
nised, and there is no known upper bound on message delays. To model the
worst-case scenario, the adversary is allowed to schedule the delivery of mes-
sages arbitrarily, with the restriction that every message being sent is eventually
delivered. The protocols in this model are described in an event-based fashion.
That is, upon receiving a message, the receiving party adds the message to a
pool of received messages and checks whether a list of conditions specified in the
underlying protocol is satisfied to decide its next set of actions. In this model, it
is assumed that Adv can corrupt at most ta parties.

We assume that ta < ts and ta + 2ts < n holds. This automatically implies
that ts < n

2 and ta < n
3 holds, which are necessary for any cryptographically-

secure SMPC and AMPC protocol, respectively. We assume that the function
to be securely computed is abstracted as an arithmetic circuit cir over the prime
field Fp, where p is a κ-bit long prime and where κ is the security parameter.
Moreover, we assume that |Fp| > n and each party Pi is publicly associated
with the evaluation point i at which all the shares are computed for Pi. For
simplicity and without loss of generality, we assume that each Pi has a private
input x(i) ∈ Fp, and the parties want to securely compute a function f : Fn

p → Fp.
Without loss of generality, f is represented by an arithmetic circuit cir over
Fp, consisting of linear and non-linear (multiplication) gates, where cir has cM

number of multiplication gates and has a multiplicative depth of DM .

Termination Guarantees of Our Sub-protocols. As done in [3], for sim-
plicity, we will not be specifying any termination criteria for our sub-protocols.
And the parties will keep on participating in these sub-protocol instances, even
after receiving their outputs. The termination criteria of our MPC protocol will
ensure that once a party terminates the MPC protocol, it terminates all under-
lying sub-protocol instances.

2.1 Primitives and Definitions

We next present the definitions and primitives used in our protocols.
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Polynomials Over a Field. A d-degree univariate polynomial over Fp is of the
form f(x) = a0 + a1x + ... + adx

d, where each ai ∈ Fp. A (d, d)-degree bivariate
polynomial over Fp is of the form

F (x, y) =
i=d,j=d∑

i,j=0

rijx
iyj ,

where each rij ∈ Fp. The polynomial is called symmetric if rji = rij holds
for all i, j. This automatically implies that F (i, j) = F (j, i) holds for all i, j ∈
{1, . . . , n}. Given i ∈ {1, . . . , n} and a d-degree polynomial Fi(x), we say that
Fi(x) lies on a (d, d)-degree symmetric bivariate polynomial F (x, y), if F (x, i) =
Fi(x) holds. The following properties for bivariate polynomials are standard.

Lemma 1 ([4,24])(Pairwise Consistency Lemma). Let fi1(x), . . . , fiq
(x)

be d-degree univariate polynomials over Fp, where q ≥ d + 1 and i1, . . . , iq ∈
{1, . . . , n}, such that fi(j) = fj(i) holds for all i, j ∈ {i1, . . . , iq}. Then
fi1(x), . . . , fiq

(x) lie on a unique (d, d)-degree symmetric bivariate polynomial,
say F �(x, y).

Lemma 2 ([4,24]). Let C ⊂ P and q1(·) �= q2(·) be d-degree polynomials where
d ≥ |C| such that q1(i) = q2(i) holds for all Pi ∈ C. Then the probability dis-
tributions

{
{F (x, i)}Pi∈C

}
and

{
{F ′(x, i)}Pi∈C

}
are identical, where F (x, y)

and F ′(x, y) are random (d, d)-degree symmetric bivariate polynomials, such that
F (0, y) = q1(·) and F ′(0, y) = q2(·) holds.

In our protocols, we deploy a homomorphic commitment scheme, which is
instantiated with Pedersen’s commitment scheme [38]. Informally, the scheme
enables a party to commit a value such that later it can be opened uniquely.

Pedersen Commitment Scheme [38]. The scheme consists of a two-phase
protocol involving a committer and a verifier. The first phase is known as the
“commit” phase, executed through a protocol denoted as Commit, while the sec-
ond phase is the “opening” phase, implemented via the protocol Open. In the
Commit protocol, the committer possesses a private input value m ∈ Fp, which
it commits to the verifier by publicly disclosing a commitment denoted as Comm.
During the Open protocol, the committer reveals the actual value m that was
committed in Comm. Subsequently, the verifier verifies whether m was indeed
the value committed in Comm during the Commit phase. The verifier’s output
is either 1 if the commitment is valid or 0 if it is not. Pedersen’s commitment
scheme offers the hiding property, which implies that if the committer is honest,
the verifier gains no information about the value m. The verifier’s view remains
independent of the specific value m committed in Comm, and this independence
holds even when the verifier is computationally unbounded. Additionally, the
scheme adheres to the binding property, which means that if the committer is
corrupt and the verifier is honest, then except with a negligible probability, it is
impossible for the committer to commit a value m in Comm during the Commit
phase and subsequently reveal a different value m� �= m during the Open phase,
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leading to the verifier outputting 1. The detailed formal description of the scheme
is as follows.

As part of the setup, the parties are equipped with essential information: a
generator g of Fp and a randomly chosen element h ∈ Fp. To commit a value
m ∈ Fp, the committer first selects a random value r from Fp and computes

the commitment Comm = Commit(m, r)
def
= gmhr mod p. During the Open pro-

tocol, the committer discloses m� and r� (which are supposed to be m and r
respectively for an honest committer), after which the verifier decides to output
either 1 or 0, contingent upon the equality check Comm

?= gm�

hr�

mod p. Both
the Commit and Open protocols incur a communication complexity of O(κ) bits.
It is a well-established fact that if the committer is honest, then the view of a
corrupt verifier remains identically distributed for any potential combination of
(m, r), even when the verifier possesses unbounded computational capabilities.
Conversely, assuming that solving the Discrete logarithm problem in Fp is com-
putationally challenging, it becomes infeasible for a corrupt committer to reveal
(m�, r�) �= (m, r) during the Open phase in such a way that an honest verifier
would output 1. Throughout the remainder of this paper, we say that (m, r) is
consistent with Comm if and only if Comm = gmhr mod p holds.

The Pedersen commitment scheme exhibits homomorphic properties. Given
commitments Comm1 = Commit(m1, r1) and Comm2 = Commit(m2, r2), as well
as publicly-known constants c1, c2 ∈ Fp, it is feasible to compute a commitment
Comc1m1+c2m2 for the sum c1m1+c2m2 under the randomness c1r1+c2r2 through
local computations performed on Comm1 and Comm2 . Specifically, we can express
this as (Comm1)

c1 · (Comm2)
c2 = gc1m1+c2m2 · hc1r1+c2r2 = Comc1m1+c2m2 . In

general, let q : Fl
p → F

m
p be an arbitrary linear function where q(x1, . . . , xl) =

(y1, . . . , ym). Then given commitments Comx1 , . . . ,Comxl
for x1, . . . , xl respec-

tively, it is possible to locally compute commitments Comy1 , . . . ,Comym
for

y1, . . . , ym, respectively, using only Comx1 , . . . ,Comxl
. Throughout the paper, we

use the term parties locally compute Comy1 , . . . ,Comym
= q(Comx1 , . . . ,Comxl

)
to refer to this process of leveraging the above linearity properties for such com-
putations.

We will now revisit the definition of t-sharing with publicly committed shares
as outlined in [6].

Definition 1 (t-Sharing with Publicly Committed Shares [6]). A value
s ∈ Fp is said to be t-shared with publicly committed shares, if there exists a
t-degree polynomial f(x) over Fp with f(0) = s, such that each (honest) Pi ∈ P
holds (si, ri) and a vector of commitments (Coms1 , . . . ,Comsn

), where si = f(i)
and Comsj

= Commit(sj , rj), for j = 1, . . . , n.

In our notation, we use [s] to represent a vector of shares and the publicly
known commitment of these shares. Additionally, we use [s]i to represent Pi’s
share, (si, ri) and the public commitments. We will use the term “a value s is
[·]-shared among the parties", to describe a scenario where s is ts-shared (unless
specified otherwise) with publicly committed shares.
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Note that [·]-sharing satisfies the linearity property, which arises from the
linearity property of Pedersen’s commitment scheme. In other words, given
shared values [a] and [b] along with public constants c1 and c2, each party Pi

can locally compute its information corresponding to [c1a + c2b]. In a more
general context, suppose we have a linear function q : F

l
p → F

m
p and let

q(x1, . . . , xl) = (y1, . . . , ym). Then given the secret-shared values [x1], . . . , [xl],
each party can locally compute its information corresponding to [y1], . . . , [ym].
Throughout the rest of the paper, we use the phrase parties locally compute
([y1], . . . , [ym]) = q([x1], . . . , [xl]) to signify this property.

Digital Signature Scheme. We assume a Public Key Infrastructure (PKI)
setup, where each party Pi within the set P possesses a pair of keys for a digital
signature scheme, specifically a signing key ski and a verification key vki. Impor-
tantly, the verification keys vk1, . . . , vkn for all parties are publicly accessible,
while the signing key ski is kept private and known only to Pi (malicious parties
may choose their keys arbitrarily). We further assume that the digital signature
scheme adheres to the standard security notion of unforgeability. This means
that, except with a negligible probability in κ, the adversary cannot produce a
valid signature of an honest party Pi on any message m that was never signed by
Pi. Each signature generated using this scheme has a fixed size of κ bits, where
κ represents the security parameter. In the paper, we use the notation 〈m〉Pi

to
indicate party Pi’s signature on a message m. Additionally, we refer to a signa-
ture 〈m〉Pi

on message m as valid if, along with the message m, it successfully
passes the verification process using the verification key vki corresponding to Pi.

Definition 2 (Byzantine Agreement (BA) [14]). Let Π be a protocol for
P, where every party Pi has an input bi ∈ {0, 1} and a possible output from
{0, 1} ∪ {⊥}. Moreover, let Adv be a computationally-bounded adversary, which
can corrupt up to t parties in P during the execution of Π.

– t-liveness: Π has t-liveness if all honest parties obtain an output.
– t-validity: Π has t-validity if the following holds: If all honest parties have

input b, then every honest party with an output, outputs b.
– t-weak validity: Π has t-weak validity if the following holds: If all honest

parties have input b, then every honest party with an output, outputs b or ⊥.
– t-consistency: Π has t-consistency if all honest parties with an output, out-

put the same value (which can be ⊥).
– t-weak consistency: Π has t-weak consistency if all honest parties with an

output, output either a common v ∈ {0, 1} or ⊥.

A protocol Π is said to be a t-secure Byzantine Agreement (BA) protocol if
it guarantees t-liveness, t-validity and t-consistency.

Definition 3 (Byzantine Broadcast [14]). Let Π be a protocol for P, where
a designated sender S ∈ P has input m ∈ {0, 1}, and parties obtain a possi-
ble output from {0, 1} ∪ {⊥}. Moreover, let Adv be a computationally-bounded
adversary, which can corrupt up to t parties in P during the execution of Π.
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– t-liveness: Π has t-liveness, if all honest parties obtain an output.
– t-validity: Π has t-validity if the following holds: if S is honest, then every

honest party with an output, outputs m.
– t-weak validity: has t-weak validity if the following holds: if S is honest,

then every honest party outputs either m or ⊥.
– t-consistency: Π has t-consistency if the following holds: if S is corrupt,

then every honest party with an output, has a common output.
– t-weak consistency: Π has t-weak consistency if the following holds: if S

is corrupt, then every honest party with an output, outputs either a common
m� ∈ {0, 1} or ⊥.

A protocol Π is said to be a t-secure Broadcast protocol if it guarantees
t-liveness, t-validity and t-consistency.

2.2 Existing Building Blocks

Network-Agnostic Byzantine Agreement. The work of [14] presents a network-
agnostic BA protocol ΠBA with ta + 2ts < n that achieves ts-security when
run in a synchronous network and ta-security when run in an asynchronous net-
work. The protocol is obtained cleverly by combining a ts-secure synchronous BA
(SBA) protocol which also provides certain guarantees in an asynchronous net-
work and a ta-secure asynchronous BA (ABA) protocol which also provides cer-
tain guarantees in a synchronous network (against ts corruptions). The detailed
description is omitted due to brevity, but interested readers can refer to [14] for
further detail and clarification.

In our VSS protocol, we use several standard procedures to verify certain
properties of univariate polynomials and points lying on a bivariate polynomial,
where the bivariate polynomial is publicly committed. All these procedures are
based on the homomorphic properties of Pedersen’s commitment scheme. We
next describe these procedures.

Verifying Committed Bivariate Polynomial. This procedure takes input
the commitments of the coefficients of n univariate polynomials, supposedly lying
on a (d, d)-degree symmetric bivariate polynomial, where d < n. The procedure
outputs 1 iff the committed polynomials lie on a (d, d)-degree symmetric bivariate
polynomial. In more detail, the procedure VerifyPoly(C, d) takes input a matrix
C of commitments of size n× (d+1), where for i = 1, . . . , n, the ith row consists
of the commitments {Comij}j=0,...,d. The output of the procedure is 1 iff there
exists (d, d)-degree symmetric bivariate polynomials H(x, y) and R(x, y) over Fp,
such that the following condition is satisfied for i = 1, . . . , n:

• Let hi(x) = H(x, i) = hi0 + hi1 · x + . . . + hid · xd and ri(x) = R(x, i) =
ri0 + ri1 · x + . . . + rid · xd. Then Comij = Commit(hij , rij) should hold, for
j = 0, . . . , d.

The procedure is very simple and homomorphically checks if the pairwise con-
sistency lemma (Lemma 1) is satisfied for each i, j ∈ {1, . . . , n}. In more
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detail, consider the commitments Comi0, . . . ,Comid along the ith row of C. Let
h�

i (x) = h�
i0 + h�

i1 · x + . . . + h�
id · xd and r�

i (x) = r�
i0 + r�

i1 · x + . . . + r�
id · xd be

d-degree polynomials, such that Comij = Commit(h�
ij , r

�
ij) holds for j = 0, . . . , d.

We wish to check whether h�
i (j) = h�

j (i) and r�
i (j) = r�

j (i) holds for each
i, j ∈ {1, . . . , n}. For this, we check the above relation over the commit-
ments of h�

i (j) and h�
j (i), under the randomness r�

i (j) and r�
j (i) respectively.

This is possible since the commitment of h�
i (j) and h�

j (i) can be homomor-
phically computed, as these points can be computed as a publicly-known lin-
ear function of the coefficients of h�

i (x) and h�
j (x) respectively. In more detail,

h�
i (j) = h�

i0+h�
i1 · j + . . .+h�

id · jd. and r�
i (j) = r�

i0+ r�
i1 · j + . . .+ r�

id · jd. Conse-
quently, Commit(h�

i (j), r
�
i (j)) = Comi0 ·(Comi1)j ·(Comi2)j

2 · . . . ·(Comid)j
d

holds
and similarly Commit(h�

j (i), r
�
j (i)) = Comj0 · (Comj1)i · (Comj2)i

2 · . . . · (Comjd)i
d

holds. Hence instead of checking h�
i (j) = h�

j (i) and r�
i (j) = r�

j (i), the procedure
actually checks if the following holds for each i, j ∈ {1, . . . , n}:

Comi0 · (Comi1)j · . . . · (Comid)j
d

= Comj0 · (Comj1)i · . . . · (Comjd)i
d

.

Verifying Point on a Committed Polynomial. The next procedure
VerifyPoint({Com0, . . . ,Comd}, (h, r), j) takes input a set of d+1 commitments,
an index j ∈ {1, . . . , n} and a pair of values (h, r), where the commitments are
already known to be the commitments of the coefficients of a d-degree polyno-
mial. That is, there exist d-degree polynomials, say h(x) = h0+h1 ·x+. . .+hd ·xd

and r(x) = r0 + r1 · x + . . . + rd · xd, where it is already known that Comi =
Commit(hi, ri) holds, for i = 0, . . . , d. The procedure outputs 1 iff h and r con-
stitutes the jth point on h(x) and r(x) respectively; i.e. iff h(j) = h and r(j) = r
holds. Similar to the previous procedure, the verification here happens homo-
morphically over the commitments. That is, the procedure checks if the following
relation holds:

Commit(h, r) = Com0 · (Com1)j · (Com2)j
2 · . . . · (Comd)j

d

.

Robust Reconstruction of a [·]-Shared Value. Let s be a value which is
[·]-shared among the parties, where the degree of sharing is ts, with each (hon-
est) Pi having its share (si, ri) and all the parties having the commitments
Coms1 , . . . ,Comsn

, where Comsi
= Commit(si, ri). Protocol ΠRecPub([s]) then

allows the parties in P to publicly reconstruct s irrespective of the network
type, provided ts < n

2 . The protocol is standard and straightforward. Every Pi

provides its share (si, ri) to every party, which is verified with respect to Comsi
.

Once ts +1 correct shares are identified, they are used to interpolate the under-
lying ts-degree sharing polynomial and its constant term is taken as the output.
The protocol requires Δ time in a synchronous network and irrespective of the
network type, incurs a communication of O(n2 · κ) bits. Since the protocol is
standard, we avoid presenting its formal description.
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3 Network-Agnostic Byzantine Broadcast

We wish to design a cryptographically-secure network-agnostic broadcast proto-
col which is ts-secure in a synchronous network and ta-secure in an asynchronous
network. For doing so, we assume a PKI setup. Our protocol follows the design
of the perfectly-secure network-agnostic broadcast protocol from [3] which makes
use of two primitives, which we discuss first.

3.1 Asynchronous Broadcast with Weaker Synchronous Guarantees

The first primitive is a protocol ΠABC, which is a ta-secure broadcast in an
asynchronous network. The primitive also achieves the properties of broadcast
in a synchronous network against ts corruptions for an honest sender but fails if
the sender is corrupt. Namely, in the latter case, there is no guarantee that the
honest parties obtain any output. Moreover, even if the honest parties obtain an
output, they may not do so at the same (local) time.

The work of [3] uses the famous perfectly-secure asynchronous broadcast pro-
tocol (or Acast) of [16] as an instantiation of ΠABC. The protocol can tolerate
up to t < n

3 corruptions, irrespective of the network type and hence fits the bill
in [3]; this is because for perfect security, ts < n

3 holds. However, in our context,
ts < n

2 and so we cannot use the Acast protocol of [16] as instantiation of ΠABC.
However, we notice that the reliable broadcast protocol of [36] realises the exact
requirements we demand from an instantiation of ΠABC. The protocol achieves
cryptographic security, assuming a PKI setup. For completeness, the protocol is
given in Fig. 1.

Fig. 1. Asynchronous broadcast with weaker synchronous guarantees

The properties of the protocol ΠABC are stated in Lemma 3.
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Lemma 3. Let ta < ts and ta + 2ts < n and let S have a message m as input
for ΠABC. Then, the protocol ΠABC satisfies the following properties.

– In a Synchronous Network:
– ts-liveness: If S is honest, then all honest parties obtain an output within

time 3Δ.
– ts-validity: If S is honest, then every honest party outputs m.
– ts-consistency: If S is corrupt and some honest party outputs m� at time

T , then every honest party outputs m� at time T + Δ.
– In an Asynchronous Network:

– ta-liveness: If S is honest, then all honest parties eventually obtain an
output.

– ta-validity: If S is honest, then every honest party with an output, outputs
m.

– ta-consistency: If S is corrupt and some honest party outputs m�, then
every honest party eventually outputs m�.

– Irrespective of the network type, the protocol incurs a communication of O(n3 ·
|m|) bits from the honest parties, where |m| denotes the size of m in bits.

In our description, we will say that S acasts m to mean that S invokes an
instance of ΠABC with input m and the parties participate in this instance.
Similarly, we will say that the parties receive m through the acast of S to denote
that the output of the parties in the ΠABC instance is m.

3.2 Synchronous Byzantine Agreement

The second component used in [3] is a ts-secure synchronous BA (SBA) protocol
ΠSBA, that additionally guarantees liveness in an asynchronous network against
ta corruptions. The instantiation of ΠSBA is with perfect security where ts <
n
3 and will not work for our setting where ts < n

2 . Instead, our instantiation
of ΠSBA is the Dolev-Strong BA protocol [28] based on the PKI setup, which
requires ts + 1 rounds (in a synchronous network). To achieve liveness in the
asynchronous network, it suffices to have the parties execute the protocol for
local time TSBA = (ts + 1) · Δ time and check if an output is computed at time
TSBA. If no output is computed, then the parties output ⊥, else they take the
output as determined by the protocol. The protocol incurs a communication of
O(n3 · |m|) bits from the honest parties, where |m| is the size of m in bits. The
detailed protocol and proofs are omitted due to brevity.

3.3 ΠABC + ΠSBA → Network-Agnostic BC

Once we have instantiations of ΠABC and ΠSBA, we obtain a network-agnostic
broadcast protocol following [3] as follows: first, S invokes an instance of ΠABC

to broadcast its input. If the network is synchronous then all honest parties
should have the sender’s input at the time 3Δ. To check the same, the parties
run an instance of ΠSBA on the outputs obtained from the ΠABC instance at
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time 3Δ. Finally, at time 3Δ+TSBA, the parties check the output from the ΠSBA

instance. The parties then decide their output at time 3Δ + TSBA, based on the
output they obtained from the instance of ΠABC and ΠSBA. This will ensure that
the resultant protocol achieves ts-security in a synchronous network. However,
if the network is asynchronous, then it might be possible that at the local time
3Δ+ TSBA, different honest parties have different outputs. Namely some honest
parties may output ⊥, while others may have an output m�, different from ⊥.
Consequently, as done in [3], we provide a provision for the former set of parties
to continue running the protocol, so that they also eventually obtain the output
m�. Following the terminology of [3], we denote the two different methods of
computing the outputs as regular and fallback mode. The protocol is formally
presented in Fig. 2.

Fig. 2. Network-agnostic broadcast protocol

The properties of the protocol ΠBC stated in Lemma 4 can be proved in the
same way as in [3].

Lemma 4. Let ta < ts and ta + 2ts < n and let S have an input m for ΠBC.
Then, the protocol ΠBC satisfies the following properties, where TBC = 3Δ+TSBA.

– In a Synchronous Network:
– ts-liveness: If S is honest, then all honest parties obtain an output within

time TBC.
– ts-validity: If S is honest, then every honest party outputs m.
– ts-consistency: If S is corrupt, then

– If some honest party outputs m� at time TBC, then every honest party
outputs m� at time TBC.
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– If some honest party outputs m� at time T > TBC, then every honest
party outputs m� at time T + Δ.

– In an Asynchronous Network:
– ta-liveness: If S is honest, then all honest parties eventually obtain an

output.
– ta-validity: If S is honest, then every honest party with an output, outputs

m.
– ta-consistency: If S is corrupt and some honest party outputs m�, then

every honest party eventually outputs m�.
– Irrespective of the network type, the protocol incurs a communication of O(n3 ·

|m|) bits from the honest parties.

As in [3], we use the following terminologies for ΠBC in the rest of the paper.

Terminologies for ΠBC. When we say that “Pi broadcasts m”, we mean that Pi

invokes an instance of ΠBC as S with input m and the parties participate in this
instance. Similarly, when we say that “Pj receives m from the broadcast of Pi

through regular mode”, we mean that Pj has the output m at time TBC, during
the instance of ΠBC. Finally, when we say that “Pj receives m from the broadcast
of Pi through fallback mode”, we mean that Pj has the output m after time TBC

during the instance of ΠBC.

4 Network-Agnostic VSS

In this section, we present our network-agnostic VSS protocol ΠVSS, which allows
a designated dealer D to verifiably [·]-share its input s, where the degree of sharing
will be ts, irrespective of the network type. For an honest D, the value s will be
[·]-shared eventually in an asynchronous network, while s will be [·]-shared after
a fixed known time, if the network behaves synchronously. The verifiability here
ensures that if D is corrupt, then either no honest party obtains any output
(if D does not invoke the protocol), or there exists some value which gets [·]-
shared among the parties. Note that in the latter case, we cannot bound the
time within which honest parties will have their shares, even if the network
is synchronous. This is because a corrupt D may delay sending the designated
messages arbitrarily, and the parties will not know the exact network type.

The idea behind ΠVSS is as follows: D embeds s in a random ts-degree polyno-
mial q(·) in its constant term, where the polynomial q(·) is further embedded in
a random (ts, ts)-degree symmetric bivariate polynomial, say F (x, y), at x = 0.
The goal is then to verifiably distribute the point q(i) to each party Pi and
make public the commitments of these points. To achieve this, D further picks
a random (ts, ts)-degree symmetric bivariate polynomial, say R(x, y), and pub-
licly commits the coefficients of the polynomials fi(x) using the coefficients of
the polynomial ri(x) as randomness, where fi(x) = F (x, i) and ri(x) = R(x, i).
The matrix of coefficients C which is of size n × (ts +1) is made public through
an instance of our network-agnostic broadcast protocol ΠBC. Additionally, each
party Pi is also provided the pair of points {fi(j), ri(j)}j=1,...,n. Every party
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Pi upon receiving the points {fi(j), ri(j)}j=1,...,n and the matrix C can check
for their “consistency”. That is, Pi can check if C constitutes commitments of
the coefficients of some (ts, ts)-degree symmetric bivariate polynomial (using the
procedure VerifyPoly) and if the points {fi(j), ri(j)}j=1,...,n lie on the ith uni-
variate polynomial committed in C (using the procedure VerifyPoint). If both
the tests are positive, then Pi notifies this publicly, through an instance of the
broadcast protocol ΠBC. The dealer D then looks for a candidate “core” set of
parties CS of size at least n − ts who responded positively and upon finding a
CS, D makes it public (again through an instance of ΠBC).

For simplicity, let us assume that the network behaves synchronously and D
is honest. Then all honest parties (which are at least n − ts in number), should
respond positively by time 2TBC. This is because each instance of ΠBC takes
TBC time to generate an output. Consequently, D should find a candidate CS
and hence all honest parties should have this CS at time 3TBC. Based on this
observation, at (local) time 3TBC, the parties check if D made public a candidate
core set of size at least n − ts (who have responded positively). Since different
parties may have different opinions about the existence of a candidate core set,
the parties execute an instance of the network-agnostic BA protocol ΠBA to have
a common opinion. Based on the output of the ΠBA instance, the parties can
conclude about the type of the network and behaviour of D.

Let us first consider the case when the output of the ΠBA instance is posi-
tive, implying that at least one honest party has seen a candidate CS at (local)
time 3TBC. Let H be the set of honest parties and let HCS be the set of hon-
est parties in CS. Note that HCS �= ∅, irrespective of the network type, since
|CS| ≥ n − ts ≥ ts + ta + 1. Since the parties in HCS have verified C using
the procedure VerifyPoly, it implies that there exists a (ts, ts)-degree symmetric
bivariate polynomial, say F �(x, y) and a (ts, ts)-degree bivariate polynomial, say
R�(x, y), such that coefficients of the polynomials {F �(x, i)}i=1,...,n are com-
mitted by D in C, using the coefficients of the polynomials {R�(x, i)}i=1,...,n as
randomness. We call F �(x, y) as D’s committed bivariate polynomial and note
that F �(x, y) = F (x, y) holds, if D is honest. Let q�(·) def

= F �(0, y) and let
s� def

= F �(0, 0). Again note that if D is honest, then s� = s, since q�(·) = q(·)
holds. Let F �

i (x) = F �(x, i) and R�
i (x) = R�(x, i). The next goal will be to ensure

that s� gets [·]-shared, for which it is sufficient to have each Pi ∈ H have the
pair of points (F �

i (0), R
�
i (0)), since the commitment of these points are already

available through C. We also know that each party in HCS already has received
the designated pair of points (F �

i (0), R
�
i (0)) from D, since they responded pos-

itively after verifying the pairs of points received from D using the procedure
VerifyPoint. So what is left to ensure that the potentially honest parties Pi out-
side CS get their designated pair of points (F �

i (0), R
�
i (0)). We stress that there

might be such potential honest parties outside CS. While this can always happen
in an asynchronous network (even if D is honest) where the designated messages
for a subset of honest parties may be delayed, the same can happen in a syn-
chronous network where a corrupt D may not send the designated messages to
a subset of honest parties.
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One option to enable the parties Pi outside CS to get their respective pair of
points (F �

i (0), R
�
i (0)) is to let the parties inside CS provide Pi the supposedly

common points on the polynomials F �
i (x) and R�

i (x), which Pi can verify using
C. And once Pi has at least ts + 1 correct points on these polynomials, it can
interpolate them and get (F �

i (0), R
�
i (0)). This idea will certainly work, if the

network is guaranteed to be asynchronous, since in this case |HCS | ≥ n−ts−ta >
ts. Unfortunately, the network type will be unknown and it may so happen that
the network is synchronous and D is corrupt, in which case we are guaranteed
to have |HCS | ≥ n − ts − ts > ta, which is not sufficient to implement the above
idea. Instead, we follow a different approach, which constitutes the crux of the
protocol.

Once CS is publicly identified, D next freshly secret-shares the points F �
i (0)

and R�
i (0), for every Pi �∈ CS. The crucial point here is that the degree of sharing

now is only ta and not ts. We stress that this does not violate the privacy of the
points F �

i (0) and R�
i (0) in any network for an honest D. This is because if the

network is synchronous, then every party Pi �∈ CS is guaranteed to be corrupt for
an honest D and so the adversary will already be knowing the points F �

i (0) and
R�

i (0). On the other hand, if the network is asynchronous, then the fresh sharing
will not violate the privacy, since there will be at most ta corrupt parties and the
degree of the new sharing is ta. To secret-share the points F �

i (0) and R�
i (0), the

dealer embeds them in random ta-degree polynomials at their constant term,
distribute distinct points on these polynomials to respective parties and also
publicly commit the coefficients of these polynomials. The parties then verify the
received points with respect to the commitments using the procedure VerifyPoint.
Moreover, they also verify whether the points which are freshly secret-shared
are the same which are committed in the existing matrix C. Every party upon
verifying both these conditions positively, notifies it in public. The goal is then to
let D publicly identify a “qualified” subset of parties Q of size n−ts (who could be
different from CS), who responded positively for the fresh secret-sharings done
by D. Note that an honest D will always find such a candidate set Q, irrespective
of the network type, since H will always constitute a candidate Q set. Once the
set Q is identified, then the parties in Q enable the parties Pi �∈ CS to interpolate
the ta-degree polynomials using which D has freshly shared F �

i (0) and R�
i (0). For

this, the parties in Q provide their respective points on these fresh polynomials
to Pi, who can identify the correct points by using the procedure VerifyPoint.
Note that Pi will need only ta +1 correct points now, which are bound to arrive
in any network, since Q is bound to have at least ta + 1 honest party in any
network. This completes the description of the protocol for the case when a
candidate CS is identified within the designated time of 3TBC.

Let us now consider the second case when no candidate CS is identified
within the designated time of 3TBC. This case is relatively simpler. In this case
we already know that either D is corrupt or the network is asynchronous. Con-
sequently, D is now asked to look for a candidate CS of size at least n − ta, who
responded positively for the matrix C and the points received from D. Note that
an honest D is guaranteed to get such a CS because in this case the network
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is asynchronous and so |H| ≥ n − ta and hence H will eventually constitute
a candidate CS. Once CS (of size at least n − ta) is identified, then the par-
ties inside CS can help the parties Pi outside CS to get their respective pair
of points (F �

i (0), R
�
i (0)) by supplying them the supposedly common points on

the polynomials F �
i (x) and R�

i (x). Party Pi can then identify the correct points
(using C and procedure VerifyPoint) and once Pi has ts + 1 correct points, it
can interpolate them and get (F �

i (0), R
�
i (0)). Interestingly, the availability of at

least ts + 1 correct points from the parties in the new CS is always guaranteed,
even if the network is synchronous. This is because now |CS| ≥ n− ta and hence
has n − ta − ts > ts honest parties even in a synchronous network.

This completes the description of the protocol ΠVSS, which is presented in
Fig. 3. There are two cases in the protocol, depending upon whether the parties
identify a candidate core set of size at least n−ts within the designated time 3TBC.
For the first case, D has to secret-share values two times, first while distributing
points on bivariate polynomials and second while again secret-sharing the shares
of the parties who are outside the candidate core set. To distinguish between
these two types of sharing, we use the terms primary and secondary sharing
respectively.

The properties of the protocol ΠVSS are stated in Theorem 1.

Theorem 1. Let ta < ts and ta + 2ts < n and let D has an input s ∈ Fp for
ΠVSS. Moreover, let TVSS = 6TBC + TBA + Δ. Then, the protocol ΠVSS achieves
the following properties.

– If D is honest, then the following hold.
– ts-correctness: In a synchronous network, s is [·]-shared at time TVSS.
– ta-correctness: In an asynchronous network, s is eventually [·]-shared.
– ts-privacy: Irrespective of the network type, the view of the adversary

remains independent of s.
– If D is corrupt, then either no honest party computes any output, or there

exists some s� ∈ Fp such that the following holds.
– ts-strong commitment: In a synchronous network, s� is [·]-shared, such

that one of the following holds.
– If any honest party computes its output at time TVSS, then all honest

parties compute its output at time TVSS.
– If any honest party computes its output at time T > TVSS, then every

honest party computes its output by time T + Δ.
– ta-strong commitment: In an asynchronous network, s� is eventually [·]-

shared.
– Irrespective of the network type, the protocol incurs a communication of O(n5 ·

κ) bits from the honest parties and invokes 1 instance of ΠBA.

Protocol ΠVSS for L Inputs. Protocol ΠVSS can be easily modified to handle
the case when D has L inputs where L ≥ 1, such that the number of ΠBA

instances in the protocol is only one and remains independent of L. The idea is
to execute the steps of the protocol ΠVSS L times, once on behalf of each input
of D. However, instead of finding L candidate CS or Q sets, the dealer D finds a
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Fig. 3. Network-agnostic VSS protocol
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Fig. 3. (continued)
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single CS or Q set. For this, each party broadcasts a single (ReceivedPrimary, �)
message or (ReceivedSecondary, �) message (instead of L such messages), if the
conditions for broadcasting these messages are satisfied on behalf of all the L
inputs of D. As the modifications are straightforward, we avoid the details and
note that the protocol incurs a communication of O(n5 · L · κ) bits from the
honest parties and invokes 1 instance of ΠBA.

5 Agreement on a Common Subset (ACS)

In this section, we adapt the ACS protocol proposed by [3] to our specific set-
ting by incorporating our network-agnostic VSS protocol ΠVSS and the network-
agnostic BA protocol ΠBA of [14]. The ACS protocol, denoted as ΠACS, will be
utilized in both our preprocessing phase protocol and the circuit-evaluation pro-
tocol. In the protocol, each party is supposed to [·]-share L input values using
instances of ΠVSS.2 The goal of ΠACS is to enable the parties to agree upon a
common subset of parties CS of size at least n−ts, such that the inputs of all the
parties in CS are [·]-shared. Additionally, in a synchronous network, all honest
parties are present in CS.

The underlying idea of ΠACS is as follows: Each party Pi ∈ P acts as a
dealer and invokes an instance Π

(i)
VSS of the protocol, ΠVSS, to verifiably [·]-share

its inputs. In a synchronous network, after time TVSS, the inputs of all honest
parties should be [·]-shared. Consequently, after (local) time TVSS, the parties
examine the instances of ΠVSS in which they computed their respective outputs.
Based on this information, the parties engage in n instances of the protocol ΠBA,
where the jth instance is to determine whether Pj should be included in CS. The
input criteria for these ΠBA instances are as follows: if a party has computed
output during the instance Π

(j)
VSS, then it participates with input 1 in the jth

instance Π
(j)
BA of ΠBA. Once at least n − ts instances of ΠBA yield an output of

1, the parties participate with input 0 in any remaining ΠBA instances for which
they have not yet provided any input. Finally, after obtaining outputs from all n

instances of ΠBA, party Pj is included in CS iff the output of the Π
(j)
BA instance

is 1. Since the parties wait for time TVSS before initiating the ΠBA instances, it is
guaranteed that all honest dealers are included in CS in a synchronous network.

The properties of the protocol ΠACS stated in Lemma 5 follows from [3].

Lemma 5. Let ta < ts and ta + 2ts < n. Then, the protocol ΠACS achieves the
following properties, where every party Pi has L values (s(i,1), . . . , s(i,L)) from
Fp as input.

– ts-correctness: If the network is synchronous, then at time TACS = TVSS+2TBA,
the honest parties have a common subset CS of size at least n − ts, such that
all the following holds:
– All honest parties will be present in CS.

2 The exact inputs depend upon the underlying context.
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– Corresponding to every Pi ∈ CS, there exist L values (s�
(i,1), . . . , s

�
(i,L)),

which are same as (s(i,1), . . . , s(i,L)) for an honest Pi, such that
s�
(i,1), . . . , s

�
(i,L) are [·]-shared among the parties at time TACS.

– ta-correctness: If the network is asynchronous, then the honest parties eventu-
ally output a common subset CS of size at least n−ts. Moreover, corresponding
to every Pi ∈ CS, there exist L values (s�

(i,1), . . . , s
�
(i,L)), which are same as

(s(i,1), . . . , s(i,L)) for an honest Pi, such that s�
(i,1), . . . , s

�
(i,L) are eventually

[·]-shared among the parties.
– ts-privacy: Irrespective of the network type, the view of the adversary remains

independent of the inputs of the honest parties.
– Irrespective of the network type, the protocol incurs a communication of O(n6 ·

L · κ) bits from the honest parties and invokes O(n) instances of ΠBA.

6 The Preprocessing Phase Protocol

We now present our network-agnostic preprocessing protocol in this section.
The protocol aims to produce cM number of [·]-shared multiplication-triples
that are random from the adversary’s point of view. The protocol is obtained
by adapting a similar protocol from [3] to the setting where ta + 2ts < n.3 We
begin by describing the various building blocks used in the protocol. The current
description is mostly taken from [3] and we refer to [3] for the complete proofs.

6.1 Network-Agnostic Beaver’s Multiplication Protocol

Protocol ΠBeaver(([x], [y]), ([a], [b], [c])) takes as inputs [·]-shared x, y and a [·]-
shared triple (a, b, c) and outputs a [·]-shared z, where z = x · y, if and only if
c = a · b. During the protocol, the parties first locally compute [e] = [x]− [a] and
[d] = [y] − [b] and then publicly reconstruct e and d, using the reconstruction
protocol ΠRecPub. Using these values, a [·]-sharing of z is then computed locally
as [z] = e · d + e · [b] + d · [a] + [c]. One can see that if (a, b, c) is random from
the adversary’s point of view, then x and y will remain private from the point of
view of the adversary. The protocol takes Δ time to output [z] in a synchronous
network, while it outputs [z] eventually in an asynchronous network. Irrespective
of the network type, the protocol incurs a communication of O(n2 · κ) bits from
the honest parties.

6.2 Network-Agnostic Triple-Transformation Protocol

Protocol ΠTripTrans takes as input a set of 2d + 1 [·]-shared triples
{([x(i)], [y(i)], [z(i)])}i=1,...,2d+1, where the triples may not be “related”. The pro-
tocol outputs “co-related” [·]-shared triples {([x(i)], [y(i)], [z(i)])}i=1,...,2d+1, satis-
fying the following properties regardless of the network type:

3 In [3], the protocol was presented for the condition ta + 3ts < n.
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– There exist d-degree polynomials X(·),Y(·) and a 2d-degree polynomial Z(·),
such that X(i) = x(i), Y(i) = y(i) and Z(i) = z(i) holds for i = 1, . . . , 2d + 1.

– The triple (x(i), y(i), z(i)) is a multiplication-triple if and only if (x(i), y(i), z(i))
is a multiplication-triple. Consequently, Z(·) = X(·)·Y(·) holds iff all the 2d+1
input triples are multiplication-triples.

– The adversary learns the triple (x(i), y(i), z(i)) iff it knows the input triple
(x(i), y(i), z(i)).

The protocol is identical to a same protocol with perfect security proposed
in [3]; the only difference is that they use a perfectly-secure version of the
Beaver’s multiplication protocol (since ts < n

3 holds for them), while we use
a cryptographically-secure version of the Beaver’s multiplication protocol (since
ts < n

2 holds for our setting). In a synchronous network, the protocol outputs
the transformed triples by time Δ, while in an asynchronous network, the parties
eventually output the transformed triples. The protocol incurs a communication
of O(n2 · d · κ) bits.

The protocol proceeds as follows: the first and second components of the first
d + 1 input triples are used to define the d-degree polynomials X(·) and Y(·).
These points define the first d + 1 points on these polynomials. Then, using the
shares of the first d+ 1 triples, the parties locally compute [·]-sharings of d new
points on these polynomials. The remaining d input triples are then utilized to
calculate the [·]-sharing of the product of these new points using the Beaver’s
multiplication protocol. Consequently, the Z(·) polynomial is defined by the d
computed products and the third component of the first d + 1 input triples.

6.3 Network-Agnostic Protocol for Generating a Random Value

Protocol ΠRand is a cryptographically-secure network-agnostic protocol which
enables the parties to generate a random value r ∈ Fp, which will be known to
all the parties at the end of the protocol. The instantiation of ΠRand is based on
a random value generation protocol described in [21]. The protocol proceeds as
follows: the parties invoke an instance of the protocol ΠACS, where the input of
each party is a random element from Fp. Protocol ΠACS ensures that a common
subset CS of at least n − ts parties is agreed upon, such that all the parties in
CS have [·]-shared their (random) values. The value r is then set to the sum of
the values shared by the parties in CS, which will be available in a [·]-shared
fashion. The parties then publicly reconstruct r using an instance of ΠRecPub.
Since at least one honest party is guaranteed in CS (irrespective of the network
type), whose secret-shared input will be random and unknown to the adversary, it
follows that r will be indeed random. The protocol takes TRand = TACS+Δ time in
a synchronous network to generate the output, while in an asynchronous network,
the honest parties eventually get their output. Irrespective of the network type,
the protocol incurs a communication of O(n6 · κ) bits from the honest parties
and invokes O(n) instances of ΠBA.
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6.4 Network-Agnostic Polynomial-Verification Protocol

We next describe a network-agnostic polynomial-verification protocol, ΠPolyVer.
In the protocol, there exists a triplet of polynomials (X(·),Y(·),Z(·)). Polynomials
X(·) and Y(·) are d-degree polynomials, while Z(·) is a 2d-degree polynomial.
There will be 2d + 1 distinct points on these polynomials, which will be [·]-
shared among the parties. The goal of ΠPolyVer is to probabilistically verify if
Z(·) ?= X(·) · Y(·) holds. The instantiation of ΠPolyVer is based on a polynomial
verification protocol presented in [21].

The basic idea of the protocol is as follows: first, a random value α is generated
using an instance of ΠRand. The parties then check if Z(α) ?= X(α)·Y(α) holds. For
this, the parties compute X(α),Y(α) and Z(α) in a [·]-shared fashion, followed by
publicly reconstructing these values using instances of ΠRecPub. Since α is selected
randomly, if the polynomials (X(·),Y(·),Z(·)) do not satisfy the multiplicative
relationship, then the above test will fail, except with probability at most 2d

|Fp| .
During the verification process, the only information learnt by the adversary
are the points X(α), Y(α) and Z(α). In a synchronous network, the protocol
will generate output after time TPolyVer = TRand + Δ, while in an asynchronous
network, the parties get output eventually. The protocol incurs a communication
of O(n6 · κ) bits from the honest parties.

6.5 Network-Agnostic Triple-Sharing Protocol

The network-agnostic triple-sharing protocol ΠTripSh allows a designated dealer
D to verifiably [·]-share ts multiplication-triples. The protocol ensures that if
the dealer is honest then the triples remain random from the adversary’s view
and all honest parties output the shares of the dealer’s multiplication-triples.
The “verifiability" here guarantees that if D is corrupt, then either no honest
party computes any output (if D does not invoke the protocol) or there exist
ts multiplication-triples, which are [·]-shared among the parties. The protocol is
borrowed from [3,21].

The protocol begins with the dealer [·]-sharing 2ts+1 random multiplication-
triples, denoted as (x(j), y(j), z(j))j=1,...,2ts+1, using an instance of ΠVSS. The ver-
ifiability property of ΠVSS ensures that the shared triples are [·]-shared. However,
there is no guarantee that these shared triples are actually multiplication-triples.
To verify if the [·]-shared triples are indeed multiplication-triples, the [·]-sharing
of these triples is transformed to [·]-sharing of triples (x(j), y(j), z(j))j=1,...,2ts+1

using an instance of ΠTripTrans. The transformed triples have associated polyno-
mials X(·), Y(·), and Z(·), with degrees ts, ts, and 2ts, respectively. If the dealer
is honest, the adversary learns no information about X(·), Y(·), and Z(·).

Next, the relationship Z(·) ?= X(·) · Y(·) is verified by executing the ΠPolyVer

protocol. It follows from the properties of ΠTripTrans and ΠPolyVer that ΠPolyVer

outputs 1 iff all the input triples (x(j), y(j), z(j))j=1,...,2ts+1 are multiplication-
triples, except with an error probability of 2ts

|Fp| . This is because a corrupt dealer
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will only learn the random verification point used for verifying the multiplicative
relationship during ΠPolyVer after sharing the triples.

If D is honest then the adversary learns only one point on X(·), Y(·), and
Z(·) during the verification process. This leaves ts + 1 − 1 = ts degrees of
freedom in these polynomials. If ΠPolyVer outputs 1, the parties output ts [·]-
shared triples ([a(i)], [b(i)], [c(i)]) on behalf of the dealer D, where a(i) = X(β(i)),
b(i) = Y(β(i)), and c(i) = Z(β(i)). Here β(1), . . . , β(ts) are distinct elements
from Fp, which are different from the random verification point, used during
ΠPolyVer and also from the evaluation points of the parties. The shared triples
{([a(i)], [b(i)], [c(i)])}i=1,...,ts

constitute the actual multiplication-triples that are
[·]-shared on behalf of the dealer. If ΠPolyVer outputs 0, then the parties output
a default [·]-sharing of (0, 0, 0) ts times on behalf of the dealer. In a synchronous
network, the protocol generates output after time TTripSh = TVSS + TPolyVer + Δ,
while in an asynchronous network, the parties get their output eventually. The
protocol incurs a communication of O(n6 ·κ) bits and invokes 1 instance of ΠBA.

6.6 Network-Agnostic Triple-Extraction Protocol

The next protocol ΠTripExt takes as input a publicly known set of 2d + 1 parties
denoted as CS, where d ≥ ts, and where each party in CS has [·]-shared a
multiplication-triple. Notably, the multiplication-triples shared by honest parties
in CS are random for the adversary. The output of the protocol consists of
d+1−ts [·]-shared multiplication-triples, which remain random from the view of
the adversary. The protocol is identical to a similar protocol with perfect security
proposed in [3]; the only difference is that they used a perfectly-secure version
of the triple-transformation protocol, while we use our cryptographically-secure
instantiation of the same.

The underlying idea of the protocol is as follows: the parties invoke an
instance of ΠTripTrans to “transform” the input triples into a set of correlated
triples. Since the input for the protocol consists of multiplication-triples, this
transformation process ensures that the output triples are also multiplication-
triples. Let X(·), Y(·), and Z(·) represent the polynomials associated with the
transformed triples. The properties of ΠTripTrans guarantee that the adversary
has knowledge of at most ts points on these polynomials, thereby implying that
a minimum of d+1− ts points on these polynomials are random from the adver-
sary’s view. Consequently, the parties locally compute and generate d + 1 − ts
“new” points on these polynomials, which are guaranteed to appear random to
the adversary.

In a synchronous network, the protocol takes Δ time to generate the output,
while in asynchronous network, the honest parties eventually get their output.
The protocol incurs a communication of O(n2 ·d ·κ) bits from the honest parties.

6.7 The Network-Agnostic Preprocessing Phase Protocol

We finally present our cryptographically-secure network-agnostic preprocessing
phase protocol, which generates [·]-sharing of cM multiplication-triples, which
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are random from the point of view of the adversary. The protocol is similar to
the preprocessing phase protocol of [3] with perfect security; the only difference is
that we now use various components which are cryptographically-secure. More-
over, we also use a trick to get a better communication complexity, compared to
[3].

The protocol proceeds as follows: each party Pi acts as a dealer and invokes
an instance Π

(i)
TripSh of ΠTripSh to share cM random multiplication-triples on its

behalf. Corrupt parties Pj may choose not to invoke their Π
(j)
TripSh instances.

Consequently, the parties employ a similar approach as in the protocol ΠACS to
agree on a common subset of parties CS of size n−ts, whose multiplication-triples
will be [·]-shared. For this, the parties invoke instances of the network-agnostic
BA protocol ΠBA. Since the adversary will not know the multiplication-triples
shared by the honest parties in CS, the parties execute cM instances of ΠTripExt

on the multiplication-triples shared by the parties in CS to extract random [·]-
shared multiplication-triples.

For simplicity and without loss of generality, let |CS| = 2d + 1. Note that
d ≥ ts need not hold here, since n−ts ≥ ts+ta+1 and ta < ts.4 Consequently, by
applying the procedure ΠTripExt, it is not guaranteed that the resultant extracted
secret-shared multiplication-triples will be indeed random for the adversary.5 To
get rid of this, we deploy the following trick: if |CS| < 2ts+1, then we add dummy
parties in CS and consider a default [·]-sharing of (0, 0, 0) on their behalf, followed
by applying the procedure ΠTripExt on the multiplication-triples of the “extended”
CS. This will always result in [·]-sharing of cM random multiplication-triples. For
instance, if the network is synchronous, then we know that all honest parties are
guaranteed to be in CS, since the parties start executing the instances of ΠBA only
after time TTripSh, ensuring that the multiplication-triples of all honest parties are
[·]-shared through their respective ΠTripSh instances. Consequently, the dummy
parties added in a synchronous network are guaranteed to be corrupt. On the
other hand, if the network is asynchronous, then the dummy parties added to
CS might be honest; however, in this case, there will be at least n − ts − ta > ts
honest parties already present in the “non-extended” CS. Hence, irrespective
of the network type, it is always guaranteed that even after adding dummy
parties to CS, there are at least ts +1 honest parties in CS, whose secret-shared
multiplication-triples are random for the adversary. Consequently, the parties
will now be able to extract cM random secret-shared multiplication-triples. The
preprocessing phase protocol is presented in Fig. 4.

The properties of the protocol ΠPreProcessing stated in Lemma 6 follows from
[3].

Lemma 6. Let ta < ts and ta+2ts < n. Then, the protocol ΠPreProcessing achieves
the following properties. In a synchronous network, by time TTripGen = TTripSh +
4 Recall that for ΠTripExt, it is necessary that d ≥ ts holds.
5 Note that in [3], the condition ta+3ts < n holds and consequently, n−ts ≥ 2ts+ta+1

holds; hence the triple-extraction on the multiplication-triples shared by the parties
in CS is guaranteed to result in random secret-shared multiplication-triples in their
case.
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Fig. 4. Network-agnostic preprocessing phase protocol

2TBA + Δ, the honest parties output a [·]-sharing of cM multiplication-triples,
while in an asynchronous network, the honest parties eventually output a [·]-
sharing of cM multiplication-triples. Irrespective of the network type, the view
of the adversary remains independent of the output multiplication-triples. The
protocol incurs a communication of O(cM · n6 · κ) bits from the honest parties
and invokes O(n) instances of ΠBA.

7 The Network-Agnostic Circuit-Evaluation Protocol

The network-agnostic circuit evaluation protocol ΠCirEval (Fig. 5) is standard
and is similar to the circuit-evaluation protocol of [3], except that we now use
cryptographically-secure building blocks. The protocol consists of four phases. In
the first phase, the parties generate cM random [·]-shared multiplication-triples
using an instance of the ΠPreProcessing protocol. Simultaneously, the parties exe-
cute an instance of the ΠACS protocol to generate [·]-sharing of their respective
inputs for the function f . The instance of ΠACS will output a common subset CS
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Fig. 5. Network-agnostic circuit-evaluation protocol

of at least n − ts parties, whose inputs are [·]-shared. For the parties outside of
CS, a default [·]-sharing of 0 is considered as their input. Note that the properties
of ΠACS would guarantee that all honest parties are included in CS, ensuring the
consideration of inputs from all honest parties (namely input provision). The sec-
ond phase involves joint secret-shared evaluation of each gate in the circuit cir,
with the resulting output being publicly reconstructed during the third phase.
Note that once an honest party reconstructs the circuit output, it cannot afford
to immediately terminate the protocol if the network is asynchronous since its
participation might be required in various subprotocols to generate output for
the other honest parties. Consequently, the last phase is the termination phase,
whereupon reconstructing the circuit output, the parties circulate it and check
whether it is “safe” to terminate the protocol. The steps for this phase are sim-
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ilar to the Bracha’s Acast protocol [16]. Once it is confirmed that it is safe to
terminate the protocol, the parties terminate the protocol and all underlying
subprotocols.

The properties of the protocol ΠCirEval stated in Theorem 2 follows from [2,3].

Theorem 2. Let ta < ts, such that ta + 2ts < n. Moreover, let f : Fn
p → Fp

be a publicly-known function represented by an arithmetic circuit cir over Fp

consisting of cM number of multiplication gates, and whose multiplicative depth
is DM . Moreover, let party Pi has input x(i) for f . Then, ΠCirEval achieves the
following.

– In a synchronous network, all honest parties output y = f(x(1), ..., x(n)) at
time 6TBA + (12n+ 56+DM )Δ, where x(j) = 0 for every Pj �∈ CS, such that
|CS| ≥ n − ts and every honest party Pj ∈ P is present in CS.

– In an asynchronous network, the honest parties eventually output y =
f(x(1), ..., x(n)), where x(j) = 0 for every Pj �∈ CS, such that |CS| ≥ n − ts.

– Irrespective of the network type, the view of the adversary will be independent
of the inputs of the honest parties in CS.

– The protocol incurs a communication of O(cM · n7 · κ) bits from the honest
parties and invokes O(n) instances of ΠBA.

8 Conclusion and Open Problems

In this paper, we presented a network-agnostic MPC protocol with optimal
threshold conditions within the plain PKI model. Our protocol is designed by
introducing a network-agnostic VSS protocol, resulting in a computationally
simpler MPC protocol compared to existing protocols relying on zero-knowledge
proofs, threshold homomorphic encryption, and other setups. There are several
interesting research directions to pursue in this domain. We outline a few of
them below.

– The communication complexity of our MPC protocol does not currently
match that of the state-of-the-art network-agnostic protocol of [5]. It would
be interesting to develop MPC protocols based on VSS that achieve the same
level of communication complexity as the state-of-the-art.

– In this work we have considered the plain PKI model. It will be interesting to
apply the methodologies presented in this paper to develop a network-agnostic
MPC protocol that incorporates trusted setups.

– Obtaining a packed version of our network-agnostic VSS protocol would be
of great interest, as it would subsequently contribute to reducing the commu-
nication complexity of the MPC protocol.
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