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Abstract. Abelian group actions appear in several areas of cryptog-
raphy, especially isogeny-based post-quantum cryptography. A natu-
ral problem is to relate the analogues of the computational Diffie-
Hellman (CDH) and discrete logarithm (DLog) problems for abelian
group actions. Galbraith, Panny, Smith and Vercauteren (Mathematical
Cryptology ’21) gave a quantum reduction of DLog to CDH, assuming
a CDH oracle with perfect correctness. Montgomery and Zhandry (Asi-
acrypt ’22, best paper award) showed how to convert an unreliable CDH
oracle into one that is correct with overwhelming probability. However,
while a theoretical breakthrough, their reduction is quite inefficient: if the
CDH oracle is correct with probability ε then their algorithm to amplify
the success requires on the order of 1/ε21 calls to the CDH oracle.

We revisit this line of work and give a much simpler and tighter algo-
rithm. Our method only takes on the order of 1/ε4 CDH oracle calls and
is conceptually simpler than the Montgomery-Zhandry reduction. Our
algorithm is also fully black-box, whereas the Montgomery-Zhandry algo-
rithm is slightly non-black-box. Our main tool is a thresholding technique
that replaces the comparison of distributions in Montgomery-Zhandry
with testing equality of thresholded sets.

1 Introduction

Abelian group actions appear in several areas of cryptography. In isogeny-
based post-quantum cryptography there have been several new instantia-
tions of group actions, such as CSIDH [CLM+18], CSI-FiSh [BKV19,EKP20],
and SCALLOP [FFK+23]. Isogeny-based group actions have been proven
to be versatile in many applications, including but not limited to signa-
ture schemes [BKV19,EKP20,DG19], UC-secure oblivious transfer protocols
[LGD21,BMM+23], threshold signatures [DM20], (linkable/accountable) ring
and group signatures [BKP20,BDK+22], blind signatures [KLLQ23], and PAKE
[AEK+22].

A natural problem is to relate the analogues of the computational Diffie-
Hellman (CDH) and discrete logarithm (DLog) problems for abelian group
actions, which we abbreviate GA-CDH and GA-DLog, respectively, since key
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exchange protocols based on these instantiations are build upon the group action
CDH assumption (GA-CDH) but the underlying group action DLog assumptions
(GA-DLog) are much better studied and understood from a hardness perspec-
tive. Galbraith, Panny, Smith and Vercauteren [GPSV21] gave a quantum reduc-
tion of GA-DLog to GA-CDH, assuming a GA-CDH oracle with perfect correct-
ness. Subsequently, Montgomery and Zhandry [MZ22] devised a novel approach
and a series of sophisticated procedures to transform an unreliable GA-CDH
oracle into one that is correct with an overwhelming probability and showed
how to use this in the [GPSV21] framework to build a full quantum reduction
of GA-DLog to GA-CDH.

However, [MZ22] is quite inefficient: more precisely, if a GA-CDH oracle is
correct with probability ε, then the Montgomery-Zhandry algorithm to amplify
the success probability to an exponentially low amount, which is necessary for
their reduction from GA-CDH to GA-DLog to work, takes on the order of
1/ε21 calls to the original GA-CDH oracle. To put this into perspective, given
a GA-CDH oracle with success rate 1/8, it requires at least 263 oracle calls
in [MZ22] to obtain a GA-CDH a GA-DLog solver with an overwhelming advan-
tage. While [MZ22] was a theoretical breakthrough, its inefficiency means it can
only have an extremely limited effect on practical parameter setting for group
actions or isogenies.

This brings us to the primary objective of this work:

Can we have tighter and simpler approaches for the reduction between
CDH and DLog and to amplify a CDH circuit for abelian group actions?

We answer this question in the affirmative. We show a GA-CDH to GA-DLog
reduction that only requires on the order of 1/ε4 calls to a GA-CDH oracle that
succeeds with probability ε. Moreover, our techniques are considerably simpler
than the heavy mathematical machinery used in [MZ22], providing a much more
understandable reduction as well.

1.1 Group Actions and Computational Problems

Let G be an abelian group acting transitively on set X via the operation �. We
denote group actions as tuples (G,X , �). In this paper we assume this is an effec-
tive group action (EGA), meaning that there is an efficient algorithm to compute
g � x for any g ∈ G and x ∈ X . The isogeny-based primitive CSIDH [CLM+18],
which is one of the main motivations for this work, was originally not known
to be an effective group action, but recent work by Page and Robert [PR23]
gives a solution to this problem, and in the context of our work this issue can be
bypassed using a technique of Wesolowski [Wes22]. We note there are seemingly
hard barriers to making a GA-DLog to GA-CDH reduction work for non-EGAs
(restricted effective group actions), and we refer interested readers to [MZ22] for
this, where there is an extensive discussion on the topic.

We now introduce the two main computational problems that arise in
(abelian) group action cryptography. The discrete logarithm problem is also
known as vectorization, and the computational Diffie-Hellman problem as par-
allelization.
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GA-DLog: Given (x, g � x) ∈ X 2, compute g.
GA-CDH: Given (x, a � x, b � x) ∈ X 3, compute (ab) � x.
Galbraith, Panny, Smith and Vercauteren [GPSV21] showed a quantum

reduction of GA-DLog to GA-CDH (vectorization to parallelization) for perfect
adversaries. At a high level the idea is the following: let A be a (quantum) oracle
such that A(a � x, b � x) = (ab) � x with overwhelming correctness. Given a GA-
DLog instance (x, a�x) one can use the oracle as A(am�x, an�x) = (am+n)�x to
compute (at)�x for any desired t ∈ Z. Suppose for simplicity that G is cyclic and
let g be a generator of G. Define f : Z2 → X by f(s, t) = (gs) � (at) � x. One can
compute f using the oracle A. Applying Shor’s algorithm [Sho94] for the hidden
subgroup problem returns an element in the lattice L = {(s, t) ∈ Z2 : gsat = 1}.
If gcd(t, |G|) = 1 then we can solve the discrete logarithm of a to the base g,
and hence can compute a.

The intuition of [GPSV21] is that the ability to compute GA-CDH allows us
to turn a group action into a group, since we can “multiply” elements using the
GA-CDH oracle. This means we can directly apply Shor’s algorithm for solving
discrete log on groups.

1.2 The Montgomery-Zhandry Approach

Montgomery and Zhandry [MZ22] showed how to handle an oracle that is only
correct with probability ε. Since the decisional Diffie-Hellman problem for group
actions is hard, and since we lack the algebraic tools used in to resolve this
problem in the case of CDH in groups, there seems to be no easy way to determine
whether or not an output of the oracle is correct or not. We sketch some of the
main ideas of their work.

For y, z ∈ X define A0(y, z) to be the algorithm that samples uniformly
at random group elements a′, b′ ∈ G, and returns (a′b′)−1 � A(a′ � y, b′ � z).
Let D be the output distribution of A0(x, x). Montgomery and Zhandry show
that Pr[x ← D] = ε and that the output distribution of A0(a � x, b � x) is the
same as the shift of the distribution D, which we denote as (ab) � D (meaning
Pr[w ← (ab) � D] := Pr[((ab)−1 � w) ← D]). We also use A0 in this work, as it
is a very basic self-reduction. We explain A0 in more detail in the body of the
paper.

The next core component of [MZ22] is an algorithm A1(y, z) that runs
A0(y, z) for a number T (to be determined later) of times to get a list L of
outputs (some may be repeated multiple times), which provides an empirical
distribution D̃ of the distribution D. When T � 1/ε, the correct answer (ab) � x
will be on the list with an overwhelming probability. Then for each w ∈ L, they
run A0(x,w) for T times. When w = (ab) � x then the resulting distribution
will be the same as D. The idea is that if w �= (ab) � x then we would like to
eliminate it from the list, but this does not always work. We will use a simi-
lar “shifting” approach here, but our algorithm is somewhat different and our
analysis is considerably different from [MZ22].

One of the main insights of [MZ22] is that the only obstruction is due to
small subgroups. We briefly explain this now.
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Define Dw to be the output distribution of A0(x,w), and let D̃w be an empir-
ical distribution of Dw obtained by taking T samples from Dw. Let Δ(·, ·)
be the statistical distance function. [MZ22] considers the distance function
‖D − D′‖∞ = maxu∈X |Pr[u ← D] − Pr[u ← D′]|. Let L′′ ⊆ G be the set of
g ∈ G such that Δ(Dg�x,D) ≤ δ/2. Let H be the subgroup of G generated by
L′′. Montgomery and Zhandry show (Lemma 15 of [MZ22]) that if δ ≤ ε4/8 then
|H| < 1/ε + 1.

The full specification of algorithm A1(y, z) is as follows:

1. Run A0(y, z) for T times to get a list L of outputs and an estimate D̃ of the
distribution D.

2. Set L′ = {}.
3. For each w ∈ L, run A0(x,w) for T times and calculate estimate D̃w of

distribution Dw.
4. If Δ(D̃w, D̃) ≤ δ/2 then add w to L′.
5. Return L′.

Montgomery and Zhandry then define an algorithm A2(y, z) that “fills out” the
subgroup so that it outputs the set {(gab)�x : g ∈ H}, where H is the subgroup
above mentioned. This algorithm now has overwhelming success. The analysis
of A2 is intricate, and we have intentionally omitted it from our own work. We
refer an interested reader to [MZ22].

The full [MZ22] reduction on input a GA-DLog instance (x, a � x) and with
quantum access to circuit A is as follows:

1. Choose the parameters δ, T .
2. Determine H.
3. Run the algorithm of [GPSV21] with respect to action of G/H on (G/H)�x,

using the A2(·, ·) as the parallelization circuit. Here G/H and (G/H) � x are
represented in O(1/ε + 1) space as cosets/orbits. The algorithm returns the
coset aH with noticeable probability.

4. Perform a brute-force search over all elements g within the coset aH, where
a ∈ aH, to deduce the group element a using the known set element of a � x.

Our overall approach in this work is similar, although our parameterizations
and algorthms are quite different.

Finally, we note that in their published work, Montgomery and Zhandry
claim the number of queries to A is O

(
1/ε13

)
. However, there is a miscalculation

in the complexity of the algorithm A1 as presented in [MZ22]. According to
their analysis, the algorithm A1 requires T 2 + T queries of the circuit A, where
T is taken to be T = Õ(ε−8). It is crucial to note that the condition T =
Õ(ε−8) is necessary to ensure that the subgroup generated by the error terms
of A1 approximates ε−1. However, due to this requirement, it actually implies
that A1 performs Õ(ε−16) queries to A instead of the originally stated Õ(ε−8).
Consequently, when provided with a GA-CDH oracle with a success rate of ε,
solving a GA-DLog problem using A1 would actually require Õ(ε−21) queries to
the CDH oracle, as opposed to the claim of Õ(ε−13) made in the paper.
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1.3 Technical Overview

We show a new approach to the problem based on thresholding. For a GA-CDH
challenge (a � x, b � x), we essentially show that there is a set of “heavy” elements
that contains the required value (ab) � x that can be accurately computed using
a sufficient number of queries to the oracle. Unlike in [MZ22], we can show that,
across different queries the same set of elements, up to shifting by some value,
always shows up in an output set. This makes our statistical analysis much easier
and more lightweight– [MZ22] has to use a number of complicated theorems from
algebra, while the most complicated math we use is a simple Chernoff bound–as
well as dramatically more efficient. We outline the steps in our reduction in the
remainder of this subsection.

We also assume in this overview we are working with a regular group action
(G,X , �) with origin element x. Consider a GA-CDH oracle A that outputs
the correct set element with probability ε. We show how to use A to build an
algorithm that outputs either the correct set element or all elements in a coset of
a subgroup containing the correct set element with extremely high probability;
from there, we can apply the work of [GPSV21] and [MZ22] to complete the
GA-CDH to GA-DLog reduction.

The simple randomized self-reduction. As we outlined earlier, one of the core
algorithms in [MZ22] and in our work is the simple random self-reduction A0 for
GA-CDH instances on a group action. Suppose we are given GA-CDH challenge
set elements (y = a � x, z = b � x) and want to query A to output (ab)�x. A could
just refuse to work on certain inputs; its success probability is over all combina-
tions of set elements. However, we can have an efficient self-reduction: by ran-
domly selecting g and h from the group G and calculating (gh)−1

�A (g � x, h � y),
we obtain the correct result if and only if A correctly evaluates the query. Fur-
thermore, since g � x and h � y constitute uniformly random and independent
set elements (we assume here that the group action is regular), we obtain the
distribution that represents the “average” output of the adversary.

Following [MZ22] we refer to this algorithm as A0. The distribution resulting
from A0 (x, x) is denoted as D, and can be viewed as the “reference” distribution.
We adopt straightforward proofs from [MZ22] to establish that, for any g ∈ G,
g � D = A0 (x, g � x), which we denote as Dg.

In essence, we are asserting that if we modify the input to A0, the distribution
of the adversary’s output will shift accordingly. This is because the inputs to A
from A0 are entirely randomized, preventing A from engaging in any strategic
maneuvers or attempts to deceive.

Approximating the oracle’s success probability ε. In contrast to [MZ22], our
reduction commences with a concrete approximation of the given GA-CDH
oracle’s success probability, denoted as ε. Establishing a tight lower bound
on ε, denoted by εmin, is a crucial step in our reduction process. This lower
bound serves a vital role in enabling a fully black-box reduction, a distinction
from [MZ22].
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To determine εmin, we execute A0 (x, x) a sufficient number of times and
count the instances where x is the output. Given that we are aware of the value
of x and its correctness as a solution to a CDH query on (x, x), this procedure
is straightforward and efficient. For the sake of simplicity in this overview, we
assume that ε = εmin and that we know the value of ε. However, it’s important
to note that our results do not hinge on this assumption being the case.

Building a threshhold list. As per our assumption above, we know the adversary
A succeeds with probability ε, and we can leverage A0 to ensure this success rate
on any query. Our next goal is to show we can, requiring roughly (asymptotically)
1/ε3 queries to A0, “threshhold” the output such that, in response to any CDH
challenge query (y, z), we generate a list of precisely I elements. Here, I is a
fixed integer where I = O

(
1
ε

)
, and this list consists of the top I elements from

the distribution A0(y, z).1

By assumption, we have that the adversary must output the correct answer
to the CDH challenge with probability ε. Suppose we rank the elements output
by D–the output distribution of A0 by likelihood of appearing. The most likely
element x1 occurs with probability p1, the second most likely element x2 occurs
with probability p2, and so forth. If xc is the correct element, we claim that
there must be some elements xi, xi+1 where i ≥ c and pi − pj ≥ kε2 for some
constant k and some i ≤ 2

ε . This follows from summing the pis using the Gaussian
summation formula (see, we told you, simple math!): if there is no gap of the
appropriate size, the probabilities will sum to something larger than 1.

It turns out that if we sample A0 (x, x) enough times, we can find I and
this gap by just seeing where a large gap lies. We use Chernoff bounds to show
that asymptotically 1/ε3 samples are enough to do this, and this turns out to
be the bulk of the writing in our proof. If we provided the Chernoff bounds out
of thin air, then our already short proof would be extremely short. We call this
algorithm for gap-finding AI , and we note that it works, for any input values
(x, y). We do, however, write down and keep track of I for our future algorithms,
because it could be possible that there are two gaps of similar size, and we want
to make sure that we use the same set of elements (of the same size) every time
we attempt to threshold.

A “shifting” algorithm. At this point, we borrow conceptually from [MZ22], but
our algorithms will be different. We define a new algorithm which we refer to as
A1, which is conceptually similar to the algorithm of the same name from [MZ22].
A1 does almost the exact same thing as AI , except it uses the knowledge of I
to always output I elements. So, A1 (y, z) outputs a set of I elements z1, ..., zI ,
one of which must be the correct GA-CDH answer. Suppose, for each zi, we
compute A1 (x, zi). For the correct zi, we know that Dy,z = Dx,zi

, where we are
overloading the notation of D in the natural way, because A0 is “shift invariant.”
Hence, it is very straightforward to see that, with an overwhelming chance, we
have A1 (y, z) = A1 (x, zi), if zi is the correct answer. As a result, after the

1 Note this is very different from the algorithm of the same name in [MZ22].
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execution of A1 (x, zi) for each i, we can eliminate all zi for which A1 (y, z) �=
A1 (x, zi) from our candidate list of correct solutions. We will call this algorithm
A2 and denote the resulting list L.

The authors of [MZ22] opt for a more intricate shifting and pruning algo-
rithm. Without thresholding, they cannot ensure that each “run” of their A1 will
consistently produce the same list of elements (although they may be shifted).
This crucial distinction is the primary reason why our algorithm stands out as
simpler and significantly more efficient than theirs.

Why we have a full subgroup. The primary challenge, which is also a key source
of inefficiency in [MZ22], revolves around the necessity of finding a “complete”
coset (i.e. the set elements generated by H � x for some subgroup H). In the
reduction, this step is indispensable, as it paves the way for the application of
Shor’s algorithm in the final step. However, in our case here, it is straightforward
to show that the list L constitutes a complete coset already. To see this, every
element in L needs to be “shift invariant” onto the set L with respect to A1:
in other words, we have A1 (x,L) = L, or else A2 would have pruned these
elements. It is straightforward to derive a contradiction if L is not a complete
coset: we either break the “shift invariance” of A0 and A1, or the fact that A2

should have eliminated certain elements.

Cleaning up. Now that we have outlined how our improved reduction outputs
a set L that is a complete coset containing the correct solution to a GA-CDH
instance, all that remains is to show that we can clean up correctly. We do this
exactly as in [MZ22] and [GPSV21]. We can use L and Shor’s algorithm to find
a subgroup H that generates L from the correct solution, run the core algorithm
from [GPSV21] on the induced group action (G/H,G/H � x, �), and then “brute
force” over all elements of H to get a final answer.

Our total running time is proportional to 1/ε4 and some polynomial in
log(|G|), which is a substantial improvement over Õ(ε−21) from the previous
work.

2 Preliminaries

We begin by defining basic background material. A reader knowledgeable in
group actions and cryptography may safely skip this section.

2.1 Cryptographic Group Actions

We define cryptographic group actions following Alamati et al. [ADMP20], which
are based on those of Brassard and Yung [BY91] and Couveignes [Cou06]. Our
presentation here is based on that of [MZ22].

Definition 1. (Group Action) A group G is said to act on a set X if there is
a map � : G × X → X that satisfies the following two properties:
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1. Identity: If e is the identity of G, then ∀x ∈ X , we have e � x = x.
2. Compatibility: For any g, h ∈ G and any x ∈ X , we have (gh)�x = g � (h�x).

We may use the abbreviated notation (G,X , �) to denote a group action. We
extensively consider group actions that are regular :

Definition 2. A group action (G,X , �) is said to be regular if, for every x1, x2 ∈
X , there exists a unique g ∈ G such that x2 = g � x1.

We emphasize that most results in group action-based cryptography have
focused on regular actions. As emphasized by [ADMP20], if a group action is
regular, then for any x ∈ X , the map fx : g �→ g � x defines a bijection between
G and X ; in particular, if G (or X ) is finite, then we must have |G| = |X |.

In this paper, unless we specify otherwise, we will work with effective group
actions (EGAs). An effective group action (G,X , �) is, informally speaking, a
group action where all of the (well-defined) group operations and group action
operations are efficiently computable, there are efficient ways to sample random
group elements, and set elements have unique representation. Since the focus of
this paper is on abelian group actions in a quantum world, we note that we can
efficiently map any abelian group to Zp for some integer p , and all of the less
obvious properties needed for EGAs follow automatically. Formally speaking, we
define an effective group action (EGA) as follows:

Definition 3. (Effective Group Action) A group action (G,X , �) is effective if
the following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid

group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group

element in G.
(c) Sampling, i.e., to sample an element g from a distribution DG on G. In

this paper, We consider distributions that are statistically close to uni-
form.

(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing, i.e., to decide if a bit string represents a valid set

element.
(b) Unique representation, i.e., given any arbitrary set element x ∈ X , com-

pute a string x̂ that canonically represents x.
3. There exists a distinguished element x0 ∈ X , called the origin, such that its

bit-string representation is known.
4. There exists an efficient algorithm that given (some bit-string representations

of) any g ∈ G and any x ∈ X , outputs g � x.
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2.2 Computational Problems

We next define problems related to group action security. We emphasize that we
are defining problems here and not assumptions because these are easier to use
in reductions. Again our presentation is based on that of [MZ22].

Definition 4. (Group Action Discrete Logarithm (DLog)) Given a group
action (G,X , �) and distributions (DX ,DG), the group action discrete logarithm
problem is defined as follows: sample g ← DG and x ← DX , compute y = g � x,
and create the tuple T = (x, y). We say that an adversary solves the group
action discrete log problem if, given T and a description of the group action and
sampling algorithms, the adversary outputs g.

Definition 5. (Group Action Computational Diffie-Hellman (CDH)) Given a
group action (G,X , �) and distributions (DX ,DG), the group action CDH prob-
lem is defined as follows: sample g ← DG and x, x′ ← DX , compute y = g�x, and
create the tuple T = (x, y, x′). We say that an adversary solves the group action
CDH problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs y′ = g � x′.

Remark 1. The above definitions allow for different distributions DX on X . In
particular, DX could be uniform over X , or it could be a singleton distribution
that places all its weight on a single fixed x. Whether x is fixed or uniform
potentially changes the the nature of these problems (see [BMZ19] for an explo-
ration in the group-based setting). Looking ahead, as in [MZ22], our reduction
between DLog and CDH will preserve x, and therefore it works no matter how
x is modeled.

2.3 Chernoff Bounds

In our forthcoming argument, we will rely on Chernoff bounds. To this end, we
present a specific formulation of a Chernoff bound below.

Theorem 1. Let X =
∑T

i=1 Xi, where Xi are independent random variables
with a Bernoulli distribution with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi. Let
μ = E[X] =

∑T
i=1 pi. Then, we have

Pr [X − μ ≥ ημ] ≤ e−μη2/(2+η)

for any η ≥ 0, and
Pr [X − μ ≤ −ημ] ≤ e−μη2/2

for any η ∈ (0, 1).

If pi = p for all i ∈ [T ] for some p ∈ [0, 1], then we can restate the inequalities
as follows:

Pr [X − Tp ≥ ηTp] ≤ e−Tpη2/(2+η)
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for any η ≥ 0, and
Pr [X − Tp ≤ −ηTp] ≤ e−Tpη2/2

for any η ∈ (0, 1). Moreover, for any η ∈ (0, 1) we have

Pr [|X − Tp| ≥ ηTp] ≤ 2e−Tpη2/3.

3 The Main Reduction

We state our main result.

Theorem 2. Let (G,X , �) be an effective group action. If DLog is post-
quantum hard in (G,X , �), then so is CDH. More precisely, given a CDH
adversary A there exists an oracle algorithm RA,(G,X ,�)(y) that runs in time
O

(
poly(log |G|)/ε4

)
with poly(log |G|)/ε4 queries to A and the group action

(G,X , �) such that
Adv

(G,X ,�)
DLog

(
RA,(G,X ,�)

)
≥ 0.99,

where ε := Adv
(G,X ,�)
CDH (A).

The running time and number of calls to A of the black-box reduction R
depend on the success probability ε of A. Nontheless, we are not required to know
ε in advance and the estimation is also a part of our reduction. The remainder
of this section is devoted to proving Theorem 2.

3.1 Preparation

Our basic setup very closely mirrors that of [MZ22], so we borrow their pre-
sentation for much of the beginning of this section. Let x ∈ X be a fixed set
element. Define CDH to be the function which correctly solves CDH relative to
x: CDH(a � x, b � x) = (ab) � x. We extend the oracle CDH to accept a vector of
elements as input, operating as follows: CDH(a1 �x, · · · , an �x) = (a1 · · · an) �x.
Moreover, we permit CDH to process distribution(s) over the set X as input. In
such cases, CDH will naturally yield a corresponding distribution as its output.
We will later use a very similar argument as in [MZ22] in Sect. 3.9 and explain
how to extend our reduction to non-regular abelian actions.

Let a, b ∈ G be group elements, and let y = a � x and z = b � x. Suppose A
is an efficient (quantum) algorithm such that

ε := Adv
(G,X ,�)
CDH (A) = Pr

a,b∈G
[A(x, a � x, b � x) = (ab) � x]

is a non-negligible function in the security parameter, where a and b are random
elements in G, and the probability is over the randomness of a and b and A.

Our goal is to turn A into a quantum algorithm for discrete logarithms.
As a first step, we will introduce the basic random self-reduction for CDH
from [MZ22].
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Algorithm A0.

– On input y = a�x, z = b �x, choose elements a′, b′ ∈ G uniformly at random.
– Assign (y′, z′) ← (a′ � y, b′ � z).
– Run w′ ← A(x, y′, z′).
– Output w ← (a′b′)−1 � w′.

Note that each run of A0 runs A exactly once, and uses a constant number of
group action operations. This reduction preserves the correctness of A, since, if
A is correct, then we output

w = (a′b′)−1
� CDH ((a′a) � x, (b′b) � x) = (a′b′)−1 (aa′bb′) � x = (ab) � x

which is the correct output for CDH on input (y, z). Furthermore, as the set
elements y′ and z′ are uniformly distributed over X , the success rate of A0 will
be independent of the input.

Let D represent the output distribution of A0(x, x). While the answer to
x = CDH(x, x) is trivial, the distribution D provides crucial clues for our analysis.

Lemma 1. (Lemma 10, [MZ22]) Pr[x ← D] = ε.

Proof. Recall that D is the distribution A0 (x, x). A0 on input (x, x) calls
A (a′ � x, b′ � x) for random a′, b′ ∈ G. With probability ε, A (a′ � x, b′ � x)
returns (a′b′) � x, and in this case we have w = x as desired. 
�

We next generalize our notation. For any y, z ∈ X where y = a � x and
z = b � x for some a, b ∈ G, let Dy,z be the distribution of outputs of A0(y, z).

Lemma 2. (Lemma 11, [MZ22]) For every y, z ∈ X such that there exist a, b ∈
G where y = a � x and z = b � x, Dy,z = CDH(y, z,D), where CDH(·, ·, ·) is the
3-way CDH function. In other words, A0(a � x, b � x) is identically distributed to
(ab) � A0(x, x).

Proof. Fix a, b ∈ G. Consider the probability that A0(a � x, b � x) outputs w:

Pr[A0(a � x, b � x) = w] = Pr
a′,b′∈G

[(a′b′)−1
� A((aa′) � x, (bb′) � x) = w]

= Pr
a′,b′∈G

[A((aa′) � x, (bb′) � x) = (a′b′) � w]

= Pr
a′′,b′′∈G

[A(a′′ � x, b′′ � x) = (a′′b′′ (ab)−1) � w]

= Pr[A0(x, x) = (ab)−1 � w]

Thus, A0(a � x, b � x) is just the distribution A0 (x, x), but shifted by ab. 
�
For some intuition on this lemma, we emphasize that A0 completely re-

randomizes the output that the adversary sees. In other words, on an input
(a � x, b � x) to A0, the adversary sees a CDH tuple (x, (ga) � x, (hb) � x) for
uniformly random group elements g and h. Then, A0 takes whatever set element
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x′ that the adversary returns and outputs (gh)−1 � x′. Note that, even if the
adversary could solve GA-DLog, it couldn’t output a constant element: even if
it can solve for (ga) and (hb), it information-theoretically doesn’t know what
a is (or g for that matter). For instance, if the adversary got (x, c � x, d � x)
and always tried to output (cd)−1 � z for some fixed set element z, A0 wouldn’t
actually output a constant element: if c = g and d = h, then A0 would just
output z (i.e. the case where a = b = 1), but if c = ga and d = hb, then A0

would output (ab) � z, as the lemma states.
Using this “shift invariance” we can define Dw := Dw,x = Dx,w = Dy,z, if

CDH(y, z) = w. Lemma 2 shows that Dy,z outputs CDH(y, z) with probability ε.
Thus, by running A0 many times, the right answer is almost certainly amongst
the list of outputs. However, to amplify the success probability, we would need
to know which element of the list of outputs is the correct answer; we cannot
determine this yet.

3.2 Estimating ε

At this point, we deviate from the approach taken in [MZ22]. We will need to
have a precise estimation of a lower bound for ε in our later algorithms; luckily,
this is easy enough for us to compute. Although we need to use some statistical
tests, our approach is straightforward: we just run A0 (x, x) “enough” times and
keep track of how many times we get x as an output. We generate a (w.h.p.)
lower bound for ε which we call εmin.

Algorithm Aε (λ, λ′) (Estimating ε).

– On input (security) parameters λ, λ′ where λ′ can be chosen linearly in the
security parameter λ, do the following:

– Set c = λ2λ′.
– Set T = 0, i = 0.
– While i < c:

• Run x′ ← A0 (x, x).
• If x′ == x then i + +.
• T + +.

– Output εmin =
(
1 − 1

λ

)
c
T .

We next prove some bounds on our estimation of εmin. We use a simple
Chernoff bound.

Lemma 3. Let all parameters be defined as above. When λ > 2, except with
probability that decays exponentially in λ′, we have εmin < ε.

Proof. We assume that εT < c, or otherwise our bound holds trivially. Note that

Pr [εmin ≥ ε] = Pr
[(

1 − 1
λ

)
· c

T
≥ ε

]
= Pr

[
c − εT ≥ c

λ

]
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Using a Chernoff bound, we have

Pr [c − εT ≥ ηεT ] ≤ e−εTη2/2+η.

for any η > 0. Suppose we set ηεT = c
λ for our parameter λ. If we continue to

assume that εT < c, we have η ≥ 1
λ . This gives us

Pr [c − εT ≥ ηεT ] ≤ e−εTη2/2+η ≤ e− c
λ · η

η+2 ≤ e− c
3λ2 .

Setting c = λ2λ′ makes this equation decay exponentially in λ′, as desired. 
�
We can think of λ and λ′ as essentially security parameters. We leave these

undefined for now because we will need to make the error probability in our final
algorithm dependent on the group size. We now prove an upper bound on ε.

Lemma 4. Let all parameters be defined as above, and let λ ≥ 5. Except with
probability that decays exponentially in λ′, we have ε <

(
1 + 3

λ

)
εmin.

Proof. When εT ≤ c, the statement holds trivially if λ ≥ 2. This is because
(1 + 3

λ )(1 − 1
λ ) > 1 when λ ≥ 2. Hence, we assume εT > c.

At this point, the result follows from another Chernoff bound. Note that

Pr [εT − c ≥ ηεT ] ≤ e−εTη2/2.

for any η ∈ (0, 1). Recall that εmin =
(
1 − 1

λ

)
c
T , and therefore we have that

c = εminT
1− 1

λ

. If we take η = 2λ−3
λ2+2λ−3 , then we have

Pr [εT − c ≥ ηεT ] = Pr
[
εT − εminT

1 − 1
λ

≥ 2λ − 3
λ2 + 2λ − 3

εT

]
.

Some basic algebra gives us that

Pr
[
εT − εminT

1 − 1
λ

≥ 2λ − 3
λ2 + 2λ − 3

εT

]
= Pr

[
ε ≥

(
1 +

3
λ

)
εmin

]

as desired. Thus, by taking η = 2λ−3
λ2+2λ−3 , with the Chernoff bound, we have

Pr
[
ε ≥

(
1 +

3
λ

)
εmin

]
≤ e− T εη2

2 ≤ e− T ε
2λ2 ≤ e− c

2λ2 ,

where η ∈ (0, 1) and η > 1/λ when λ ≥ 5. Since c = λ2λ′, the statement holds
except with probability e− λ′

2 . 
�
We can now easily determine the running time of Aε.

Lemma 5. Let all parameters be defined above, and let λ ≥ 5. Algorithm Aε

terminates in time O
(
1
ε λ2λ′) with probability one minus a function exponentially

decaying in λ′.

Proof. This follows as an immediate corollary of Lemma 4. 
�
We now know that we can closely estimate ε, and we can find such an estimate

εmin efficiently.
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3.3 Thresholding

We know from earlier that A0 (x, x) outputs elements according to some “true”
distribution D, and that using different set elements instead of x only shifts this
distribution. We know that, by assumption A0 (x, x) outputs x with probability
ε > εmin, which is a fact we will use extensively. Below, we formally define some
properties of this distribution that will be useful to us for building an algorithm.

Let the distribution D be supported on x1, x2, x3, . . . in X such that, writing
pi = Pr(xi ← D) we have p1 ≥ p2 ≥ p3 ≥ · · · . Then p1 ≥ ε. The following result
shows that fairly quickly there is a noticeable “gap” pi − pi+1 that we can use
for thresholding. Since we don’t exactly know ε (and thus, can’t use it), we will
write the lemmas below for εmin, which we know is relatively close to ε.

Lemma 6. Let pi = Pr(xi ← D) be defined as above, so that p1 ≥ ε and
p1 ≥ p2 ≥ p3 ≥ · · · . Let 0 < εmin ≤ ε be any real number. Let i0 be the smallest
integer such that pi0 > εmin and pi0+1 ≤ εmin. Let � > 0 be an integer such that
� is divisible by 2, and let δ ∈ (0, 1) be a real number. If �

(
εmin − �δ

2

)
> 1, then

there is some integer i < i0 + � such that pi ≤ ε and pi − pi+1 ≥ δ.

Proof. Because the pi are probabilies, we know that
∑|G|

i=1 pi = 1. Let i0 be the
smallest integer such that pi0 > εmin and pi0+1 ≤ εmin. Hence pi0+1 ≤ ε.

If pi0+1 < εmin − δ then, since there is some i such that pi = ε, it follows
that pi0 ≤ ε. The result holds in this case by taking i = i0. Hence it suffices to
consider the case pi0+1 ≥ εmin − δ. Suppose, for the purposes of contradiction,
that for all i such that i0 < i < i0 + � we have pi − pi+1 < δ.

We have
i0+�∑

i=1

pi ≤ 1.

Since we know that pi0 > εmin, as well as for all i0 < i < i0 + �, pi − pi+1 < δ,
we have

i0+�∑

i=1

pi >

i0∑

i=1

εmin +
�∑

k=1

pi0+k > i0εmin +
�∑

k=1

(εmin − kδ) .

By the Gauss summation formula, this implies that

i0+�∑

i=1

pi > i0εmin + �

(
εmin − (� + 1)δ

2

)
= (� + i0)εmin − �(� + 1)δ/2.

However, we have assumed that �
(
εmin − �δ

2

)
> 1, which implies that

∑�
i=1 pi >

1. This gives us the desired contradiction and completes the proof. 
�
Concretely, one can verify that δ = ε2min/4 and � = 2�1/εmin� satisfy the

equation �
(
εmin − �δ

2

)
> 1. Note also that for � < 2/εmin we have

εmin − �δ > εmin − 2
εmin

ε2min

4
=

εmin

2
.
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Hence the hard case of thresholding is when there are pi such that ε > pi >
εmin/2. Since i0 ≤ 1/εmin, we have i0 + � ≤ 3/εmin + 2. Since ε < εmin(1 + 3/λ) we
have

i0 + � ≤ 2 + 3/εmin < 2 + 3(1 + 3/λ)/ε = O(1/ε). (1)

Remark 2. Note that the above result also applies if pi are (good) estimations
of the true probabilities from some empirical distribution based on a fixed num-
ber of samples, up to some (small) margin of error, of course. In practice, the
bounds will largely be interchangeable with ε rather than εmin (up to constant
factors, assuming we picked λ and λ′ large enough when finding εmin). But in
our algorithm below we will actually be working with the empirical estimate εmin

and estimates of the pi.

3.4 Finding a Gap

Our intuition for how we find a gap is fairly simple: choose some security parame-
ter λ, which will impact the failure probability of our simulation. Then, compute
an estimated lower bound εmin as we described in the previous subsection and
set δ = ε2min/4. Then, we will query A0 (x, x) enough times so that, if there is a
gap of size at least δ = ε2min

4 between two (estimated) probabilities pi, pi+1, there
will be a noticeable difference in the number of xi’s and xi+1’s that we see over
all of the outputs. Then, by standard sampling theorems, if λ′′ is large enough,
the gap in sampled elements will be at least kλ′′ for some constant k. We can
use a similar analysis to show that, with high probability, we don’t incorrectly
find a small gap either (although we might not find the largest gap). The full
algorithm and proof are below.

Algorithm AI (εmin, λ
′′, δ, T )(Gap-finding algorithm) On input a positive num-

ber λ′′, which can be chosen linearly to the security parameter λ, and all previous
parameters as previously stated. The algorithm AI proceeds as follows:

– Initialize an empty database D consisting of tuples (x ∈ X , t ∈ Z) where X is
the set and t is a nonnegative integer.

– For (i = 0; i ≤ T ; i + +):
• Set zi = A0 (x, x), where each zi is a “fresh” call of A0 (x, x).
• If zi is the first entry in some tuple (zi, t) ∈ D, increment t by 1 in the

tuple and update D.
• If zi has not yet been added to D, add the tuple (zi, 1) to D.

– Sort (and relabel) the tuples in D in decreasing order of t, getting a database
of tuples (z1, t1), (z2, t2), ... , such that, for all i, ti ≥ ti+1.

– Find the smallest integer i such that ti+1 ≤ (εmin−δ/2)T and ti−ti+1 ≥ Tδ/2
and output that i. If no such i exists then output ⊥.
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Proving that we find a gap. We next claim that the above algorithm outputs
some i with high probability if λ′′ is large enough. More precisely, we show that
it outputs a gap close to the “best” with high probability, which is good enough
for us.

First we need a basic lemma about how well our estimates ti/T approximate
the true values pi, for values pi in the worst case zone εmin ≥ pi > εmin/2 handled
by Lemma 6.

Lemma 7. Let εmin ≤ ε and δ = ε2min/4. Let T = λ′′
(

3072
ε3min

)
for some λ′′. Let i

be an integer, ti be the number of times element x is sampled in an experiment
where x is sampled T times independently with probability pi. We have

1. If εmin ≥ pi, then ti/T − pi < δ/8 holds except for the probability that decays
exponentially in λ′′.

2. Moreover, if εmin ≥ pi ≥ εmin/2, then |ti/T − pi| ≤ δ/8 with probability that
decays exponentially in λ′′.

Proof. Firstly, since

Pr
[
ti/T − pi ≥ δ

8

]
= Pr

[
ti − piT ≥ δ

8
T

]
= Pr

[
ti − piT ≥

(
ε2min

32pi

)
piT

]
,

by taking η = ε2min

32pi
≥ 0 for the Chernoff bound, we have

Pr
[
ti/T − pi ≥ δ

8

]
≤ e−piTη2 1

2+η

= e
−T · pi·ε4min

1024·p2
i

· 1
2+η

= e
− T ·ε3min

1024 · εmin
pi

· 1
2+η

= e
−3λ′′· εmin

pi
· 1
2+η

= e
−3λ′′· εmin

pi
· 32pi
64pi+ε2

min

≤ e
−3λ′′· 32εmin

64εmin+ε2
min

≤ e−3λ′′· 3265

≤ e−λ′′
.

Similarly, we have

Pr
[
|ti/T − pi| ≥ δ

8

]
= Pr

[
|ti − piT | ≥ δ

8
T

]
= Pr

[
|ti − piT | ≥

(
δ

8pi

)
piT

]
.

Since εmin ≥ pi ≥ εmin/2 we have 1 ≤ εmin/pi ≤ 2, so

Pr
[
|ti − piT | ≥

(
δ

8pi

)
piT

]
≤ Pr

[
|ti − piT | ≥

(εmin

32

)
piT

]
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By the Chernoff bound, with η = εmin/32 ∈ (0, 1), this is bounded by

2e−piTη2/3 ≤ 2e−(εmin/2)T (εmin/32)
2/3 = 2e−λ′′/2

which proves the result. 
�
Lemma 8. Consider all parameters as previously stated. Consider the smallest
choice of i such that pi − pi+1 ≥ δ = ε2min

4 and pi ≤ εmin. It is the case that
algorithm AI outputs some integer less than or equal to i with probability that
decays exponentially in λ′′.

Proof. Let i be the index from Lemma 6, so that pi ≤ ε and pi − pi+1 ≥ δ. It
follows that pi ≥ εmin/2 and ε − δ ≥ pi+1 ≥ εmin/2 − δ. By Lemma 7 (Item 2) we
have |ti/T − pi| < δ/8.

Since εmin ≥ pi > pi+1, by Lemma 7 (Item 1) we have ti+1/T − pi+1 < δ/8.
(Recall that pi+1 might not less than εmin/2.) It follows that

ti/T − ti+1/T > (pi − δ/8) − (pi+1 + δ/8) = (pi − pi+1) − δ/4 > δ/2.

This proves the result. 
�
Lemma 9. Consider all parameters as previously stated. Let I be the output of
algorithm AI . The probability that pI−pI+1 ≤ δ/4 = ε2min

16 is a function that decays
exponentially in λ′′.

Proof. Suppose pI −pI+1 ≤ δ/4 for the purpose of contradiction. Then we claim
that tI − tI+1 ≥ Tδ/2 holds with a negligible chance.

Since εmin ≥ pI ≥ εmin/2, we have pI+1 ≥ pI − δ/4 where δ = ε2min/4. Since
εmin/4 ≥ ε2min/16 always holds, we have pI+1 ≥ εmin/4.

Similar to the proof of Lemma 7, write

Pr
[
|tI+1/T − pI+1| ≥ δ

8

]
= Pr

[
|tI+1 − pI+1T | ≥ δ

8
T

]

= Pr
[
|tI+1 − pI+1T | ≥

(
δ

8pI+1

)
pI+1T

]
.

Since εmin ≥ pI+1 ≥ εmin/4 we have 1 ≤ εmin/pI+1 ≤ 4, so

Pr
[
|tI+1 − pI+1T | ≥

(
δ

8pI+1

)
pI+1T

]
≤ Pr

[
|tI+1 − pI+1T | ≥

(εmin

32

)
pI+1T

]

By the Chernoff bound, with η = εmin/32 ∈ (0, 1), this is bounded by

2e−pI+1Tη2/3 ≤ 2e−(εmin/4)T (εmin/32)
2/3 = 2e−λ′′/4.

Hence, |tI+1/T − pI+1| < δ
8 with an overwhelming chance. By applying Lemma

7 (Item 2) to the term of index I, we have |tI/T −pI | < δ
8 with an overwhelming

chance. By combining together, we have tI/T − tI+1/T < δ/4+ pI − pI+1 < δ/2
except for a probability that decays exponentially in λ′′. That is, tI−tI+1 ≥ Tδ/2
holds only with a negligible chance, which proves the result. 
�

To conclude, algorithm AI runs in time proportional to 1/ε3 and outputs an
index I = O(1/ε) such that pI ≤ ε and pI − pI+1 > δ/4.
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3.5 Using the Fixed Set of Elements

From the previous section, we know that there will be some index I ≤ 2
εmin

such that we can efficiently find (in time proportional to λ
ε3min

), for some λ′′

independent2 of εmin, the set of elements x1, . . . , xI that appear with highest
probability. Note that this set is invariant across calls to different inputs to A0,
and we will exploit this in our algorithms.
Algorithm A1 (y, z, I, T )(Algorithm to find heavy elements)

– Initialize an empty database D consisting of tuples (x, t) ∈ X ×Z where X is
the set and t is a nonnegative integer.

– For (i = 0; i ≤ T ; i + +):
• Set zi = A0 (y, z), where each zi is a “fresh” call of A0 (y, z).
• If zi is the first entry in some tuple (zi, t) ∈ D, increment t by 1 in the

tuple and update D.
• If zi has not yet been added to D, add the tuple (zi, 1) to D.

– Sort (and relabel) the tuples in D in decreasing order of t, getting a database
of tuples (z1, t1), (z2, t2), ... , such that, for all i, ti ≥ ti+1.

– Return the set {z1, ..., zI}.

The following lemma shows that if T = λ′′
(

3072
ε3min

)
then with overwhelming

probability Algorithm A1 does output the I elements that are heaviest, in the
sense that the corresponding probabilities pi are the highest.

Lemma 10. Consider all parameters as previously stated. Let T = λ′′
(

3072
ε3min

)

for some λ′′. Then algorithm A1 outputs the I heaviest elements in the distribu-
tion except with probability that decays exponentially in λ′′.

Proof. From Lemma 9 we have pI − pI+1 > δ/4. Algorithm AI ensures tI+1 ≤
(εmin − δ/2)T . Hence, pI+1 < εmin − δ/4. It sufffices to show that the heaviest I
elements all appear with frequency strictly larger than (pI+1+δ/8)T and that the
remaining elements all appear with frequency strictly smaller than (pI+1+δ/8)T .
Note that pI+1 + δ/4 < εmin.

If pi ≥ ε ≥ εmin > pI+1 + δ/4 then

Pr [ti > (pI+1 + δ/8)T ] = Pr [ti > (pi − (pi − (pI+1 + δ/8)))T ]
= Pr [ti − piT > −(1 − (pI+1 + δ/8)/pi)piT ] .

The Chernoff bound with η = 1 − (pI+1 + δ/8)/pi ∈ (0, 1) shows this holds with
an overwhelming chance. That is,

Pr [ti − piT ≤ −(1 − (pI+1 + δ/8)/pi)piT ] ≤ e− η2piT

2 .

The next case is i ≤ I where pI < εmin. We apply the union bound to the
O(1/εmin) values of i in this case. Note that ε > pi > εmin/2 in this case, so we
2 λ′′ may be dependent on log |G|.
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can apply Lemma 7. Hence, |ti/T − pi| ≤ δ/8 with overwhelming probability.
ti/T ≤ pi + δ/8. It follows that for i ≤ I we have ti/T ≥ pi − δ/8, and then
ti ≥ Tpi+1 + Tδ/8 with an overwhelming chance.

Finally, we need to handle the case when i > I (so pi ≤ pI+1). For any
specific i then the Chernoff bound shows that ti does not exceed (pI+1 + δ/8)T
except with probability that decays exponentially in λ′′. But since there are
exponentially many such i we need to argue that, for all j ≤ I and all k > I, the
probability that A1 outputs any zj fewer times than any zk decays exponentially
in λ′′.

To handle this, suppose we group each of the zk’s (recall k > I) into sets
z̃1, z̃2, ... in the following way: starting with zI+1, add set elements in increasing
order to the set z̃1 as long as the total sum of probabilities of elements in the
set is less than pI . Once z̃1 is “full”, continue this process with the “unused”
set elements in increasing order until z̃2 is “full”, and then continue this process
until all of the set elements zk have been placed in a set z̃k′ . We note that such
a process may not be efficient, but we do not need it to be.

Since the pi are decreasing, it follows that the probability mass of each set z̃k′

(except perhaps the last one) is at least pI/2. Hence there are a maximum of 2
pI

sets z̃k′ , or otherwise the sum
∑∞

k=i pk > 1, which is a contradiction. Moreover,
note that the probability that some zk is output more than some zj is less than
the probability that elements in the set z̃k′ containing zk are output more than
the zj .

Therefore, the probability that A1 does not output the I heaviest elements
is at most I 2

pI
multiplied by the probability that A1 outputs zI+1 more than

zI . Since I and pI are independent of λ′′, the statement claimed in the lemma
holds. 
�

Consider the following algorithm, where all parameters are as previously
stated. We assume as inputs a CDH challenge (y, z) = (a � x, b � x) and all
relevant parameters.

Algorithm A2(y, z, I, T ) (Pruning)

– Run the algorithm A1 (y, z, I, T ) from the previous section with oracle calls
A0 (y, z) to get a set of elements S = {z1, ...., zI}. Record all of these.

– Create a list L of set elements intialized to be empty.
– For each j ∈ [1, I]:

• Run the algorithm A1(x, zj , I, T ) getting a set of elements Sj .
• If Sj = S then add zj to L.

Output L.

We next prove a lemma about the running time of this algorithm.

Lemma 11. Algorithm A2 runs in time O
(

1
ε4min

)
in εmin and in time polyno-

mial in all other factors.
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Proof. Since I ≤ c
εmin

for some constant c, and this algorithm makes I calls to our

previous algorithm, it has running time O
(

1
ε4min

)
, ignorning the λ′′ factors, which

are technically independent of εmin (i.e. λ must be proportional to something in
log |G|). 
�

In the next section we show that L consists of either a single element (ab)�x
or else there is a subgroup H such that L = {(hab) � x : h ∈ H}.

3.6 Proof of Finding the Subgroup

Let S = A1(x, x) be the set of heavy elements output by the gap-finding algo-
rithm on instance x. We have x ∈ S with overwhelming probability. For w ∈ X
let Sw = A1(x,w). Let L = A2(x, x) be the list (a subset of S) output by
the pruning algorithm. We know that if x ∈ L then x ∈ S. For w ∈ X let
Lw = A2(x,w).

For any set S = {x1, . . . , xI} and g ∈ G define g � S = {g � x1, . . . , g � xI}.
Ditto for g � L. From lemma 2, we know that A0(x, g � x) = g � A0(x, x).

Lemma 12. Let notation be as above. The following properties hold:

1. Sg�x = g � S.
2. A1(x, g � x) = g � A1(x, x).
3. Lg�x = g � L.
4. A2 (x, g � x) = g � A2 (x, x).

Proof. To prove the first item, note that Sg�x is the set of thresholded outputs
of A0(x, g � x). But A0(x, g � x) = g � A0(x, x). So Sg�x = g � S.

The second part is immediate, since A1(x, g�x) = Sg�x = g�S = g�A1(x, x).
Finally,

Lg�x = {w ∈ Sg�x : A1(x,w) = A1(x, g � x)}
= {w ∈ Sg�x : A1(x,w) = g � A1(x, x)}
= {w ∈ Sg�x : g � A1(x, g−1 � w) = g � A1(x, x)}
= {w ∈ g � S : A1(x, g−1 � w) = S}.

Hence Lg�x = g � L. The fourth part, in a similar argument to the second part,
is immediate since A2(x, g � x) = Lg�x = g � L = g � A2(x, x). 
�

Now we let H = {g ∈ G : g � x ∈ L} and we show H is a subgroup. For a set
S we define H � S = {h � w : h ∈ H,w ∈ S}.

Corollary 1. Let notation be as above and assume x ∈ L. Let H = {g ∈ G :
g � x ∈ L}. Then H is a subgroup of G and H � L = L. Finally |H| = |L| ≤
|S| = O(1/εmin).
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Proof. Since our group action is regular, we can define H = {g ∈ G : g � x ∈ L}.
Since x ∈ L we have 1 ∈ H and H is non-empty.

Let w ∈ L and let g ∈ H be such that w = g�x. Recall that L = A2 (x, x) and
A2 takes as input the set S. It then computes all w ∈ S such that A1(x,w) = S.

By definition of L, we have L = A2(x, x). Note that, for any w ∈ L, we have
A1 (x,w) = A1 (x, x) by definition, and thus we immediately see that A2 (x,w) =
A2 (x, x), since we will prune identically in both cases. Finally, we have

A2(x,w) = A2(x, g � x) = g � A2(x, x) = g � L

Hence g � L = L. It follows that H ∗ L = L.
(As an aside, going back to g � L = L, by induction we have gn � L = L for

all integers n. Hence the order of g is at most |L|.)
Finally, let g1, g2 ∈ H. By definition of A2, this means A2(x, g1 � x) =

A2(x, g2 � x). But this implies g1 � L = g2 � L =:. Then A2(x, (g1g2)x) =
g1 � A2(x, g2 � x) = g1 � L = L. Hence, g1g2 ∈ H. 
�

The outcome of all this is that L is a coset of a subgroup H of G. Just
like in [MZ22], we can output a complete subgroup H in which our solution is
guaranteed to lie.

3.7 Putting It All Together

We are now in a position to state an overall algorithm. We are given a group
action (G,X , �), a fixed x, and an oracle A. First, we do several precomputations:
We run Algorithm Aε to compute εmin, and then Algorithm AI to compute I,
and finally we use Algorithm A2 to compute the list L and hence the subgroup
H. The cost of the precomputation is O

(
λ2λ′

ε + λ′′
ε4

)
, assuming λ > 5.

When provided with a GA-CDH challenge (x, y, z) we run A2(y, z, I, T ),
which does the pruning to S and outputs L, which is a coset with respect to a
subgroup H.

Lemma 13. The probability that A2 does not output a correct L (meaning that L
is a complete coset of a subgroup G/H for some subgroup H) decays exponentially
in λ, λ′, and λ′′ assuming λ > 5.

Proof. This follows from Lemmas 3, 4 8, 9, 10, and Corollary 1. 
�
This essentially allows us to minimize our error exponentially by only growing

λ′ and λ′′ linearly.

3.8 Using the Subgroup

At this point, we can go back to the template of [MZ22]. Once we have the
appropriate set L, we just need to follow their approach for finishing the overall
algorithm. We mirror both their techniques and presentation in this subsection.
While we could just cite their results, we present them here for the sake of
completeness and point out the text here is only slightly modified from their
work.
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Removing Superfluous Information. We will next want to run quantum period-
finding algorithms which make queries to A2 on superpositions of inputs. These
algorithms, however, assume A2 is a function. Unfortunately, our algorithm gen-
erates significant side information, namely all the intermediate computations
used to arrive at the final answer. Fortunately, since our algorithm outputs a
single answer with overwhelming probability, we can use the standard trick of
purifying the execution of A2 and then un-computing all the intermediate values.
The result is that A2 is negligibly close to behaving as the function mapping
(y, z) �→ H � CDH(y, z). From now on, we will therefore assume that A2 is such
a function.

Computing H. Given algorithm A2, we can compute the subgroup H using
quantum period-finding [BL95]. Concretely, the function a �→ A2(a � x, x) will
output (aH) � x, which is periodic with set of periods H. Therefore, applying
quantum period finding to the procedure a �→ A2(a � x, x) will recover H. This
will make O(log |G|) calls to A2(a � x, x).

Solving DLog in G/H. Notice that A2 is a (near) perfect CDH-solver, just in the
group action corresponding to G/H. Concretely, the group G/H acts on the set
X/H := {H � y : y ∈ X} in the obvious way; the distinguished element of X/H
is H �x. Our algorithm A2 gives a perfect CDH algorithm for this group action:
we compute CDH(H �y,H �z) as A2(y′, z′) for an arbitrary y′ ∈ H �y, z′ ∈ H �z.

We apply Galbraith et al. [GPSV21] to our CDH adversary for (G/H,X/H)
to obtain a DLog adversary B(gH � x) which computes gH. For completeness,
we sketch the idea: Let a be a set of generators for G/H. Since G is abelian, we
can write any g as av for some vector v ∈ Zn1 ×· · ·×Znk

where ni is the period
of ai. We assume the ni are fully reduced, so that the choice of v is unique.
Shor’s algorithm is used in this step, and we note that Shor’s algorithm will not
necessarily work if G is not abelian and our group action is not regular, which
is why we need this restriction.

The CDH oracle allows, given h� (H �x), to compute hy � (H �x) in O(log y)
steps using repeated squaring. Given a DLog instance g � (H �x) = av � (H �x),
we define the function (x, y) �→ ax+yv � (H � x), which can be computed using
the CDH oracle3. Then this function is periodic with period (v,−1). Running
quantum period-finding therefore gives v, which can be used to compute h.

Solving DLog in G We now have an algorithm which solves, with overwhelming
probability, DLog in G/H. We now turn this into a full DLog adversary, which
works as follows:

– Given y = c � x, first apply the DLog adversary for G/H, which outputs cH.
– For each a ∈ cH (which is polynomial sized), test if y = a � x. We output the

unique such a.

Overall, assuming ε is small relative to log |G|, the running time of the algo-
rithm is dominated by the cost of running A2.
3 The original paper [GPSV21] needed to solve close vector problems in the relation

lattice, but Wesolowski [Wes22] (proof of Theorem 3) has shown that one can bypass
this by using the CDH oracle.
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3.9 Extending to Non-regular Group Actions

We also borrow the text in this section almost verbatim from [MZ22] for the sake
of completeness. The above assumed a regular group action, which captures all
the cryptographic abelian group actions currently known. Here, we briefly sketch
how to extend to an arbitrary abelian group action. The idea is that, within any
ablelian group action, we can pull out a regular group action, and then apply
the reduction above.

Concretely, we first consider restricting (G,X, �) to the orbit of x under G,
namely G � x. Let S ⊆ G the the set of a that “stabilizes” x, namely a � x = x.
Then S is a subgroup. Moreover, for any y ∈ G � x, the set of a that stabilize y
is also exactly S.

The first step is to compute the (representation of the) subgroup S. Let
f : G → X be defined as f(a) = a � x. Then f is an instance of the abelian
hidden subgroup problem with hidden subgroup exactly S. Therefore, we can
find S using Shor’s quantum algorithm.

Then we can define the new group action (G/S,G � x, �), which is a regular
abelian group action. CDH in this group action is identical to CDH in the original
group action, in that a CDH adversary for one is also a CDH adversary for the
other. We can also solve DLog in (G,X, �) by solving DLog in (G/S,G � x, �),
and then lifting a ∈ G/S to a′ = (a, g) ∈ G for an arbitrary g ∈ S.

The main challenge is that our CDH adversary A may not always output
elements in G � x, and it may be infeasible to tell when it outputs an element
in G � x versus a different orbit. Nevertheless, the same reduction as used above
applies, and the analysis can be extended straightforwardly but tediously to
handle the fact that A may output elements in different orbits. The rough idea
is that S outputted by A1 may have pieces from elements from different orbits.
But S ∩G�x is still going to contain a solution, and elements in different cosets
will be pruned since they are inherently unreachable. This is enough to ensure
that we obtain a near-perfect CDH algorithm on (G/S)/H.
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