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Abstract. Somewhere statistically binding (SSB) hashing allows us to
sample a special hashing key such that the digest statistically binds the
input at m secret locations. This hash function is said to be somewhere
extractable (SE) if there is an additional trapdoor that allows the extrac-
tion of the input bits at the m locations from the digest.

Devadas, Goyal, Kalai, and Vaikuntanathan (FOCS 2022) introduced
a variant of somewhere extractable hashing called rate-1 fully local SE
hash functions. The rate-1 requirement states that the size of the digest
is m + poly(λ) (where λ is the security parameter). The fully local prop-
erty requires that for any index i, there is a “very short” opening showing
that i-th bit of the hashed input is equal to b for some b ∈ {0, 1}. The
size of this opening is required to be independent of m and in particular,
this means that its size is independent of the size of the digest. Devadas
et al. gave such a construction from Learning with Errors (LWE).

In this work, we give a construction of a rate-1 fully local somewhere
extractable hash function from Decisional Diffie-Hellman (DDH) and
BARGs. Under the same assumptions, we give constructions of rate-
1 BARG and RAM SNARG with partial input soundness whose proof
sizes are only matched by prior constructions based on LWE.

1 Introduction

Keyed hash functions are fundamental building blocks in cryptography. They
consist of two algorithms (Setup,Eval). Setup is a PPT algorithm that takes in
the security parameter 1λ and outputs a hashing key hk. Eval is a deterministic
algorithm that takes in the hashing key hk and an input x and outputs a short
digest h of the input. A key property that many applications require is collision
resistance. This guarantees that no PPT adversary A on input the hashing key hk
(sampled using the Setup algorithm) can find two different inputs x, x′ such that
Eval(hk, x) = Eval(hk, x′). However, for many applications collision-resistance is
not sufficient and one requires more advanced properties from the hash function.
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Somewhere Statistically Binding and Extractability. Somewhere statistically
binding (SSB) hash functions [13,18] enhance collision resistance with stronger
requirements. This family of hash function again consists of a pair of algorithms
(Setup,Eval) where the Setup has a different syntax. Here, Setup takes in 1λ and
an index i ∈ [n] (where n is the length of the input to the hash function) and
outputs the hashing key hk. We require this hash function to satisfy two prop-
erties. The first property is hiding, which requires that the hashing key hk hides
the location i from computationally bounded adversaries. The second property
is statistical binding, which requires that the digest statistically binds to the
location i. This means that any unbounded adversary should not be able to pro-
duce two inputs x and x′ that differ at location i and hash to the same digest
w.r.t. a hashing key hk that is sampled using Setup(1λ, i).

An SSB hash function is said to be somewhere extractable (SE) if Setup
outputs a trapdoor td along with the hashing key hk. There exists an extraction
algorithm Extract that takes the digest h and td and outputs xi.

SE and SSB hash functions are usually augmented with two other algorithms
(Open,Verify). The Open algorithm takes in the hk, input x and a location j ∈
[n] and outputs an opening ρ. The Verify algorithm takes in the digest h, the
index j, the bit xj , and an opening ρ and either accepts or rejects the opening.
For efficiency purposes, we require the size of the opening to be much smaller
than the length of the input x. SSB and SE hash functions can be naturally
extended to the setting where the hash key hk binds to a subset I ⊆ [n]. The
hiding requirement is modified to guarantee that for any two subsets I and I ′

of the same size, the hash keys generated w.r.t. to I and I ′ are computationally
indistinguishable.

SSB hash functions are used in constructing very low communication MPC
protocols [13], iO for Turing machines and RAM programs [1,12,17], and laconic
oblivious transfer [5,10]. Somewhere extractable hash functions are used in the
recent constructions of Batch Arguments from NP and Succinct Non-Interactive
Arguments for deterministic polynomial-time computation [7,8,14,16,21].

Rate-1 Fully Local Somewhere Extractability. In recent work, Devadas, Goyal,
Kalai, and Vaikuntanathan [9] introduced another variant of somewhere
extractability called rate-1 fully local somewhere extractable hash functions.
The rate-1 property requires that the size of the digest is m+poly(λ) where m is
the size of the binding set I used in generating the hash key hk. Since the digest
has to bind to m locations, its size must be at least m. The above requirement
states that the size of the digest incurs a fixed additive polynomial overhead in λ
when compared to the lower bound. The fully local opening requirement states
that the size of the opening ρ to any position is a fixed polynomial in λ and
is independent of m. This, in particular, means that the size of the opening is
independent of the size of the digest. In the same work, they gave a construction
of rate-1 fully local SE hash functions from Learning with Errors [20].
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1.1 Our Results

In this work, we give a construction of a rate-1 fully local SE hash function
assuming the hardness of Decisional Diffie-Hellman (DDH) and the existence
of somewhere extractable Batch Arguments (seBARGs) (see Definition 3). For-
mally,

Informal Theorem 1. Assuming the hardness of DDH and a somewhere
extractable BARG, there exists a rate-1 fully local SE hash function.

The works of Waters and Wu [21] and Choudhuri et al. [6] gave construc-
tions of somewhere extractable BARGs from k-Lin and sub-exponential DDH
respectively. As a corollary, we get:

Corollary 1. Assuming either sub-exponential hardness of DDH or polynomial
hardness of DDH and k-Lin, there exists a rate-1 fully local SE hash function.

Application-1: Rate-1 BARG. As a direct corollary of the work of Devadas et
al. [9], we get a construction of rate-1 BARG.

Corollary 2. Assuming the hardness of DDH and a somewhere extractable
BARG, there exists a construction of a BARG for NP where the proof size is
m+poly(log k, λ). Here, m is the size of a single witness and k is the batch size.

The prior construction of BARG for NP based on the same assumptions
due to Paneth and Pass [19] has a proof size of m + o(m) · poly(log k, λ).1 The
only known construction of BARG that achieves the above proof size is due to
Devadas et al. [9] but their work relies on the LWE assumption.

Application-2: RAM SNARG with Partial Input Soundness. A RAM SNARG
[4,8] allows a verifier to verify the correctness of a RAM program with read-only
access to a large database D that runs in time T and uses space S. The verifier is
given a short digest h of the database and a proof π whose size is poly(λ, log T, S).
The traditional soundness for RAM SNARG requires the adversary to “commit”
to the entire database. Recent work of Kalai et al. [15] considered a stronger
soundness requirement called partial input soundness. This guarantees that if
the memory is digested using a SE hash function that is extractable on a set of
coordinates I, and if the RAM computation only reads coordinates in I, then
soundness holds. In particular, this doesn’t require the adversary to commit
to (or, in other words, exhibit knowledge of) the entire database beforehand.
Plugging in our rate-1 fully local SE hash function into the RAM SNARG con-
struction given in Kalai et al. [15], we obtain the following corollary:

1 We note that this work only requires a rate-1 SE hash function (without the fully
local opening) property in addition to somewhere-extractable BARG. The work of
Kalai et al. [15] gave a construction of such a SE hash function from rate-1 OT.
Rate-1 OT can be instantiated from DDH/QR/LWE [11].
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Corollary 3. Assuming the hardness of DDH and a somewhere extractable
BARG, there exists a construction of a RAM SNARG with partial input sound-
ness where the size of the database digest is m + poly(λ) and size of the proof
is O(S) + poly(λ, log T ). Here, m is the size of the index I in the partial input
soundness.

The above parameters were previously known only from LWE [9].

1.2 Technical Outline

We will now give an overview of our construction.

Rate-1 SEH from DDH. Our starting observation is that the DDH-based trap-
door hash construction of [11] in fact already gives us a rate-1 somewhere
extractable hash function. We will very briefly outline this construction, since
our construction uses specific properties of it. Specifically, let G be a cyclic group
of prime order p generated by a generator g. The setup algorithm, on input a
set I = {i1, . . . , im} ⊆ [N ] first chooses a1, . . . , am uniformly random from Zp

and sets h0 = g and hk = gak for k = 1, . . . , m. Next, it chooses r1, . . . , rN ∈ Zp

uniformly at random and sets Mk,j = h
rj

k · gδj,ik , where δi,j = 1 if i = j and
otherwise 0. The hashing key consists of the matrix M = (Mk,j)k,j , whereas the
trapdoors are given by a1, . . . , am.

Hashing proceeds as follows. Given a vector x = (x1, . . . , xN ), we compute
c0, c1, . . . , cm via ck =

∏N
j=1 M

xj

k,j . Note now that c1, . . . , cm is a batch ElGamal
encryption of xi1 , . . . , xim

with ciphertext header c0, that is it holds that gxik =
ck · c−ak

0 for k = 1, . . . ,m. This ciphertext is now compressed via the distributed
discrete logarithm technique [2]. In a nutshell, there is an efficiently computable
keyed function fK : G → {0, 1} such that we can efficiently find a key K such
that it holds fK(ck) = fK(cak

0 ) ⊕ xik
for k = 1, . . . , m. Importantly, to find such

a key we do not need to know the ak. Now, given such a key K, we compute
v1, . . . , vm via vi = fK(ci). We set the hash value to be v = (K, c0, v1, . . . , vm).
Note that since the v1, . . . , vm are bits, such a hash value is of size m + poly(λ)
bits.

Clearly, given ak we can recover xik
from K, c0, v1, . . . , vm via xik

= fK(cak
0 )⊕

vk using the property of fK detailed above.
The only security requirement we make for trapdoor hash functions is that

they are index hiding, that is the hashing key, in this case the matrix M, hides the
index set I = {i1, . . . , im}. For this construction, this follows immediately from
the IND-CPA security of batch ElGamal encryption, as for each j = 1, . . . , N it
holds that M1,j , . . . ,Mm,j is a batch ElGamal ciphertext with header M0,j .

There are two dilemmata with this construction however: first, the hashing
key is non-compact, that is the size of the hashing key scales with the size of the
database. Second, this construction does not support local opening.

While we do not know how to solve the first issue, we observe that this issue
does not affect any of the applications of fully local somewhere extractable hash
functions as long as there is a succinct verification key which can be used to
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check the validity of openings. We will therefore compute a verification key by
computing a (non-rate 1) fully local somewhere extractable hash of the hashing
key.

Full Locality. To address the second issue, we will take a similar avenue as [9].
Specifically, we will compute a second, non-rate 1 somewhere extractable hash
hx of the input x and prove consistency between the two hashes v and hx.
To facilitate this, we will use specific properties of how v is computed. Indeed,
observe that each ci is just a product of group elements hx1

i , . . . , hxN
i . Recall

that our goal is to make the size of the opening (essentially) independent of
both N and m. Hence, the statement we are trying to prove cannot directly be
proven with a BARG, as the product involves N terms. However, following an
idea from [9], we can compute each ci via a succinct sequence of local operations,
each only involving two group elements. This is done via a binary multiplication
tree. For the sake of simplicity, let N now be a power of two, i.e. N = 2T . We
define z

(0)
i,j = M

xj

i,j for i ∈ [m] and j ∈ [N ]. We can now recursively define the

z
(t)
i,j for t = 1, . . . , T via

z
(t)
i,j = z

(t−1)
i,2j−1 · z

(t)
i,2j . (1)

Here, we just set z
(t)
i,j to undefined if either z

(t−1)
i,2j−1 or z

(t−1)
i,2j is undefined (i.e.

2j − 1 or 2j is out of bounds). Now note that it holds routinely that z
(T )
i,1 = ci

via the recursive definition of the z
(t)
i,j .

The idea to prove consistency between v and hx now comprises of 3 parts.

1. Prove for all i, j that z
(0)
i,j = M

xj

i,j .
2. Prove for all i, j and all t that Eq. (1) holds.
3. Prove for all i that vi = fK(z(T )

i,1 ).

Since all three items are local statements, we will enforce their validity using
BARGs. To facilitate this, we will convert all statements into index statements.
For item 1, the vector x is already implicitly given via the hash value hx. As
mentioned above, we will have an additional verification key which consists of
an SEH hash hM committing to the matrix M. Moreover, for all t = 1, . . . , T

let z(t) = (z(t)i,j )i,j and let h(t) be an SEH hash of z(t).
In our full construction of rate-1 fully local SEH, the hash value will consist

of v, hx, h(1), . . . , h(T ) as well as T + 2 BARGs (1 for item 1, T for item 2,
and 1 for item 3). As the size of each BARG is independent of m and N , the
total size of the hash value is still dominated by v and thus comes down to
m + T · poly(λ) = m + poly(λ) (as T = log(N) = O(λ))).

Finally, a local opening in this construction simply consists of a local opening
of hx.

Proving Security. We will now provide a high level discussion on how we establish
the somewhere extractability property of our construction. Hence, assume we
had a PPT adversary A who succeeds in providing a valid local opening for a
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position i∗ ∈ I such that the opened value differs from the value extracted using
the trapdoor a1, . . . , am.

We will make use of the somewhere extractability properties of the has-
hes hx, h(1), . . . , h(T ) and hM. Specifically, it will suffice to make each of these
hashes extractable at a constant number of locations. Hence the sizes of these
hashes will still be poly(λ), and in particular independent of m and N .

As |I| = m, a security reduction can guess the index j∗ ∈ [m] such that
i∗ = ij∗ with polynomial probability 1/m, and produce a random output if the
guess was wrong. The reduction will make hx extractable at position i∗, and
each h(t) extractable at locations (0, j(t)) and (j∗, j(t)), where the j(t) are on the
root-to-leaf path to i∗. Due to the index hiding properties of the underlying SEH
this modification is not noticed by the adversary.

Hence, the reduction will now be able to extract z
(t)

0,j(t) and z
(t)

j∗,j(t) for each

t = 1, . . . , T . Our critical observation is now the following: If z
(t)

0,j(t) and z
(t)

j∗,j(t)

were correctly computed, then they form an ElGamal ciphertext of xi∗ under
the secret key aj∗ , that is it would hold that

z
(t)

j∗,j(t) = (z(t)
0,j(t))aj∗ · gxi∗ .

This follows via the definition of M and the z
(0)
i,j . Namely, as M0,j = grj , Mj∗,j =

h
rj

j∗ ·gδj,i∗ and z
(0)
0,j = M

xj

0,j , z
(0)
j∗,j = M

xj

j∗,j , it holds that (z(0)0,j , z
(0)
j∗,j) is an ElGamal

encryption of xi∗ for j = i∗, and otherwise an encryption of 0.
Furthermore, the above property is efficiently testable given the trapdoor aj∗ ,

that is for t = 1, . . . , T the reduction can compute X(t) = z
(t)

j∗,j(t) · (z(t)
0,j(t))−aj∗ .

Now, critically, if the opening provided by A opens to something different from
xi∗ , then there must be an index t∗ ∈ [T ] for which X(t∗) differs from gxi∗ . The
reduction can guess the smallest such index t∗ with polynomial probability 1/T .

If t∗ = 0, we will routinely obtain a contradiction against the soundness
of the BARG establishing item 1 above, whereas if t∗ = T we will obtain a
contradiction against the soundness of the BARG establishing item 3. The chal-
lenging situation occurs if t∗ lies in between 0 and T . To deal with this case, we
make h(t∗−1) extractable at both children of j(t

∗), which is not detectable as the
underlying SEH is index hiding. Now, if the ElGamal ciphertext of one of the
children is an encryption of 0 (which we can efficiently test), we immediately get
a contradiction to the soundness of the BARG in item 2 for t = t∗ as we know
by the minimality of t∗ that the ElGamal ciphertext at the other child of j(t

∗)

is an encryption of xi∗ .
If the extracted ciphertext encrypts a non-zero value, we make h(t∗−2)

extractable at both children of this node, which is again undetectable by the
index hiding property. If both extracted ciphertexts encrypt 0, we again get a
contradiction to the soundness of the corresponding BARG. Otherwise, we can
guess with probability 1/2 which one of the two children yields a non-zero cipher-
text. We will maintain this invariant in the remaining hybrids: for one of the two
children, the extracted ciphertext must decrypt to a non-zero value, unless the
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soundness of the corresponding BARG is violated. We can hence “push” this
inconsistency all the way down to the leaf layer of the tree, and eventually get
a contradiction to the soundness of the BARG in item 1.

To see that the reduction has polynomial advantage, note that the overall
success probability against the BARG in item 2 comes down to

ε′ =
1

m · T · 2T
· ε =

1
m · T · N

· ε,

where ε is the success probability of A. Noting that ε′ is also polynomial, we
conclude this outline.

2 Preliminaries

In the following, let G be a (prime-order) group generator, that is, G is an algo-
rithm that takes as an input a security parameter 1λ and outputs (G, p, g), where
G is the description of a multiplicative cyclic group, p is the order of the group
which is always a prime number unless differently specified, and g is a generator
of the group. In the following we state the decisional version of the Diffie-Hellman
(DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$

G(1λ). We say that the DDH assumption holds (with respect to G) if for any
PPT adversary A
∣
∣Pr[1 ← A((G, p, g), (ga, gb, gab))] − Pr[1 ← A((G, p, g), (ga, gb, gc))]

∣
∣ ≤ negl(λ)

where a, b, c ←$Zp.

We additionally recall a shrinking procedure which compresses a DDH-based
ciphertext into a rate-1 ciphertext.

Lemma 1 ([3,11]). There exists a correct pair of algorithms Shrink,ShrinkDec
such that given

– h1 = gx1 , . . . , hn = gxn

– c0 = gt and ci = ht
i · gmi , where m1, . . . ,mn is a message and mi ∈ {0, 1}

it outputs

– Shrink(c0, (c1, . . . , cn)) = ct = (K, d0, (d1, . . . , dn)), where the components are
given by di = ShrinkComp(K, ci) for i ∈ [n].

– ShrinkDec((x1, . . . , xn), ct) = (m1, . . . ,mn).

Moreover, ShrinkDec((x1, . . . , xn), ct) fails only with negligible probability in λ,
and ShrinkComp(K, ci) runs in expected polynomial time.

In particular, the construction uses a pseudo-random function PRF : {0, 1}λ×
G → {0, 1}τ with output size τ = log(2n), and ShrinkComp(K, ci) computes the
least δi such that PRF(K, ci · gδi) = 0τ and outputs δi mod 2.

The compressing key K is chosen such that PRF(K, ci/g) �= 0, and that we
have a bound δi < D, where D = O(nλ).
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2.1 Somewhere Extractable Hash Families

Definition 2 (Somewhere Extractable Hash). A somewhere extractable
hash family SEH consists of the following polynomial time algorithms:

– Gen(1λ, N, i∗) → (hk, td). A probabilistic setup algorithm that takes as input
the security parameter 1λ, the message length N , and an index i∗ ∈ [N ]. It
outputs a hashing key hk and a trapdoor td.

– Hash(hk, x) → v. A deterministic algorithm that takes as input a hashing key
hk and a message x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}�hash .

– Open(hk, x, j) → (b, ρ). A deterministic algorithm that takes as input a hash-
ing key hk, a message x and an index j ∈ [N ]. It outputs a bit b ∈ {0, 1} and
an opening ρ ∈ {0, 1}�open .

– Verify(hk, v, j, b, ρ) → {0, 1}. A deterministic algorithm that takes as input a
hashing key hk, a hash value v, an index i ∈ [N ], a bit b and an opening ρ,
and it outputs 1 (accept) or 0 (reject).

– Extract(td, v) → u. A deterministic algorithm that takes as input the trapdoor
td and a hash value v, and it outputs a bit u ∈ {0, 1}.
It is required to satisfy the following properties:

Efficiency. The size of the hashing key |hk|, the size of the hash �hash, the
size of the opening �open and the running time of Verify are all bounded by
poly(λ, log N).

Opening Completeness. There exists a negligible function negl(·) such that for
any λ, any N ≤ 2λ, any i∗ ∈ [N ], any j ∈ [N ] and any x ∈ {0, 1}N ,

Pr

⎡

⎣ b = xj

∧ Verify(hk, v, j, b, ρ) = 1 :
(hk, td) ← Gen(1λ, N, i∗),
v = Hash(hk, x),
(b, ρ) = Open(hk, x, j)

⎤

⎦ = 1 − negl(λ)

Index Hiding. For any poly-time adversary A = (A1,A2) there exists a negligible
function negl(·) such that Pr

[
HIDEA1,A2(1λ) = 1

] ≤ 1
2 + negl(λ).

Experiment HIDEA1,A2(1λ)

(1N , i∗0, i
∗
1) ← A1(1

λ)

b ←$ {0, 1}
(hk, td) ← Gen(1λ, N, i∗b)

b′ ← A2(hk)

return b′ = b
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Somewhere Statistically (Resp. Computational) Binding w.r.t. Opening. For any
all-powerful (resp. poly-time) adversary A = (A1,A2) there exists a negligible
function negl(·) such that Pr

[
OPENA1,A2(1λ) = 1

] ≤ negl(λ).

Experiment OPENA1,A2(1λ)

(1N , i∗) ← A1(1
λ)

(hk, td) ← Gen(1λ, N, i∗)

(v, j, b, ρ) ← A2(hk)

u = Extract(td, v)

return u �= b ∧ Verify(hk, v, j, b, ρ)

Remark 1 ([9,15]). Notice that we can easily convert any such SEH family into
one that is extractable on m indices i1, . . . , im by running each algorithm m
times and concatenating the outputs.

Under this transformation, the sizes of �hash, �open and the efficiency of the
Verify will be |I| · poly(λ, log N).

We will use the shorthand notation Gen(1λ, N, I) to denote this construction,
in which case Extract(td, v) will output m bits (ui)i∈I .

Theorem 2 ([13]). Assuming any FHE scheme, there exists a SEH family.

Theorem 3 ([15]). Assuming any rate-1 string OT with verifiable correctness,
there exists a SEH family.

Corollary 4. There exists a SEH family from any of the {DDH, O(1)-LIN, QR,
DCR, LWE} assumptions.

2.2 Somewhere Extractable Batch Arguments

We recall the notion of batch arguments (BARGs), which is an argument system
to succinctly prove that, given a language L, multiple instances x1, . . . , xk all
have witnesses w1, . . . , wk, with a complexity less than

∑ |wi|.
In particular, let BatchCSAT be the following language:

BatchCSAT = {(C, x1, . . . , xk) : ∃w1, . . . , wk s.t. ∀i ∈ [k], C(xi, wi) = 1},

where C : {0, 1}n × {0, 1}m → {0, 1} is a boolean circuit that checks a relation
with instance size n and witness size m.

Definition 3. A somewhere extractable batch argument seBARG for BatchCSAT
consists of the following polynomial time algorithms:

– Gen(1λ, k, 1s, i∗) → (crs, td). Given the number of instances k, an index i∗

and a circuit size s, it outputs a crs and a trapdoor td.
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– P(crs, C, {xi}i∈[k], {wi}i∈[k]) → π. Given a crs, a circuit C, k statements
x1, . . . , xk ∈ {0, 1}n and k witnesses w1, . . . , wk ∈ {0, 1}m, it generates a
proof π.

– V(crs, C, {xi}i∈[k], π) → {0, 1}. Given a crs, a circuit C, k statements {xi}i∈[k]

and a proof π, it outputs a bit b.
– Extract(td, C, {xi}i∈[k], π) → w∗. Given a trapdoor td, a circuit C, k state-

ments {xi}i∈[k] and a proof π, it outputs a witness w∗ for instance i∗.

L-succinctness. The crs and the proof π have length at most L(k, λ) · poly(s),
and the verifier runs in time L(k, λ) · poly[s] + k · poly(n, λ).

Completeness. For all λ ∈ N, all k, n ∈ poly(λ), all circuits C : {0, 1}n ×
{0, 1}m → {0, 1} at size most s and all (x1, . . . , xk) and (w1, . . . , wk) such that
C(xi, wi) = 1 we have that

Pr
[

1 ← V(crs, C, {xi}i∈[k], π) : (crs, td) ← Gen(1λ, k, 1s, i∗)
π ← P(crs, C, {xi}i∈[k], {wi}i∈[k])

]

= 1.

Index Hiding. For all λ ∈ N, all k, n ∈ poly(λ), all PPT adversaries A and all
indices i0, i1 ∈ [k] we have that

Pr
[

b ← A(crs) :
b ←$ {0, 1}

(crs, td) ← Gen(1λ, k, 1s, ib)

]

≤ 1
2

+ negl(λ).

Somewhere Argument of Knowledge. For all λ ∈ N there exists a PPT extractor
Ext such that for any PPT adversary A, there exists a negligible function negl(·)
such that for any polynomials k, n = poly(λ), and any index i∗ ∈ [k] we have
that

Pr

⎡

⎣
1 ← V(crs, C, {xi}i∈[k], π)

∧
C(xi∗ , w∗) �= 1

:
(crs, td) ← Gen(1λ, k, 1s, i∗)
(C, {xi}i∈[k], π) ← A(crs)

w∗ ← Ext(td, C, {xi}i∈[k], π)

⎤

⎦ ≤ negl(λ).

We remark that this notion is equivalent to the most common soundness
notion of semi-adaptive soundness [15].

Index seBARGs. We say that a seBARG scheme is an index seBARG if the
instances x1, . . . , xk are all of the form xi = (x, i) with a common x; however,
in the L-succinctness property we require that the verification algorithm runs in
time L(k, λ) · poly(s), since it doesn’t have to read all the instances anymore.

Lemma 2 ([15]). Assume the existence of

– An L-succinct index BARG proof system for BatchCSAT
– A SEH family with statistical binding as in Definition 2

Then there exists an L-succinct index seBARG proof system.
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Lemma 3 ([6,8,21]). There exists an index seBARG with proof size and verifier
running time of poly(λ, log k, |C|) from {DDH, k-LIN, LWE} assumptions.

Remark 2 ([9,15]). As with the SEH hash families, we can easily make the
seBARG extractable on a subset I ⊂ [k] of indices by running all the algorithms
in parallel, incurring in a multiplicative factor of |I| increase of all running times
and sizes.

In our construction of a flSEH we will then be using the following syntax and
efficiency properties of an index seBARG.

Fix an index language L given by a relation R(x, i, wi), where x represents
the common part of the statement of the index seBARG. All the algorithms will
then implicitly build the circuit C from the relation R and the value x for the
common part of the instances.

– Gen(1λ, k, I) → (crs, td). Given the number of instances k, and the extraction
set I ⊂ [k], it outputs a crs and a trapdoor td.

– P(crs, x, {wi}i∈[k]) → π. Given a crs, a common statement x and k witnesses
w1, . . . , wk ∈ {0, 1}m, it generates a proof π.

– V(crs, x, π) → {0, 1}. Given a crs, a common statement x and a proof π, it
outputs a bit b.

– Extract(td, x, π) → (w∗
i )i∈[k]. Given a trapdoor td, a common statement x and

a proof π, it outputs witnesses w∗
i for all indices i ∈ [k].

Efficiency. We require a (multi-extractable) index seBARG to have proofs of size
|π| = |I| · poly(λ, log k, |x|,m).

Remark 3 (On large CRS). We remark that we do not impose any restrictions
in the size of the crs, as it is done in previous works. The only restriction that we
require is that the verifier runs in time logarithmically in k given RAM access
to the crs. This is enough for most applications of seBARG as it is noted in [9].

3 Fully Local SEH from DDH

3.1 Definition

A Fully-Local Somewhere Extractable Hash family (flSEH) is a strengthening of
the SEH hash family introduced by [9,15], where the verification running time is
required to be independent of the hash size (i.e. the number of binding positions).

In order to do so, we need to split the output of Hash into a long value and
a short digest, and similarly split the key output by Gen into a hashing key and
a (short) verification key.

The full syntax and properties are described below.

Definition 4 (Fully Local Somewhere Extractable Hash). The syntax for
a fully-local SEH hash family is the following:
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– Gen(1λ, N, I) → (hk, vk, td). This is a probabilistic algorithm that takes as
input the security parameter 1λ, the message length N , and a set of indices
I ⊂ [N ]. It outputs a (long) hashing key hk, a (short) verification key vk and
a trapdoor td.

– Hash(hk, x) → (v, rt). This is a deterministic algorithm that takes as input a
hashing key hk and a message x ∈ {0, 1}N , and outputs a (long) hash value
v and a (short) digest rt.

– Open(hk, x, i) → (b, ρ). This is a deterministic algorithm that takes as input
a hashing key hk, a message x and an index i. It outputs a bit b ∈ {0, 1} and
an opening ρ.

– Verify(vk, rt, i, b, ρ) → {0, 1}. This is a deterministic algorithm that takes as
input the verification key vk, the short digest rt, an index i, a bit b and an
opening ρ. It verifies the validity of the opening (b, ρ) against rt.

– Validate(vk, v, rt) → {0, 1}. This is a deterministic algorithm that takes as
input the verification key vk, a hash value v and a digest rt. It checks the
consistency of v and rt.

– Extract(td, v) → u. This is a deterministic algorithm that takes as input the
trapdoor td and a hash value v, and it outputs an extracted message u ∈
{0, 1}|I|.

It is required to satisfy the following properties:

Efficiency. The running time of Verify is poly(λ, log N). Moreover, we say that
a flSEH is rate-1 if the length of the hash value v is |I| + poly(λ).

Opening Completeness. There exists a negligible function negl(·) such that for
any λ, any N ≤ 2λ, any I ⊂ [N ], any j ∈ [N ] and any x ∈ {0, 1}N ,

Pr

⎡

⎣ b = xj

∧ Verify(vk, rt, j, b, ρ) = 1 :
(hk, vk, td) ← Gen(1λ, N, I),
(v, rt) = Hash(hk, x),
(b, ρ) = Open(hk, x, j)

⎤

⎦ = 1 − negl(λ)

Index Hiding. For any polynomial time adversary A = (A1,A2) there exists a
negligible function negl(·) such that Pr

[
HIDEA1,A2(1λ) = 1

] ≤ 1
2 + negl(λ).

Experiment HIDEA1,A2(1λ)

(1N , I0, I1) ← A1(1
λ)

b ←$ {0, 1}
(hk, vk, td) ← Gen(1λ, N, Ib)

b′ ← A2(hk, vk)

return |I0| = |I1| ∧ b′ = b
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Somewhere Extractability w.r.t Opening. For any polynomial time adver-
sary A = (A1,A2) there exists a negligible function negl(·) such that
Pr
[
OPENA1,A2(1λ) = 1

] ≤ negl(λ).

Experiment OPENA1,A2(1λ)

(1N , I) ← A1(1
λ)

(hk, vk, td) ← Gen(1λ, N, I)

(v, rt, (bj)j∈I , (ρj)j∈I) ← A2(hk, vk)

(xj)j∈I = Extract(td, v)

return Validate(vk, v, rt) ∧
(∨

j∈I

xj �= bj ∧ Verify(vk, rt, j, bj , ρj)

)

3.2 Construction

Our construction of a fully local SEH is, at its core, based on the DDH-based
construction of trapdoor hash functions due to [11].

Fix a generator g ∈ G of a group G of prime order p; let P = log p� be the
bitlength of elements in G.

For our purposes, we will need to open up the distributed discrete logarithm
compression mechanism due to [3]; in particular, let PRF be apseudo-random
function and Shrink : G → {0, 1} the related compression function for the group
(G, g), as described in Lemma 1.

Additional Ingredients. Our construction further requires as additional compo-
nents a (non rate-1) somewhere extractable hash family SEH, and an index some-
where extractable batch argument system seBARG for NP. We will use seBARG
with the following index languages.

– Let seBARG0 be a BARG for the index language L0 defined by the relation

R0((hkM, hkx, hkz, hM, hx, hz), (i, j), (Mi,j , xj , zi,j , ρ
M
i,j , ρ

x
j , ρz

i,j))

that outputs 1 if and only if
• SEH.Verify(hkM, hM, (i, j),Mi,j , ρ

M
i,j) = 1

• SEH.Verify(hkx, hx, j, xj , ρ
x
j ) = 1

• SEH.Verify(hkz, hz, (i, j), zi,j , ρ
z
i,j) = 1

• zi,j = M
xj

i,j
In essence, this language ensures that group elements zi,j committed to in
the hash value hz are well-formed exponentiations of Mi,j (committed to in
hM) with xj (committed to in hx).

– Let seBARGmult be a BARG for the language Lmult defined by the relation

Rmult((hk1, hk2, h1, h2), (i, j), (z, zl, zr, ρz, ρzl, ρzr))

that checks the following statements
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• SEH.Verify(hk1, h1, (i, j), z, ρz) = 1
• SEH.Verify(hk2, h2, (i, 2j − 1), zl, ρzl) = 1
• SEH.Verify(hk2, h2, (i, 2j), zr, ρzr) = 1
• z = zl · zr

This language ensures that the intermediate values z(t) are correctly com-
puted in a binary tree structure.

– Let seBARGfin be a BARG for the language Lfin defined by the relation

Rfin((K, hkκ, hkv, hkz, hκ, hv, hz), (i, j), (vi, zi, κi, ρ
v
i , ρz

i , ρ
κ
i ))

that checks all the following
• SEH.Verify(hkv, hv, i, vi, ρ

v
i ) = 1

• SEH.Verify(hkz, hz, i, zi, ρ
z
i ) = 1

• SEH.Verify(hkκ, hκ, i, κi, ρ
κ
i ) = 1

• vi = κi mod 2
• If j < κi + 2 check if PRF(K, zi · gj−2) �= 0
• If j = κi + 2, check that PRF(K, zi · gκi) = 0.

This language checks that the final hash value v is correctly computed from
compressing the last values z(T ).

Construction. We now present the full construction.

Gen(1λ, N, I):

– Let m = |I| and I = {i1, . . . , im}.
– Let T = log N�; assume that actually N = 2T , if need be by padding.
– Randomly sample a1, . . . , am from Zp, compute hk = gak , and set td =

(a1, . . . , am).
– Randomly sample r1, . . . , rN from Zp and compute a matrix M ∈ G

(1+m)×N

with M0,j = grj , and Mk,j = h
rj

k · gδj,ik for k = 1, . . . , m, i.e.

M =

⎛

⎜
⎜
⎜
⎝

gr1 gr2 . . . . . . grN

hr1
1 . . . h

ri1
1 g . . . hrN

1
...

. . . . . . . . .
...

hr1
m . . . . . . hrim

m g hrN
m

⎞

⎟
⎟
⎟
⎠

– Compute (hkx, ∗) = SEH.Gen(1λ, N, ∅)
– Compute (hkM, ∗) = SEH.Gen(1λ, (m + 1) · N, ∅)
– For all t = 0, . . . , T compute (hk(t), ∗) = SEH.Gen(1λ, (m + 1) · N/2t, ∅)
– Compute (hkv, ∗) = SEH.Gen(1λ,m, ∅)
– Compute (hkκ, ∗) = SEH.Gen(1λ,m, ∅)
– Run (crs0, ∗) = seBARG0.Gen(1λ, (m + 1) · N, ∅)
– For all t = 1, . . . , T , run (crst, ∗) = seBARGmult.Gen(1λ, (m + 1) · N/2t, ∅)
– Run (crsfin, ∗) = seBARGfin.Gen(1λ,m, ∅)
– Compute hM = SEH.Hash(hkM,M).
– Set vk =

(
hkx, hkM,

{
hk(t)

}
t∈[T ]

, hkv, hkκ,
{
crst
}

t∈[T ]
, crsfin, hM

)
.

– Set hk = (M, vk) and output hk, vk and td.
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Hash(hk, x):

– Parse hk = (M, vk) and
vk =

(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv,
{
crst
}

t=0,...,T
, crsfin, hM

)
.

– Compute ck =
∏N

j=1 M
xj

k,j for all k = 0, . . . ,m.

– Compute z
(0)
i,j = M

xj

i,j .

– Recursively compute z
(t+1)
i,j = z

(t)
i,2j−1 · z

(t)
i,2j , from t = 0 up until T . In partic-

ular, z
(T )
i will only have one component, and z

(T )
i,1 = ci.

– Choose K ←$ {0, 1}λ uniformly at random and for k = 1, . . . ,m proceed as
follows

• Compute the smallest κk ∈ [0,D] such that PRF(K, ci · gκk) = 0, where
D is the bound needed for the compression function.

• If no such κk exists or if PRF(K, ci/g) = 0, resample K ←$ {0, 1}λ and
retry until both conditions are met.

• Set vk = κk mod 2.
– Set v = (K, c0,v)
– Compute hκ = SEH.Hash(hkκ, κ).
– Compute hv = SEH.Hash(hkv,v).
– Compute hx = SEH.Hash(hkx, x).
– For all t = 0, . . . , T , compute h(t) = SEH.Hash(hk(t), z(t)).
– For all i, j compute the openings

• ρx
j = SEH.Open(hkx, x, j)

• ρz
i,j = SEH.Open(hk(0), z(0), (i, j))

• ρM
i,j = SEH.Open(hkM,M, (i, j))

– Given the witnesses wi,j = (Mi,j , xj , z
(0)
i,j , ρM

i,j , ρ
x
j , ρz

i,j), compute

π0 = seBARG0.P
(
crs0, (hkM, hkx, hk(0), hM, hx, h(0)), {wi,j}i,j

)
.

– For all t = 1, . . . , T
• For all i, j compute the openings

∗ ρz
i,j = SEH.Open(hk(t), z(t), (i, j))

∗ ρzl
i,j = SEH.Open(hk(t−1), z(t−1), (i, 2j − 1))

∗ ρzr
i,j = SEH.Open(hk(t−1), z(t−1), (i, 2j))

• Using the witnesses wi,j = (z(t)i,j , z
(t−1)
i,2j−1, z

(t−1)
i,2j , ρz

i,j , ρ
zl
i,j , ρ

zr
i,j), compute

πt = seBARGmult.P
(
crst, (hk(t), hk(t−1), h(t), h(t−1)), {wi,j}i,j

)
.

– For all i = 1, . . . , m compute the openings
• ρz

i = SEH.Open(hk(T ), z(T ), i)
• ρκ

i = SEH.Open(hkκ, κ, i)
• ρv

i = SEH.Open(hkv,v, i)
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– From the witnesses wi,j = (vi, z
(T )
i,1 , κi, ρ

v
i , ρz

i , ρ
κ
i ), compute

πfin = seBARGfin.P
(
crsfin, (K, hkκ, hkv, hk(T ), hκ, hv, h(T )), {wi,j}i,j

)
,

where i = 1, . . . ,m and j = 1, . . . , D.
– Set rt =

(
hx,
(
h(t), πt

)
t=0,...,T

, c0, hv,K, hκ, πfin

)
.

– Output (v, rt).

Open(hk, x, i):

– Parse hk = (M, vk) and
vk =

(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst
}

t=0,...,T
, crsfin, hM

)
.

– Output SEH.Open(hkx, x, i)

Verify(vk, rt, i, b, ρ):

– Parse vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst
}

t=0,...,T
, crsfin, hM

)
.

– Parse rt =
(
hx,
(
h(t), πt

)
t=0,...,T

, c0, hv,K, hκ, πfin

)
.

– Check that seBARG0.V
(
crs0, (hkM, hkx, hk(0), hM, hx, h(0)), π0

)
= 1.

– Check that seBARGmult.V
(
crst, (hk(t), hk(t−1), h(t), h(t−1)), πt

)
= 1 for all t =

1, . . . , T .
– Check that seBARGfin.V

(
crsfin, (K, hkκ, hkv, hk(T ), hκ, hv, h(T )), πfin

)
= 1.

– Check that SEH.Verify(hkx, hx, i, b, ρ) = 1.
– Output 1 if and only if all checks pass.

Validate(vk, v, rt):

– Parse vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst
}

t=0,...,T
, crsfin, hM

)
.

– Parse rt =
(
hx,
(
h(t), πt

)
t=0,...,T

, crt, hv,Krt, hκ, πfin

)
.

– Parse v = (Kv, cv,v).
– Check that cv = crt and Kv = Krt.
– Check that SEH.Hash(hkv,v) = hv.

Extract(td, v):

– Output ShrinkDec(td, v).

3.3 Security Analysis

Lemma 4. The construction in Sect. 3.2 is efficient and rate-1; in particular,
|vk|, |rt| and the running time of Verify are bounded by poly(λ, log N, log |I|).
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Proof. By the efficiency of the underlying SEH scheme, all the hashing keys
hkx, hkM, hk(t), hkv, hkκ and all the openings that will be used as witnesses in
the seBARGs for the languages L0,Lmult,Lfin are of size poly(λ, log(mNP )),
since our message is an (m + 1) × N matrix of group elements.

This means that the circuit sizes for the seBARGs will be of size
poly(λ, log m, log N), given also the efficiency of the algorithm SEH.Verify. Since
we have k = (m + 1) × N instances, by the succinctness of the index seBARG
we get that the size of all the seBARG.crs and proofs seBARG.π, as well as the
running time of seBARG.V, are bounded by poly(λ, log m, log N).

Thus, given that we only have log N many of hk(t), πt, we get that |vk|, |rt|
and the running time of Verify are bounded by poly(λ, log N, log |I|).

Finally, by construction we have that |v| = |I|+poly(λ), i.e. our construction
is rate-1.

Lemma 5. Assume that the DDH assumption holds in the group G. Then the
construction in Sect. 3.2 satisfies the index-hiding property.

Proof. We can easily see that by repeated application of the DDH assumption
the matrices outputted by the Gen algorithm are pseudorandom. For simplicity
we can consider the 2-row matrices.

If (ga, gb, gc) is a DDH challenge, where c is either ab or random, we see that
(

gr1 . . . ga . . . grN

gbr1 . . . gc+1 . . . gbrN

)

follows the distribution of Gen in the case that c = ab, and is random at the i-th
column if c is random.

Lemma 6. Assume that SEH is a somewhere extractable hash function,
seBARG0 is a somewhere extractable BARG for the language L0, seBARGmult

is a somewhere extractable BARG for the language Lmult and seBARGfin is a
somewhere extractable BARG for the language Lfin, where L0,Lmult and Lfin

are defined in Sect. 3.2. Then the scheme constructed in Sect. 3.2 satisfies the
opening completeness property.

Proof. This follows directly from the completeness of the underlying SEH family
and index seBARG system.

Theorem 4. Assume that SEH is a somewhere extractable hash function,
seBARG0 is a somewhere extractable BARG for the language L0, seBARGmult

is a somewhere extractable BARG for the language Lmult and seBARGfin is a
somewhere extractable BARG for the language Lfin, where L0,Lmult and Lfin

are defined in Sect. 3.2. Then the scheme constructed in Sect. 3.2 is somewhere
binding with respect to opening.

Proof. Assume towards contradiction that there exists an a PPT adversary A
with non-negligible success probability ε against the somewhere binding w.r.t.
opening experiment. We will proceed in a sequence of hybrids to establish this
contradiction.

Experiment Exp0. Let Exp0 be the real experiment, given as follows.
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Exp0(A)
– (hk, vk, td) ← Gen(1λ, N, I)
– (v, rt, (bj), (ρj)) ← A(hk, vk)
– (b̂j) = Extract(td, v)
– Output 1 if Validate(vk, v, rt) = 1 and there exists a j∗ ∈ [m] such that

bj∗ �= b̂j∗ and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1, otherwise output 0.

By our assumption on A it holds that Pr[Exp0(A)] > ε.
Denote by Eval the event that in the experiment we have Validate(vk, v, rt) =

1, and Echeat the event that
∨

j∈I b̂j �= bj ∧ Verify(vk, rt, j, bj , ρj) = 1.
Then

Pr [Exp0(A)] = Pr [Eval ∩ Echeat] = Pr [Echeat |Eval ] · Pr [Eval] ≤
≤ Pr [Echeat |Eval ]

In order to show that the hypothesis Pr [Echeat |Eval ] > ε leads to a con-
tradiction, we will then implicitly condition on Eval in all the next experiments;
in particular, we assume that SEH.Hash(hkv,v) = hv and that the decryption
headers K, c0 in v are the correct ones w.r.t. the digest rt.

Experiment Exp1. In the second experiment Exp1 we will change the success con-
dition of the adversary. Specifically, the experiment guesses the index j∗ ←$ [m]
uniformly random in the very beginning, and outputs 0 if the mismatch between
the extracted value and the opened value does not occur at index j∗. Exp1 is
given as follows.

Exp1(A)
– j∗ ←$ [m]
– (hk, vk, td) ← Gen(1λ, N, I)
– (v, rt, (bj), (ρj)) ← A(hk, vk)
– (b̂j) = Extract(td, v)
– Output 1 if bj∗ �= b̂j∗ and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1, otherwise

output 0.

Define S be the set of indices i for which bi �= b̂i. Conditioned on j∗ ∈ S,
Exp0(A) and Exp1(A) are identically distributed. Hence it holds that

Pr[Exp1(A) = 1] = Pr[Exp1(A) = 1 and j∗ ∈ S]
︸ ︷︷ ︸

=Pr[Exp0(A)=1 and j∗∈S]

+ Pr[Exp1(A) = 1 and j∗ �∈ S]
︸ ︷︷ ︸

=0

= Pr[j∗ ∈ S|Exp0(A) = 1] · Pr[Exp0(A) = 1]
︸ ︷︷ ︸

>ε

> Pr[j∗ ∈ S|Exp0(A) = 1] · ε

≥ ε/m,

where the last inequality holds as S is non-empty conditioned on Exp0(A) = 1
and j∗ is independent of Exp0.
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Experiment Exp2. In experiment Exp2 we will modify the hashing keys hkx, hkM,
hk(t), hkv and hkκ to be extractable on the root-to-leaf path corresponding to
j∗, both for the “header” row and for the “payload” row.

Specifically, we modify the Gen algorithm such that hkx, hkM, hk(t), hkκ and
hkv are generated as follows depending on j∗. Let I = {i1, . . . , im} and define
i∗ = ij∗ and i∗t = i∗/2t� for t = 0, . . . , T .

– Compute (hkx, tdx) = SEH.Gen(1λ, N, {i∗})
– Compute (hkM, tdM) = SEH.Gen(1λ, (m + 1) · N, {(0, i∗), (j∗, i∗)})
– Compute (hk(t), td(t)) = SEH.Gen(1λ, (m + 1) · N/2t, {(0, i∗t ), (j

∗, i∗t )}) for all
t = 0, . . . , T

– Compute (hkκ, tdκ) = SEH.Gen(1λ,m, {j∗})
– Compute (hkv, tdv) = SEH.Gen(1λ,m, {j∗})

Computational indistinguishability between Exp1 and Exp2 follows routinely
via a simple hybrid argument from the index-hiding property of SEH. Hence we
have that

Pr[Exp2(A) = 1] ≥ Pr[Exp1(A) = 1] − negl(λ) ≥ ε/m − negl(λ).

Experiment Exp3. In this experiment we will extract M0,i∗ and Mj∗,i∗ from hM,
xi∗ from hx, z

(t)
0,i∗

t
and z

(t)
j∗,i∗

t
from each h(t), κj∗ from hκ and vj∗ from hv, i.e.

– M0,i∗ = SEH.Extract(tdM, hM, (0, i∗))
– Mj∗,i∗ = SEH.Extract(tdM, hM, (j∗, i∗))
– xi∗ = SEH.Extract(tdx, hx, i∗)
– z

(t)
0,i∗

t
= SEH.Extract(td(t), h(t), (0, i∗t ))

– z
(t)
j∗,i∗

t
= SEH.Extract(td(t), h(t), (j∗, i∗t )).

– κj∗ = SEH.Extract(tdκ, hκ, j∗)
– vj∗ = SEH.Extract(tdv, hv, j∗)

Note that this modification does not affect the outcome of the experiment, hence
it is merely syntactical, that is

Pr[Exp3(A) = 1] = Pr[Exp2(A) = 1] − negl(λ) ≥ ε/m − negl(λ).

We will now define events E0, Et for t ∈ [T ] and Efin via

E0 = 1 :⇔
(
z
(0)
0,i∗ �= Mxi∗

0,i∗ or z
(0)
j∗,i∗ �= Mxi∗

j∗,i∗

)

Et = 1 :⇔ z
(t)
j∗,i∗

t
�= (z(t)0,i∗

t
)aj∗ · gxi∗

Efin = 1 :⇔
(
vj∗ �= ShrinkComp(K, z

(T )
j∗,1) or PRF(K, z

(T )
j∗,1/g) = 0

)

where td = (a1, . . . am) is the trapdoor of the matrix M. Now note that if none of
the events E0, Et for some t ∈ [T ] or Efin hold, then it must hold that bj∗ = b̂j∗ .
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Consequently, if Exp3 outputs 1, then at least one of these events must hold, and
therefore

ε/m − negl(λ) ≤ Pr[(E0 ∨ Efin ∨ ∃t ∈ [T ] s.t. Et) and Verify(vk, rt, j
∗

, bj∗ , ρj∗ ) = 1]

≤ Pr[E0 and Verify(vk, rt, j
∗

, bj∗ , ρj∗ ) = 1]

+ Pr[Efin and Verify(vk, rt, j
∗

, bj∗ , ρj∗ ) = 1]

+ Pr[∃t ∈ [T ] s.t. Et and Verify(vk, rt, j
∗

, bj∗ , ρj∗ ) = 1]

≤ Pr[E0 and seBARG0.V
(
crs0, (hkM, hkx, hk(0), hM, hx, h

(0)
), π0

)
= 1]

+ Pr[Efin and seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk(T )

, hκ, hv, h
(T )

), πfin

)
= 1]

+ Pr[∃t ∈ [T ] s.t. Et and seBARGmult.V
(
crst, (hk(t)

, hk(t−1)
, h

(t)
, h

(t−1)
), πt

)
= 1]

where the first inequality follows by the union bound,
That is, one of these three events must have non-negligible probability of

occurrence. Hence we will now distinguish 3 cases.

1. Assume that

Pr[E0 and seBARG0.V
(
crs0, (hkM, hkx, hk(0), hM, hx, h(0)), π0

)
= 1] > ε0

for a non-negligible ε0.
Define an experiment Exp3,0,1 which is identical to Exp3, but outputs 1 if and

only if E0 and seBARG0.V
(
crs0, (hkM, hkx, hk(0), hM, hx, h(0)), π0

)
= 1 holds.

Clearly, by our assumption it holds that Pr[Exp3,0,1 = 1] > ε0. In the next
experiment will make seBARG0 extractable at positions (0, i∗) and (j∗, i∗).
Specifically, define an experiment Exp3,0,2 which is identical to Exp3,0,1 except
that we compute crs0 via

– (crs0, td∗
0) = seBARG0.Gen(1λ, (m + 1) · N, {(0, i∗), (j∗, i∗)})

It follows routinely from the index-hiding property of seBARG0 that Exp3,0,1

and Exp3,0,2 are computationally indistinguishable, that is it holds that

Pr[Exp3,0,2 = 1] ≥ Pr[Exp3,0,1 = 1] − negl(λ) ≥ ε0 − negl(λ).

Now we immediately get a contradiction against the somewhere argument of
knowledge/somewhere soundness property of seBARG0, as either the state-
ment z

(0)
0,i∗ = Mxi∗

0,i∗ or the statement z
(0)
j∗,i∗ = Mxi∗

j∗,i∗ is false, and the keys hkx,
hkM and hk(0) are statistically binding to the corresponding positions.

2. Assume that

Pr[Efin and seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk(T ), hκ, hv, h(T )), πfin

)
= 1] > εfin

for a non-negligible εfin.
We modify Exp3 into an experiment Exp3,fin,1 which outputs 1 if and only

if Efin and seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk(T ), hκ, hv, h(T )), πfin

)
= 1

hold. Again, by our assumption it holds immediately that Pr[Exp3,fin,1 =
1] > εfin.
We also define events Oκ such that Oκ = 1 if and only if κ < κj∗ such that
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PRF(K, z
(T )
j∗,1 · gκ) = 0.

Notice that

Pr[Exp3,fin,1 = 1] = Pr[Exp3,fin,1 = 1 and ∃κ,Oκ = 1]+

+ Pr[Exp3,fin,1 = 1 and ∀κ,Oκ �= 1]

We now define an experiment Exp3,fin,2 where we first make a guess κ∗ ∈
[0, κj∗ ] and then output 1 if also event Oκ∗ = 1, i.e. if PRF(K, z

(T )
j∗,1 · gκ∗

) = 0.
Since our guess is independent from the experiment, we get that

Pr[Exp3,fin,2 = 1] ≥ Pr[Exp3,fin,1 and ∃κ,Oκ = 1]/D,

where D = O(mλ).
We then define experiment Exp3,fin,3, where we make seBARGfin extractable
at index (j∗, κ∗). That is, experiment Exp3,fin,3 is identical to experiment
Exp3,fin,2 except that we compute crsfin via

– (crsfin, td∗
fin) = seBARGfin.Gen(1λ,m, {(j∗, κ∗)}).

Indistinguishability of Exp3,fin,3 and Exp3,fin,2 follows from index-hiding of

seBARGfin. Moreover, since Lfin checks that PRF(K, z
(T )
j∗,1 · gκ∗

) �= 0, and we

can extract a witness for the event Oκ∗ , i.e. PRF(K, z
(T )
j∗,1 · gκ∗

) = 0, we get
that Pr[Exp3,fin,3 = 1] ≤ negl(λ) by the soundness of seBARGfin.
This means that Pr[Exp3,fin,1 and ∃κ,Oκ = 1] ≤ D · Pr[Exp3,fin,2 = 1] ≤
negl(λ), and thus Pr[Exp3,fin,1 = 1 and ∀κ,Oκ �= 1] ≥ εfin − negl(λ).
Now we deal with the second part of the probability, Pr[Exp3,fin,1 =
1 and ∀κ,Oκ �= 1]. We define experiment Exp3,fin,4, which is identical to
experiment Exp3,fin,1 except that we compute crsfin via

– (crsfin, td∗
fin) = seBARGfin.Gen(1λ,m, {(j∗, 0)}).

Computational indistinguishability of Exp3,fin,4 and Exp3,fin,1 follows again
routinely from the index-hiding property of seBARGfin. Consequently, it holds
that

Pr[Exp3,fin,4 = 1 and ∀κ,Oκ �= 1] ≥ εfin − negl(λ).

Notice now that given that all events Oκ are false, the computation
ShrinkComp(K, z

(T )
j∗,1) is correct. This means that the extracted witness, con-

ditioned on the event Efin, is not valid for the language Lfin, thus break-
ing the somewhere argument of knowledge/somewhere soundness property of
seBARGfin, which is a contradiction.

3. Finally assume that

Pr[∃t ∈ [T ] s.t. Et and seBARGmult.V
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), πt

)
= 1] > ε′

for a non-negligible ε′. Now, let Exp′
3,1 be identical to Exp3, except that

the experiment outputs 1 if and only if there exists a t ∈ [T ] s.t. Et holds
and seBARGmult.V

(
crst, (hk(t), hk(t−1), h(t), h(t−1)), πt

)
= 1. Clearly, by our

assumption it holds that Pr[Exp′
3,1 = 1] > ε′.



Rate-1 Fully Local SEH from DDH 377

In the next experiment Exp′
3,2 we guess an index t∗ ←$ [T ] such that t∗ is the

smallest t for which Et holds. Specifically, Exp′
3,2 outputs 0 if the guess t∗ was

wrong. Via the essentially same reasoning as in the step between Exp0 and
Exp1 it holds that

Pr[Exp′
3,2 = 1] ≥ Pr[Exp′

3,1 = 1]/T > ε′/T.

In the next experiment, we make hk(t
∗−1) also extractable at the other child

node of i∗t , that is let

ī∗t∗−1 =

{
2i∗t − 1 if i∗t∗−1 = 2i∗t
2i∗t otherwise

.

Thus, in Exp′
3,3 we will compute hk(t

∗−1) via
– (hk(t

∗−1), td(t
∗−1)) = SEH.Gen(1λ, (m + 1) · N/2t, {(0, i∗t∗−1), (j

∗, i∗t∗−1),
(0, ī∗t∗−1), (j

∗, ī∗t∗−1)})
Computational indistinguishability of Exp′

3,2 and Exp′
3,3 follows from the

index-hiding property of SEH. Thus we have

Pr[Exp′
3,3 = 1] ≥ Pr[Exp′

3,2 = 1] − negl(λ) > ε′/T − negl(λ).

Note that by Remark 2, our notion of being able to extract at several points
is essentially for notational convenience; we have a fresh key (and hash value)
for each extraction slot, thus we can introduce a new extraction slots while
maintaining the ability to extract at previously planted extraction slots.
In the next hybrid Exp′

3,4 we extract h(t∗−1) at (0, ī∗t∗−1) and (j∗, ī∗t∗−1), that
is we compute

– z
(t∗−1)

0,̄i∗
t∗−1

= SEH.Extract(td(t
∗−1), h(t∗−1), (0, ī∗t∗−1))

– z
(t∗−1)

j∗ ,̄i∗
t∗−1

= SEH.Extract(td(t
∗−1), h(t∗−1), (j∗, ī∗t∗−1))

Notice that this modification has no effect on the output of the experiment.
Moreover, in Exp′

3,4 we also make seBARGmult extractable at positions (0, i∗t∗)
and (j∗, i∗t∗), that is, we will now generate crs(t

∗) via

– (crs(t
∗), t̂d

(t∗)
) ← seBARGmult.Gen(1λ, (m+1) ·N/2t∗

, {(0, i∗t∗), (j∗, i∗t∗)}).
By the index-hiding property of seBARGmult, Exp′

3,3 and Exp′
3,4 are compu-

tationally indistinguishable, that is

Pr[Exp′
3,4 = 1] ≥ Pr[Exp′

3,3 = 1] − negl(λ) > ε′/T − negl(λ).

In Exp′
3,5 we will introduce an additional condition which causes the experi-

ment to output 0. Specifically, let Ft∗ be the event that (z(t
∗−1)

0,̄i∗
t∗−1

, z
(t∗−1)

j∗ ,̄i∗
t∗−1

) is

an encryption of 0, that is Ft∗ = 1 if and only if

z
(t∗−1)

j∗ ,̄i∗
t∗−1

= (z(t
∗−1)

0,̄i∗
t∗−1

)aj∗ .
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Exp′
3,5 is identical to Exp′

3,4, except that it outputs 0 if Ft∗ = 1. Note
that the event Ft∗ can be efficiently tested for given aj∗ . We can appeal
to the extractability property of seBARGmult to argue that Pr[Ft∗ = 1] ≤
negl(λ). Otherwise, we would get a violation of the somewhere extractabil-
ity/somewhere soundness of seBARGmult. Specifically, assume that Ft∗ holds,
i.e.

z
(t∗−1)

j∗ ,̄i∗
t∗−1

= (z(t
∗−1)

0,̄i∗
t∗−1

)aj∗ . (2)

We will argue that this implies that either

z
(t∗)
0,i∗

t∗ �= z
(t∗−1)
0,i∗

t∗−1
· z

(t∗−1)

0,̄i∗
t∗−1

or
z
(t∗)
j∗,i∗

t∗ �= z
(t∗−1)
j∗,i∗

t∗−1
· z

(t∗−1)

j∗ ,̄i∗
t∗−1

,

which routinely implies a contradiction to the somewhere soundness of
seBARGmult. To see this, assume that both

z
(t∗)
0,i∗

t∗ = z
(t∗−1)
0,i∗

t∗−1
· z

(t∗−1)

0,̄i∗
t∗−1

, (3)

z
(t∗)
j∗,i∗

t∗ = z
(t∗−1)
j∗,i∗

t∗−1
· z

(t∗−1)

j∗ ,̄i∗
t∗−1

. (4)

Recall now that t∗ is the smallest t for which z
(t)
j∗,i∗

t
�= (z(t)0,i∗

t
)aj∗ · gxi∗ , hence

it holds that
z
(t∗−1)
j∗,i∗

t∗−1
= (z(t

∗−1)
0,i∗

t∗−1
)aj∗ · gxi∗ (5)

Thus, by exponentiating (3) and (4) by aj∗ and combining (2) and (5) we can
conclude that

z
(t∗)
j∗,i∗

t∗ = (z(t
∗)

0,i∗
t∗ )aj∗ · gxi∗ ,

but this means that Et∗ does not hold, i.e. it is a contradiction to t∗ be the
smallest t for which Et holds. Hence we conclude that

Pr[Exp′
3,5 = 1] ≥ Pr[Exp′

3,4 = 1] − negl(λ) > ε′/T − negl(λ).

Now, to simplify notation define ĩ = ī∗t∗−1. In experiment Exp′
3,5 we have

the guarantee that if the experiment outputs 1 (which happens with non-
negligible probability ε′/T − negl(λ)), then we have the equation z

(t∗−1)

j∗ ,̃i
=

(z(t
∗−1)

0,̃i
)aj∗ · gτ for a non-zero τ .

In the following hybrids, we will consider a path ĩt∗−1, . . . , ĩ0 from ĩt∗−1 = ĩ to a
leaf node ĩ0 and establish the invariant that all ciphertexts (z(k)

0,̃ik
, z

(k)

j∗ ,̃ik
) encrypt

non-zero values, while maintaining non-negligible probabilities for the experi-
ments to output 1. We will achieve this using the somewhere extractability of
SEH and seBARGmult. Eventually, once we reached a leaf-node we will arrive
at a contradiction against the soundness of seBARG0. We will thus consider
a sequence of experiments Exp′′

k,0,Exp
′′
k,1,Exp

′′
k,2,Exp

′′
k,3,Exp

′′
k,4 for k = t∗ −

1, . . . , 0. We chain them by defining Exp′′
t∗,0 = Exp′

3,5 and Exp′′
k−1,0 = Exp′′

k,4.
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The experiment Exp′′
k,1 is identical to the experiment Exp′′

k,0, except that we
make hk(k−1) extractable at the children nodes of (0, ĩk) and (j∗, ĩk), i.e. at
positions (0, 2̃ik −1), (0, 2̃ik), (j∗, 2̃ik −1), (j∗, 2̃ik). In particular, we generate
hk(k−1) via

– (hk(k−1), td(k−1)) = SEH.Gen(1λ, (m + 1) · N/2k−1, {(0, 2̃ik − 1), (0, 2̃ik),
(j∗, 2̃ik − 1), (j∗, 2̃ik)}).

Computational indistinguishability of Exp′′
k,1 and its preceding experiment

follows from the index-hiding property of SEH.
In experiment Exp′′

k,2, we make seBARGmult extractable at positions (0, ĩk)
and (j∗, ĩk).

– (crs(k−1), t̂d
(k−1)

) = seBARGmult.Gen(1λ, (m+1)·N/2t, {(0, ĩk), (j∗, ĩk)}).
Computational indistinguishability follows from the index-hiding property of
seBARGmult.
In experiment Exp′′

k,3, we extract both ciphertexts at the children nodes of ĩk,
that is we compute

– z
(k−1)

0,2ĩk−1
= SEH.Extract(td(k−1), h(k−1), (0, 2̃ik − 1))

– z
(k−1)

j∗,2ĩk−1
= SEH.Extract(td(k−1), h(k−1), (j∗, 2̃ik − 1))

– z
(k−1)

0,2ĩk
= SEH.Extract(td(k−1), h(k−1), (0, 2̃ik))

– z
(k−1)

j∗,2ĩk
= SEH.Extract(td(k−1), h(k−1), (j∗, 2̃ik))

Furthermore, let Fk be the event that both (z(k−1)

0,2ĩk−1
, z

(k−1)

j∗,2ĩk−1
) and

(z(k−1)

0,2ĩk
, z

(k−1)

j∗,2ĩk
) are encryptions of 0, that is it holds that both

z
(k−1)

j∗,2ĩk−1
= (z(k−1)

0,2ĩk−1
)aj∗ ,

z
(k−1)

j∗,2ĩk
= (z(k−1)

0,2ĩk
)aj∗ .

Note that we can efficiently test for this event given aj∗ .
In Exp′′

k,3 we add the additional condition that the experiment outputs 0 if
the event Fk holds.
We will now argue that given that seBARGmult is somewhere extractable/
somewhere sound, the event Fk happens only with negligible probability.
Given that Fk happens, we claim it must hold that either

z
(k)

0,̃ik
�= z

(k−1)

0,2ĩk−1
· z

(k−1)

0,2ĩk

or
z
(k)

j∗ ,̃ik
�= z

(k−1)

j∗,2ĩk−1
· z

(k−1)

j∗,2ĩk

which routinely leads to a contradiction to the somewhere extractabil-
ity/somewhere soundness of seBARGmult. Otherwise, if both equations

z
(k)

0,̃ik
= z

(k−1)

0,2ĩk−1
· z

(k−1)

0,2ĩk
,

z
(k)

j∗ ,̃ik
= z

(k−1)

j∗,2ĩk−1
· z

(k−1)

j∗,2ĩk
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hold, then given the equations for the event Fk, this implies that

z
(k)

j∗ ,̃ik
= (z(k)

0,̃ik
)aj∗ ,

i.e. (z(k)
0,̃ik

, z
(k)

j∗ ,̃ik
) is an encryption of 0. But this violates our invariant that

(z(k)
0,̃ik

, z
(k)

j∗ ,̃ik
) is an encryption of a non-zero value. Hence the claim follows,

and Exp′′
k,3 is computationally indistinguishable from Exp′′

k,2.
In Exp′′

k,4, we guess a random bit βk−1 ←$ {0, 1} uniformly at random at the
beginning of the experiment and set ĩk−1 = 2̃ik −1 if βk−1 = 0 and ĩk−1 = 2̃ik
if βk−1 = 1. Let Gk−1 be the event that (z(k−1)

0,̃ik−1
, z

(k−1)

j∗ ,̃ik−1
) is an encryption of

0, i.e. Gk−1 = 1 if and only if

z
(k−1)

j∗ ,̃ik−1
= (z(k−1)

0,̃ik−1
)aj∗ .

Now, in Exp′′
k,4 we add the additional condition that the experiment outputs 0

if the event Gk−1 holds. Since the bit βk−1 is chosen uniformly at random and
we have the promise (from experiment Exp′′

k,3) that either (z(k−1)

0,2ĩk−1
, z

(k−1)

j∗,2ĩk−1
)

or (z(k−1)

0,2ĩk
, z

(k−1)

j∗,2ĩk
) is an encryption of a non-zero value, we get that the event

Gk−1 has probability at least 1/2, and therefore

Pr[Exp′′
k,4 = 1] ≥ Pr[Exp′′

k,3 = 1]/2.

In particular, we have that

Pr[Exp′′
k,4 = 1] ≥ Pr[Exp′′

k,0 = 1]/2 − negl(λ),

and given that Pr[Exp′′
k,0 = 1] = Pr[Exp′′

k+1,4 = 1], this implies that for the
final experiment Exp′′

0,4 in this sequence it holds that

Pr[Exp′′
0,4 = 1] ≥ Pr[Exp′′

t∗,1 = 1]/2t∗ ≥ Pr[Exp′′
t∗,1 = 1]/2T ≥ ε′/(2T · T ) − negl(λ),

which is non-negligible as ε′ is non-negligible and T = O(log(λ)).
In the final two experiments we will proceed analogously to the first case
above, namely, we will make hkx and hkM extractable at positions corre-
sponding to ĩ0 and establish a contradiction to the somewhere extractabil-
ity/somewhere soundness of seBARG0.
That is, in Exp′′′

0 we switch hkx to be extractable at position ĩ0 and hkM to
be extractable at positions (0, ĩ0) and (j∗, ĩ0), formally we compute

– (hkx, tdx) = SEH.Gen(1λ, N, {i∗, ĩ0})
– (hkM, tdM) = SEH.Gen(1λ, (m + 1) · N, {(0, i∗), (j∗, i∗), (0, ĩ0), (j∗, ĩ0)})

Computational indistinguishability of Exp′′
0,4 and Exp′′′

0 follows routinely from
the index-hiding property of SEH.
In experiment Exp′′′

1 , we switch crs0 to be extractable at positions (0, ĩ0) and
(j∗, ĩ0), that is we set

– (crs0, td0) = seBARG0.Gen(1λ, (m + 1) · N, {(0, ĩ0), (j∗, ĩ0)}).
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Computational indistinguishability again follows routinely from the index-
hiding property of seBARG0.
We can now finally show a contradiction to the somewhere extractabil-
ity/somewhere soundness property of seBARG0.
Note that by our invariant (z(0)

0,̃i0
, z

(0)

j∗ ,̃i0
) is an encryption of a non-zero value

(conditioned on Exp′′′
1 = 1). At the same time it holds that

M
xĩ0

0,̃i0
= grĩ0

·xĩ0

M
xĩ0

j∗ ,̃i0
= ga∗

j ·rĩ0
·xĩ0 ,

that is (M
xĩ0

0,̃i0
,M

xĩ0

j∗ ,̃i0
) is an encryption of 0. But this means that either

z
(0)

0,̃i0
�= M

xĩ0

0,̃i0

or
z
(0)

j∗ ,̃i0
�= M

xĩ0

j∗ ,̃i0
,

which routinely leads to a contradiction to the somewhere extractability of
seBARG0.
This concludes the proof.

4 Applications

4.1 Rate-1 seBARGs

Rate-1. Finally, we define the rate-1 property. A seBARG is said to be rate-1 if
the proof is of size |π| = m + o(m) · poly(λ, log k).

The following lemma states that rate-1 BARGs exist given an index BARGs
and a rate-1 fully-local SEH.

Lemma 7 ([9]). Assuming the existence of an index seBARG and a rate-1
fully-local SEH, there exists a rate-1 seBARG.

Instantiating the rate-1 flSEH with the construction from Sect. 3.2 and the
BARG with one from Lemma 3, we obtain the following corollary.

Corollary 5. There exists a rate-1 BARG from subexponential DDH or k-LIN
where the proof has size m + poly(λ).

Previously, this was known from the same assumptions by plugging the rate-
1 SEH construction from [15] with the construction of [19] with proof size m +
3m
λ + poly(λ).
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4.2 Rate-1 BARGs with Short CRS

Our rate-1 BARG from Sect. 4.1 has a large CRS, that is, the size of the CRS
grows with the number of instances. In this section, we show a generic transfor-
mation from rate-1 BARGs with large CRS to a rate-1 BARG with a compact
CRS, that is, a CRS with size poly(λ) (independent of the number of instances).

In particular, we prove the following theorem.

Theorem 5. Suppose seBARG0 is a somewhere extractable BARG for language
L with proof size m + poly(λ, log k) and CRS size poly(λ, k), where k is the
number of instances and m is the size of a witness for L. Then there exists a
somewhere extractable BARG seBARG1 for L with proof size m + poly(λ, log k)
and CRS size poly(λ, log k).

Construction. We first sketch a construction of seBARG1, which is based on
a binary tree, where each node is a seBARG0 proof that the two children are
themselves valid seBARG0 proofs, i.e. at each layer we use the BARG for just 2
statements.2 Concretely, at the leaf level, let L0 = L be the base language for
which we want a BARG. For each following layer j ≥ 1, we define the language
Lj : a statement is a tuple yj = (x1, . . . , x2j ), a witness is a proof π, and the
relation Rj is

Rj(yj , π) = seBARG0.V(crsj−1,Lj−1, {(x1, . . . , x2j−1), (x1+2j−1 , . . . , x2j )} , π).

The algorithms (Gen,P,Vf,Extract) for seBARG1 are then given by the fol-
lowing description.

– seBARG1.Gen(1λ, k, 1s, i∗) → (crs, td).
Let K = log k�, and let iK−1iK−2 . . . i1i0 be the binary representation of i∗;
denote by ĩj = �i∗/2j+1� = iK−1iK−2 . . . ij+1.
For each j ∈ [K], run (crsj , tdj) = seBARG0.Gen(1λ, 2, 1sj , ij), where s0 = s,
and sj+1 is an upper bound to the size of the verification circuit Rj at layer
j.
Return crs = {crsj} , td = {tdj}.

– seBARG1.P(crs, C, {xi}i∈[k], {wi}i∈[k]) → π.
Recursively compute proofs in the following way: in the first step, compute

π
(0)
i = seBARG0.P(crs0,L, {x2i, x2i+1} , {w2i, w2i+1}).

Now, for any 1 ≤ j ≤ K − 1 define y
(j)
i = (xi·2j , . . . , x(i+1)·2j−1).

Then, recursively compute

π
(j)
i = seBARG0.P

(
crsj ,Lj ,

{
y
(j)
2i , y

(j)
2i+1

}
,
{

π
(j−1)
2i , π

(j−1)
2i+1

})
.

Output π
(K−1)
0 as the proof.

2 This framework can also be trivially adapted to use a �-ary tree, instead of a binary
one. The resulting CRS has size log�(k) · poly(λ, �).
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– seBARG1.V(crs, C, {xi}i∈[k], π) → {0, 1}.
Recursively recompute the y

(j)
i s and output the result of

seBARG0.V
(
crsK−1,LK−1,

{
y
(K−1)
0 , y

(K−1)
1

}
, π
)

.

– seBARG1.Extract(td, C, {xi}i∈[k], π) → w∗.
Recursively extract the proofs until the last layer, and then extract the wit-
ness. In particular, recompute the y

(j)
i s, define π(K−1) = π and then recur-

sively compute

π(j−1) = seBARG0.Extract
(
tdj ,Lj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
.

Finally, return

w∗ = seBARG0.Extract
(
td0,L,

{
x2ĩ0

, x2ĩ0+1

}
, π(0)

)
.

Properties. We sketch a proof for all the required properties of the resulting
scheme seBARG1.

CRS Succinctness. The CRS of seBARG1 consists of log k many CRSs of
seBARG0 with a constant number of statements (in particular, 2). Thus, it is
of size log k · poly(λ).

Rate. Since seBARG0 is rate-1, we have that |π(j)
i | = |π(j−1)

i | + poly(λ). Thus, if
m is the size of a witness for L, the proof size of seBARG1 is m + log k · poly(λ).

Index Hiding. This property follows directly from index hiding of seBARG0, since
the crs of seBARG1 is the union of many independent crs of seBARG0.

Somewhere Argument of Knowledge. The following lemma establishes that
seBARG1 is a somewhere argument of knowledge, given that seBARG0 is a some-
where argument of knowledge.

Lemma 8. Let seBARG0 be a somewhere extractable argument of knowledge,
then seBARG1 given above is also a somewhere argument of knowledge.

Proof. Let A be an adversary against the somewhere argument-of-knowledge
property of seBARG1. In particular, let i∗ the extractable index, and π the
proof given by A. We denote by w∗ = seBARG1.Extract(td, C, {xi}i∈[k], π) the
extracted witness, and recall that the extraction algorithm also extracts wit-
nesses wj = π(j) for each layer. Consider then the following hybrids.

– Hybrid H0: This is the real experiment
– Hybrid Hk (for k = 1, . . . , K − 1): This is the same as hybrid Hk−1,

except that the experiment outputs 0 if the conditions Rj(y
(j)

ĩj
, wj) �= 1 and

seBARG0.V
(
crsj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
= 1 hold, where j = K − 1 − k.
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Note that the last experiment HK−1 aborts if R0(xi∗ , w∗) �= 1. But since
xi∗ /∈ L0 = L, this experiment always outputs 0, i.e. A has advantage 0 in this
experiment.

It remains to show that experiments Hk−1 and Hk are indistinguishable given
that seBARG0 is somewhere extractable. Concretely, if |Pr[Hk = 1]−Pr[Hk−1 =
1]| ≥ ε we can construct an adversary A′ against the somewhere argument of
knowledge property of seBARG0 with advantage ε as follows. A′ simulates Hk−1

but only outputs the statements y
(j)

2ĩj
and y

(j)

2ĩj+1
as well as the proof π(j). If

y
(j)

ĩj−1
∈ Lj both experiments are identically distributed. Hence, it must holds

that y
(j)

ĩj−1
/∈ Lj but seBARG0.V

(
crsj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
= 1 with probability

at least ε. Hence A′ breaks the somewhere argument of knowledge property of
seBARG0 with advantage ε, which concludes the proof.

4.3 RAM SNARGs with Partial Input Soundness

A RAM SNARG allows a verifier to verify that a RAM computation was well
performed given just the hash of the input (or initial database) h and a proof π.
Importantly, the verifier should run in time poly(λ, log T ) where T is the running
time of the RAM computation.

Here, we are interested in RAM SNARGs that achieve a strong soundness
property known as partial input soundness [15]. This guarantees that if the mem-
ory is digested using a SEH function that is extractable on a set of coordinates I,
and if the RAM computation only reads coordinates in I, then soundness holds.
We refer the reader to [9,15] for formal definitions.

It is known that a flexible RAM SNARG can be constructed from seBARGs
and a fully-local SEH function.

Lemma 9 ([15]). Assuming the existence of a seBARG and a fully-local SEH,
there exists a RAM SNARG with partial input soundness.

Let S be the size of a single intermediate state of the RAM computa-
tion. Then the RAM SNARG construction presented in [15] has proof size
S · poly(λ) + poly(λ, log T, S), where S · poly(λ) corresponds to the output of
the (fully-local) SEH and poly(λ, log T, S) corresponds to the size of the seBARG
proof. Additionally, assume that only V positions are read from the initial mem-
ory X. Then the hash value of X has size V · poly(λ).

If we instantiate the underlying seBARG with a rate-1 BARG (from Corollary
5) and the fully-local SEH with a rate-1 scheme (as the one from Sect. 3.2), we
obtain the following corollary.

Corollary 6. There exists a RAM SNARG with partial input soundness from
subexponential DDH or k-LIN assumptions with proof size O(S) + poly(λ) and
an hash value (of the initial database) of size V + poly(λ).
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