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Abstract. The Groth-Sahai proof system is a highly efficient pairing-based proof
system for a specific class of group-based languages. Cryptographic primitives
that are compatible with these languages (such that we can express, e.g., that a
ciphertext contains a valid signature for a given message) are called “structure-
preserving”. The combination of structure-preserving primitives with Groth-
Sahai proofs allows to prove complex statements that involve encryptions and
signatures, and has proved useful in a variety of applications. However, so far,
the concept of structure-preserving cryptography has been confined to the pairing
setting.

In this work, we propose the first framework for structure-preserving cryptog-
raphy in the lattice setting. Concretely, we

– define “structure-preserving sets” as an abstraction of (typically noisy)
lattice-based languages,

– formalize a notion of generalized structure-preserving encryption and signa-
ture schemes (capturing a number of existing lattice-based encryption and
signature schemes),

– construct a compatible zero-knowledge argument system that allows to argue
about lattice-based structure-preserving primitives,

– offer a lattice-based construction of verifiably encrypted signatures in our
framework.

Along the way, we also discover a new and efficient strongly secure lattice-
based signature scheme. This scheme combines Rückert’s lattice-based signature
scheme with the lattice delegation strategy of Agrawal et al., which yields more
compact and efficient signatures.

We hope that our framework provides a first step towards a modular and ver-
satile treatment of cryptographic primitives in the lattice setting.

Keywords: Structure-preserving cryptography · lattice-based cryptography ·
public-key cryptography

1 Introduction

Structure-Preserving Cryptography. Groth-Sahai (GS) proofs [34] are practical non-
interactive zero-knowledge (NIZK) proof systems for a very general class of group-
based languages. Essentially, GS proofs allow to argue in zero-knowledge about the
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satisfiability of systems of equations over groups that may involve exponentiation, of
course group operations, and even pairing operations. When used in conjunction with
“suitably algebraic” group-based cryptographic primitives (like encryption or signature
schemes), GS proofs allow to efficiently prove complex statements like “This cipher-
text contains an electronic passport for John Smith that is certified by a government
authority.”1 In comparison to a generic approach (with, say, a generic NIZK system for
NP [26]), such a “native” approach is significantly more practical.

“Suitably algebraic” cryptographic primitives are called structure-preserving [2,
32] (or, in a slightly different formulation, automorphic [28]). Numerous examples
of structure-preserving signature (e.g., [1–3,19,20,33]) and public-key encryption
schemes (e.g., [15,23,25,37]), as well as other primitives (e.g., [12,50]) are known,
based on different computational assumptions, and having different efficiency and secu-
rity features.

All of these building blocks can be combined, and GS proofs can be used to
argue about such combinations efficiently. However, so far, the paradigm of structure-
preserving relies on a particular algebraic setting (of pairing-friendly cyclic groups),
and it is unclear whether a similar modular combination of cryptographic primitives is
also possible over other domains.2

This Work: Structure-Preserving Cryptography over Lattices. In this work, we initi-
ate the study of structure-preserving cryptography over lattices. We put forward suit-
able definitions of structure-preserving signature and encryption schemes, and present
a suitable NIZK system for proving statements about combinations of these primitives.
Hence, in short, our core contributions are

– a suitable definition of lattice-based structure-preserving cryptographic primitives
(including the modeling of a number of existing signature and encryption schemes
according to this definition),

– a suitable zero-knowledge argument system that allows to show statements about
lattice-based structure-preserving primitives,

– as an application (and to demonstrate the usefulness of our approach), a modular
lattice-based protocol for verifiably encrypted signatures.

As we will explain, our notion of lattice-based structure-preserving primitives is not
quite as universal as in the GS setting. This allows us to model a large class of primi-
tives, but also asks for some degree of compatibility among the used primitives. We still
believe that our abstract framework is a step towards plug-and-play lattice-based cryp-
tography. Indeed, one benefit of our approach is modularity: It is true that the security

1 Such a combination has been suggested before (e.g., [10,11,13]), but GS proofs allow a much
more general treatment, and a broader class of languages and potential applications.

2 Of course, dedicated protocols for concrete tasks (such as identity escrow [35] or verifi-
able encryption [16]) exist also based on other assumptions. Also, very efficient lattice-
based commit-and-prove protocols for general classes of languages exist in the random ora-
cle model [40]. However, nothing comparable to the full “structure-preserving cryptography”
paradigm (that ensures a non-interactive and conceptually simple plug-and-play combination
of different primitives) exists in other algebraic settings.
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analysis for each lattice-based component (i.e., signature or encryption scheme) needs
to keep track of noise growth and failure probabilities. However, due to our interface,
this analysis needs to be done only once per component, not once for every possible
combination of components.

Contribution 1: A Definition of Lattice-Based Structure-Preserving Primitives. First,
we cannot use or easily adapt existing (group-based) definitions of structure-preserving
primitives: with computations over lattices, there is no equivalent of “exponentiation”
or “pairing”. Besides, typically lattice-based ciphertexts or signatures often feature a
“noise term”, which may grow with operations on these values. Once the noise term
becomes too large, decryption or verification becomes unreliable. Hence, operations on
these values are limited in a quantitative way, and this limitation should be reflected in
a definition of structure-preserving cryptography.

Since lattice-based cryptographic constructions usually work over the ring Zq (for
a suitable integer q), it is tempting to call the solutions to arbitrary systems of linear
equations over Zq, possibly with boundaries on norms (to accommodate noise terms),
structure-preserving. Unfortunately, we do not know how to instantiate a proof system
for such general sets in the standard model.3

So instead of trying to match the group-based definition, we start from scratch
with a relatively simple definition of “structure-preserving sets” modelling exactly the
noise terms of lattice-based cryptography. We present a standard-model non-interactive
proof system for these sets, and aim to interpret signatures and ciphertexts (or, rather,
the randomness of ciphertexts) as structure-preserving sets. To express more powerful
statements in terms of structure-preserving sets, we additionally require our structure-
preserving signature and encryption schemes to allow for suitable homomorphic opera-
tions (that, e.g., allow to verify a signature inside an encryption scheme).

Fortunately, we discover that several existing signature and encryption schemes sat-
isfy our definitions. Examples include Regev encryption [45] and its dual variant [30],
the GSW leveled homomorphic encryption scheme [31], and the signature schemes of
Boyen [14] and Rückert [46].4

At this point, the mentioned required compatibility among used primitives is crucial:
we unfortunately cannot combine arbitrary lattice-based structure-preserving encryp-
tion and signature schemes. Essentially, we require that the encryption scheme allows
to homomorphically verify an encrypted signature. This allows to combine, e.g., the
GSW FHE scheme with all of the mentioned signature schemes; alternatively, we can
combine any additively homomorphic scheme (such as Regev’s scheme or its dual vari-
ant) with Rückert’s scheme or its mentioned new and more compact variant, but not
with Boyen’s scheme.

Contribution 2: A Compatible NIZK Argument System. To allow arguing about com-
binations of encryption and signature schemes, we also introduce an analogue of GS

3 We note that in the random oracle model, very efficient such proof systems exist [24,42].
4 Rückert’s scheme uses the “Bonsai trees” lattice delegation method of [18]. As an aside, we

also make explicit a vastly more compact version of Rückert’s scheme that uses the more com-
pact lattice delegation strategy of [5]. While this modification entails no significant technical
complications, it may be worthwhile to point out.
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proofs. In our case, we use the LWE-based NIZK system of Libert et al. [36] as a basis.
This proof system is based upon a Σ-protocol [21] for proving that an LWE encryption
contains a certain value. (That Σ-protocol is later converted to a NIZK system by apply-
ing the Fiat-Shamir transform [27] in the standard model, with a correlation-intractable
hash function). To suit our needs, however, we need to generalize this proof system to
structure-preserving sets (i.e., to statements that are valid “up to noise”). This requires
a more careful analysis, and in particular a liberal use of rejection sampling [38].

We should emphasize that we are interested in a standard-model proof system.
Indeed, while our application does not require this, we would like to be able to argue
about encrypted proofs (and thus achieve the “nestable” property of Groth-Sahai proofs).
If proof verification involves random oracle queries, this is not possible transparently.
We should note, however, that our proof system supports only linear languages, while
its verification itself is not linear. Hence, nesting proofs of our proof system is only
possible when using leveled homomorphic encryption schemes (that allow to verify
even a nonlinear encrypted proof through homomorphic evaluation). We leave open
the construction of a lattice-based proof system for a language that includes its own
verification.

Contribution 3: Lattice-Based Verifiably Encrypted Signatures. Finally, we demon-
strate the usefulness of our approach using the setting of verifiably encrypted sig-
natures [7,13,29,47]. Concretely, we show how to combine lattice-based structure-
preserving signature and an encryption schemes to obtain a scheme that allows to prove
that a given ciphertext contains an encryption of a valid signature for given (publicly
known) message. While generic constructions (e.g., using lattice-based zero-knowledge
for NP [43]) for this task are possible, and very efficient techniques for related problems
exist in the random oracle world [24,42], it appears that our protocol is the first non-
generic (i.e., at least somewhat efficient) lattice-based verifiably encrypted signature
scheme in the standard model.

More Related Work. As already mentioned, there is a very successful line of work [8,
24,40,41] that aims at practical (non-interactive) zero-knowledge proofs from lattices in
the random oracle model. The supported languages are very general and include typical
“noisy linear” languages, as crucial for many lattice-based schemes. Conceptually, these
schemes are commit-and-prove schemes, much like Groth-Sahai proofs.

On the other hand, the use of random oracles appears inherent. For instance, the
scheme from [40] is obtained by using the Fiat-Shamir transform on a suitable Σ-
protocol. Unlike in our setting, these Σ-protocols do not appear to satisfy the require-
ments for the use of correlation-intractable hash functions as replacements for random
oracles. Still, when one is not interested in nesting proofs (and if one accepts random
oracles), then these protocols appear to be excellent replacements for our proof system.

1.1 Technical Overview

We now take a closer look at our framework. Our first step will be to define structure-
preserving sets, an abstraction of “noise terms” that are omnipresent in lattice-based
cryptography.
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Structure-Preserving Sets. We call a set S ⊆ Z
d
q structure-preserving if there is a

(“noise”) distribution D such that

– D “smudges” elements from S in the sense that for any s, s′ ∈ S and d ← D, the
values s + d and s′ + d are statistically close.5

– Smudging with D preserves (non-)membership in S, in the sense that for S = Z
d
q \S,

we have that S+supp(D) and S+supp(D) are disjoint.6 This condition guarantees
that the smudging process is non-trivial.

The set of short-norm vectors is structure-preserving according to (the non-
oversimplified version of) this definition. But structure-preserving sets also cover more
complex cases, such as the set of vectors close to a given vector, (the union of) intervals,
or the cartesian product of structure-preserving sets. In essence, we only require that a
structure-preserving set is “non-trivially smudgeable”.

Jumping ahead, structure-preserving sets will be used to model, e.g., the “raw”
(i.e., un-rounded) verification output of signature schemes. This verification output only
encodes a bit (the verification verdict), but may need to be smudged for further process-
ing to avoid leakage about the signature. In fact, we now proceed to (informally) define
structure-preserving signature and encryption schemes.

Structure-Preserving Signatures. A (lattice-based) signature scheme is called structure-
preserving for a family F of functions if each verification key vk and message msg
defines an f ∈ F such that a given signature σ is valid if and only if f(σ) ∈ S for
a (fixed) structure-preserving set S.7 We will be particularly interested in families F
of linear functions, since such F will allow for (non-generic) zero-knowledge proofs.
This is also the reason for the need to smudge f ’s output: existing lattice-based signature
schemes usually postprocess the result of a linear operation with a rounding step obtain
the verification verdict bit. Instead of this rounding step, we require that f(σ) ∈ S.

We show that Rückert’s signature scheme [46] is structure-preserving for a linear F ,
and that Boyen’s signature scheme [14] is structure-preserving for an F that contains
linear functions and functions computed by low-depth Boolean circuits. Additionally,
we present a more compact variant of Rückert’s scheme (that is also strongly secure
and structure-preserving for a linear F). This new scheme is retrieved by replacing the
“Bonsai trees” lattice delegation method of [18] with the more compact lattice delega-
tion strategy of [5].

Structure-Preserving Encryption. We say that a (lattice-based) encryption scheme is
structure-preserving if ciphertexts are of the form

ct = Br + g(msg)
5 This is an oversimplification. In particular, for, e.g., the set of short vectors S to be structure-

preserving, we need a slightly more relaxed definition. Our actual definition involves rejection
sampling and actually only requires “closeness in a significant portion of cases”.

6 Again, this oversimplifies. We really only require this for almost all vectors of S and a large
enough subset of supp(D).

7 Our actual definition also considers signatures which carry “tags” which can be used to pre-
process messages prior to verifying (but whose publication does not harm security).
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for a matrix B ∈ Z
d×r
q , r ∈ S for a structure-preserving set S, and an invertible and

additively homomorphic “message encoding function” g.8 Intuitively, we require that
r ∈ S to be able to argue about “valid encryptions” (for which the encrypted message
is uniquely determined).

For our applications, it will also be beneficial if the scheme is F-homomorphic, in
the sense that ct = Br+ g(msg) allows to efficiently compute ct′ = Br′ + g(f(msg))
for any f ∈ F (possibly at the price of a larger noise).

We observe that Regev’s encryption scheme [45], its dual variant [30], and the GSW
leveled homomorphic encryption scheme [31] fit our framework (for linear functions,
resp. low-depth circuits). While itself not technically involved, this provides a helpful
uniform way to reason about these schemes.

A Zero-Knowledge Protocol for Encrypted Structure-Preserving Sets. Our last ingre-
dient is a suitable (lattice-based, non-interactive) zero-knowledge proof system that
allows to argue about structure-preserving primitives (and in particular structure-
preserving sets). More concretely, we start with a Σ-protocol that shows that a given
ciphertext (from an arbitrary structure-preserving encryption scheme) encrypts an ele-
ment msg ∈ S from a structure-preserving set S.

This Σ-protocol is derived from a Σ-protocol due to Libert et al. [36] for proving
equality of encrypted messages (where the used encryption scheme is a variant [6]
of Regev encryption). The basic protocol of [36] (following Schnorr’s blueprint [49])
proceeds as follows. Say that we want to show that a given ciphertext ct is an encryption
of 0.9 The prover P then starts by sending a fresh 0-encryption ct0 to the verifier V .
Then V chooses to either open ct0 or ct0 + ct (by sending the random coins of that
ciphertext).

Soundness follows from the fact that if ct is not a 0-encryption, then at least one of
the two ciphertexts ct0 and ct0+ct encrypts a nonzero value. (Of course, to obtain a neg-
ligible soundness error, the above protocol will have to be repeated). Zero-knowledge
follows from the fact that if one knows in advance which ciphertext is opened, one can
program ct0 such that the to-be-opened ciphertext surely encrypts 0.

In our setting, we want to prove that ct encrypts some s ∈ S (without revealing s).
Since S is a structure-preserving set, we can smudge s with a suitable smudging vector
d ← D. When we set up ct0 as an encryption of such a d, we obtain that

– opening ct0 reveals only a smudging value d, and
– opening ct0 + ct reveals a smudged value s + d, which is (almost) statistically

independent of s.

Hence, using a similar strategy as in [36], we obtain zero-knowledge. Moreover, since
smudging preserves (non-)membership in S, we obtain soundness (after sufficiently
many repetitions). The actual proof is more involved than this overview, of course,
largely because of the already mentioned rejection sampling necessary for statistical
closeness.

8 We also define the notion of a “noise level” of a ciphertext which we ignore in this overview.
9 Since the used homomorphic encryption scheme is homomorphic, we can reduce proving

equality of ciphertexts to proving 0-encryptions.
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We only briefly mention that our protocol is compatible with recent standard-model
techniques [17,43] to transform Σ-protocols in the lattice setting into non-interactive
zero-knowledge (NIZK) proofs. We use a sophisticated variant [36] of this approach10

that even achieves unbounded simulation-soundness for specific classes of Σ-protocols.
In the end, we obtain a NIZK argument system for encrypted structure-preserving sets.

From Structure-Preserving sets to Structure-Preserving Primitives. As an application
(and to demonstrate the usefulness of our proof system), we construct a verifiably
encrypted signature (VES [7,13,29,47]) scheme. Intuitively, in a VES scheme, a dedi-
cated signer hands out encrypted signatures (i.e., signatures generated using the signer’s
secret key, and encrypted under the public key of a designated “adjudicator”). Such
encrypted signatures also contain a NIZK proof of validity (i.e., of the fact that the given
ciphertext really contains a valid signature for a given message). In case of a conflict,
however, the adjudicator can extract (by decrypting) a “proper” (i.e., non-simulatable)
signature from a given encrypted signature. VES schemes are useful, e.g., in contract
signing applications [7,13].

Using our framework, a lattice-based VES scheme can be obtained generically from
a structure-preserving signature scheme, a structure-preserving encryption scheme with
compatible message space (and such that it allows to homomorphically verify signa-
tures), and our zero-knowledge proof system for (encrypted) structure-preserving sets.
These primitives are combined in a straightforward way. Perhaps the most interesting
part of this construction is the fact that it suffices to prove that an encrypted value
comes from a structure-preserving set. Indeed, to prove that a given encryption con-
tains a valid signature, we (a) first homomorphically verify that signature inside the
encryption, and (b) then prove that the result corresponds to an “accept”. Recall that by
our definition of structure-preserving signatures, this means proving membership in a
structure-preserving set.

Our formal proof is similar to a proof for an existing VES scheme by Fuchs-
bauer [29] that uses pairing-based structure-preserving cryptography.

1.2 Roadmap

After recalling some notation and standard building blocks in Sect. 2, we present our
definition of structure-preserving sets in Sect. 3. Building on this definition, we proceed
with our notions of structure-preserving signatures (Sect. 4) and structure-preserving
encryption schemes (Sect. 5). We identify and construct example schemes in Sect.
4.1 and 5.1 and more in the full version. Our Σ-protocol for (encrypted) structure-
preserving sets appears in Sect. 6, followed by its conversion to a NIZK proof system
in Section 7. The VES application follows in Section 8 where we also discuss its effi-
ciency.

10 One important advantage of [36] is that it only requires the homomorphic evaluation of a
low-depth circuit in the computation of the CI-Hash function from [43].
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2 Preliminaries

2.1 Notation

A function f is negligible if for every polynomial p(·), there exists an n0 ∈ N such that
for every n > n0 it holds that f(n) < 1

p(n) . We write negl to denote an arbitrary neg-
ligible function. Let X and Y be two probability distributions over a domain Ω. The
statistical distance between X and Y is defined as Δ(X,Y ) := 1

2

∑
ω∈Ω |Pr[X =

ω] − Pr[Y = ω]|. We say that two ensembles {Xn}n∈N and {Yn}n∈N of distributions
are statistically indistinguishable, denoted as {Xn}n∈N ≈s {Yn}n∈N, if Δ(Xn, Yn) =
negl(n). We say that two ensembles {Xn}n∈N and {Yn}n∈N of distributions are com-
putationally indistinguishable, denoted as {Xn}n∈N ≈c {Yn}n∈N, if for every proba-
bilistic polynomial time (PPT) adversary A, we have |Pr[A(Xn) = 1] − Pr[A(Yn) =
1]| = negl(n).

Let S be a finite set. Then by x ←R S we mean that x was sampled from the uniform
distribution over S. For a probability distribution D on S we denoted the support by
supp(D) ⊆ S.

Let x ∈ R
n be a column vector. The xi, for i ∈ {1, . . . , n} denotes the i-th coor-

dinate of x. The �2-norm of x is defined as ‖x‖ :=
√∑n

i=1 x2
i . The �2 norm of a

matrix M ∈ R
n×m is defined as ‖M‖ = supx∈Rm,x�=0

‖Mx‖
‖x‖ . We denote M the Gram-

Schmidt orthogonalization of the matrix M.
For two sets A,B ⊆ Z

n
q , we define the sets A \ B,A+B,A − B ⊆ Z

n
q as follows:

A \ B := {x | x ∈ A ∧ x �∈ B},

A + B := {(a1 + b1, . . . , an + bn) | (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B},

A − B := {(a1 − b1, . . . , an − bn) | (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}.

If A = ∅ or B = ∅, then we define A + B := ∅ and A − B := ∅.
We use Bδ(S) := {v ∈ Z

n
q | (mins∈S,x∈Zn‖v − s + qx‖) ≤ δ} to denote the

closed δ-ball around a set of vectors S ⊆ Z
n
q .

We write H ≤ G to denote that H is a subgroup of a group G.
We say that a function f : X → Y is invertible if there exists a function f−1 : Y →

X ∪ {⊥} such that (i) f−1 is efficiently computable, (ii) for every x ∈ X it holds
f−1(f(x)) = x, and (iii) for every y ∈ Y \ Img(f) it holds f−1(y) = ⊥.

2.2 Lattices

Let us recall various basic lattice notions and hardness problems that we need in later
sections of this work.

Let Σ ∈ R
n×n be a symmetric positive-definite matrix, and c ∈ R

n. Then the Gaus-
sian function on R

n is defined as ρΣ(x) := exp{−πx�Σ−1x}. The function extends to
sets in the usual way. That is, for any countable set A ⊂ R

n, ρΣ(A) :=
∑

x∈A ρΣ(x).
Moreover, for every countable set A ⊂ R

n and any x ∈ A, the discrete Gaussian
function is defined by ρA,Σ(x) := ρΣ(x)

ρΣ(A) and we denote the corresponding discrete

Gaussian distribution as DA,Σ. If Σ = σ2 · In, where In is the n × n identity matrix,
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we denote the Gaussian function as ρσ , the discrete Gaussian function as ρA,σ and the
discrete Gaussian distribution as DA,σ for short. We will make use of the following tail
bound for the discrete Gaussian distribution for Zn.

Lemma 2.1 ([39, Lemma 4.4]). For any k > 1 we have Prx←DZn,σ
[‖x‖ > kσ

√
n] <

kne
n
2 (1−k2).

Let B ∈ R
m×n be a matrix with linearly independent columns b1, . . . ,bn ∈ R

m

for m ≥ n. The m-dimensional lattice Λ with lattice basis B is defined as Λ = {y ∈
R

m | ∃s ∈ Z
n, y = Bs}. The dual lattice of Λ is defined as Λ∗ := {z ∈ R

m |
∀y ∈ Λ, z�y ∈ Z}. For q ≥ 2 and a matrix A ∈ Z

n×m
q we define two m-dimensional

integer lattices Λ⊥(A) := {x ∈ Z
m | Ax = 0 mod q} and Λ(A) = {y ∈ Z

m | ∃s ∈
Z

n, A�s = y mod q}.

Definition 2.2 (Learning With Errors). Let q,m, n be positive integers and χ be a
probability distribution on Z. The LWEm,n,q,χ problem is to distinguish the follow-
ing two distributions: {(A,b) | (A,b) ←R Z

n×m
q × Z

m
q } and {(A,b) | A ←R

Z
n×m
q , s ←R Z

n
q , e ← χm,b := A�s + e}.

Definition 2.3 (LWE with short secrets). Let q,m, n be positive integers and χ be
a probability distribution on Z. The SSLWEm,n,q,χ problem is to distinguish the fol-
lowing two distributions: {(A,b) | (A,b) ←R Z

n×m
q × Z

m
q } and {(A,b) | A ←R

Z
n×m
q , s ← χn, e ← χm,b := A�s + e}.

Definition 2.4 (Short Integer Solution). Let q,m, n be positive integers, A ∈ Z
n×m
q

and β ∈ R. The SISm,n,q,β problem in �2 norm is to find a non-zero vector x ∈ Z
m

such that Ax = 0 mod q and ‖x‖ ≤ β.

Definition 2.5 (Inhomogeneous Short Integer Solution). Let q,m, n be positive inte-
gers, A ∈ Z

n×m
q , y ∈ Z

n
q and β ∈ R. The ISISm,n,q,β problem in �2 norm is to find a

non-zero vector x ∈ Z
m such that Ax = y mod q and ‖x‖ ≤ β.

Remark 2.6. When the SISm,n,q,β problem is hard, the ISISm,n,q,β′ problem is hard as
well where β′ is only slightly larger than β.

We will use the following variant of the Rejection Sampling Lemma by Lyuba-
shevsky to “smudge” small noise – despite working with a polynomial modulus – by
rejection sampling.

Lemma 2.7 ([39, Theorem 4.6]). For all T ∈ N and σ ≥ T
√

n there exists a constant
M such that for all v ∈ Z

n with ‖v‖ ≤ T the distribution

d ← DZn,σ , z := v + d, Output :

{
z with prob. min

(
ρZn,σ(z)

MρZn,σ(d)
, 1

)

⊥ otherwise

is within statistical distance 1/(M2n) of

d ← DZn,σ , Output :

{
d with prob. 1/M
⊥ otherwise

.



264 D. Hofheinz et al.

2.3 Cryptographic Primitives

We first recall the definition of a gap Σ-protocol and a trapdoor gap Σ-protocol. Our
definitions are adapted from the work of Libert et al. [36] which in turn closely follow
the definitions put forward by Canetti et al. [17].

Definition 2.8 (Gap Σ-protocol). Let L = (Lzk,Lsound) be a language associated
with two NP relations Rzk,Rsound s.t. Lzk ⊆ Lsound (i.e., L is a gap language).

Let Setup(1λ,L) be an algorithm that takes an unary encoded security parameter
λ ∈ N and a language descriptionL as input and outputs a common reference string crs.
An interactive proof system Π = (Setup,P,V) in the common reference string model is
a Gap Σ-protocol for L if it has the following 3-move form, where crs ← Setup(1λ,L),
x is a statement and w is a witness:

Prover P = (P1,P2) Verifier V

Input : (crs, x, w) Input : (crs, x)

(a, st) ← P1(crs, x, w) a

Chal ←R CChal

z ← P2(st, a,Chal) z

b ← V(crs, x, a,Chal, z)
Output : b

and the following properties holds:

Completeness: If (x,w) ∈ Rzk and both P and V follow the protocol, then V accepts
with probability 1 − negl(λ). Formally, for every (x,w) ∈ Rzk, we have

Pr

⎡

⎣V(crs, x, a,Chal, z) = 1

∣
∣
∣
∣
∣
∣

crs ← Setup(1λ,L),
(a, st) ← P1(crs, x, w),

Chal ←R C, z ← P2(st, a,Chal)

⎤

⎦ ≥ 1 − negl(λ).

Special zero-knowledge: There exists a PPT simulator ZKSim such that for any
crs ∈ Setup(1λ,L), any (x,w) ∈ Rzk and any challenge Chal ∈ C, the follow-
ing distributions are computationally indistinguishable:

{(a,Chal, z) | (a, z) ← ZKSim(crs, x,Chal)} ≈c

{(a,Chal, z) | (a, st) ← P1(crs, x, w), z ← P2(st, a,Chal)} .

Special soundness: For any CRS crs ∈ Setup(1λ,L) , any x �∈ Lsound, and any first
prover’s message a, there exists at most one challenge Chal = f(crs, x, a) ∈ C for
which there exists a valid prover’s reply z, i.e., V(crs, x, a,Chal, z) = 1. The function
f is called the bad challenge function of Π .

Definition 2.9 (Trapdoor gap Σ-protocol). Let L = (Lzk,Lsound) be a language
associated with two NP relations Rzk,Rsound, s.t. Lzk ⊆ Lsound. A gap Σ-protocol
Π = (Setup,P,V) for L with a bad challenge function f is a trapdoor gap Σ-protocol
if there exist PPT algorithms (TrapSetup,BadChallenge) with the following syntax:



On Structure-Preserving Cryptography and Lattices 265

TrapSetup(1λ,L, τL): Given public parameters par, language L and a membership
trapdoor τL for the language Lsound as input, it outputs a CRS crs and a trapdoor
τΣ ∈ {0, 1}�τ for some �τ (λ);

BadChallenge(τΣ , crs, x, a): Given a trapdoor τΣ , a CRS crs, a statement x and a first
prover message a as input, it outputs a challenge Chal;

and satisfying the following properties:

CRS indistinguishability: For any trapdoor τL for the language Lsound, the following
distributions are computationally indistinguishable

{crs | crs ← Setup(1λ,L)} ≈c {crs | crs ← TrapSetup(1λ,L, τL)}.

Correctness: There exists a language-specific trapdoor τL s.t. for any instance x �∈
Lsound, all pairs (crs, τΣ) ∈ TrapSetup(1λ,L, τL) and any first prover message a,
we have BadChallenge(τΣ , crs, x, a) = f(crs, x, a).

Let us now recall the definition of a Non-Interactive Zero Knowledge (NIZK) proof.
We closely follow the definition given by Libert et al. [36].

Definition 2.10 (NIZK). Let L = (Lzk,Lsound) be a language associated with two NP
relations Rzk, Rsound, such that Lzk ⊆ Lsound and statements are of bit-length N . A
non-interactive zero-knowledge (NIZK) argument system Π for a language L consists
of three PPT algorithms (Setup,P,V) with the following syntax:

Setup(1λ,L, τL) : Given an unary encoded security parameter λ, a language L and a
membership testing trapdoor τL for L as input, it outputs a CRS crs.

P(crs, x, w): Given a CRS crs, a statement x ∈ {0, 1}N , and a witness w as input, the
proving algorithm outputs a proof π.

V(crs, x, π): Given a CRS crs, a statement x ∈ {0, 1}N , and a proof π as input, the
verification algorithm outputs a decision bit.

Moreover, Π should satisfy the following properties.

Completeness: For any (x,w) ∈ Rzk, any lbl ∈ {0, 1}∗ and any membership testing
trapdoor τL for L, we have

Pr[V(crs, x, π) = 1 | crs ← Setup(1λ,L, τL), π ← P(crs, x, w)] ≥ 1 − negl(λ).

Soundness: For any x ∈ {0, 1}N \ Lsound, any membership testing trapdoor τL for L
and any PPT prover P∗, we have

Pr[V(crs, x, π) = 1 | crs ← Setup(1λ,L, τL), π ← P∗(crs, x)] ≤ negl(λ).

Zero-Knowledge: There is a PPT simulator (Sim0,Sim1) such that for any PPT adver-
sary A, we have that for all trapdoors τL:

|Pr[1 ← AOP(crs,·,·)(crs) | crs ← Setup(1λ,L, τL)]
−Pr[1 ← AOSim(crs,τzk,·,·)(crs) | (crs, τzk) ← Sim0(1λ,L)]| ≤ negl(λ),

where OP(crs, x, w) outputs ⊥ if (x,w) �∈ Rzk and π ← P(crs, x, w) otherwise, and
OSim(crs, τzk, x, w) outputs ⊥ if (x,w) �∈ Rzk and Sim1(crs, τzk, x) otherwise.
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Finally we recall the standard definition for digital signature and a public key
encryption scheme.

Definition 2.11 (Digital Signature). A digital signature scheme Σ for a message space
M and signature space S consist of three PPT algorithms (KeyGen,Sign,Ver) with the
following syntax

KeyGen(1λ): Given an unary encoded security parameter λ as input, it outputs a verfi-
cation key vk and a signing key sk.

Sign(sk,msg): Given a signing key sk and a message msg ∈ M as input, it outputs a
signature sig ∈ S.

Ver(vk,msg, sig): Given a verification key vk, a message msg ∈ M and a signature
sig ∈ S as input, it outputs 1 (indicating a valid signature) or 0 (indicating an invalid
signature).

A digital signature scheme Σ = (KeyGen,Sign,Ver) is correct, if for every message
msg ∈ M, we have

|Pr[Ver(vk,msg, sig) = 1 | (vk, sk) ← KeyGen(1λ), sig ← Sign(sk,msg)]|
≥ 1 − negl(λ).

Definition 2.12 (Public-Key Encryption). A public key encryption scheme Π for a
message space M consist of three PPT algorithms (KeyGen,Enc,Dec) with the follow-
ing syntax

KeyGen(1λ):Given an unary encoded security parameter λ as input, it outputs a public
key pk and a secret key sk.

Enc(pk,msg): Given a public key pk and a message msg ∈ M as input, it outputs a
ciphertext ct.

Dec(sk, ct): Given a secret key sk and a ciphertext ct as input, it outputs a message
msg ∈ M or ⊥ (indicating a failure).

A PKE scheme Π = (KeyGen,Enc,Dec) is correct, if for every msg ∈ M, we have

|Pr[Dec(sk, ct) = msg | (pk, sk) ← KeyGen(1λ), ct ← Enc(pk,msg)]| ≥ 1−negl(λ).

3 Structure-Preserving Sets

The first building block in our framework is the notion of a structure-preserving set,
which is a crucial tool in capturing the defining characteristics of a specific family of
lattice-based signatures, encryption schemes and NIZKs which are compatible with
each other. The properties that lead to such structure-preserving cryptographic primi-
tives are described in later sections.

Let q be a large prime. A structure-preserving set S is a special subset of Zd
q that

can be rerandomized to obtain a rerandomized set S′ = S +D (where D is a set which
contains the rerandomizing terms). Given a vector s ∈ S, we can rerandomize s to
obtain s′ ∈ S + D. The structure-preserving property of S ensures that given s′, one
is able to check whether the original vector s ∈ Z

d
q belonged to S or whether it lied

outside of S. In particular, vector s′ allows to check membership of the original s, but
it hides its original value.
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Definition 3.1 (Uniformly Structure-Preserving Set). We say that a set S ⊆ Z
d
q is

uniformly structure-preserving if (i) there exists a subset D ⊆ Z
d
q such that for all

messages s, s′ ∈ S

d ←R D, Output : s + d ≈s d ←R D, Output : s′ + d

(ii) for S := Z
d
q \S it holds that (S+D)∩ (S+D) = ∅, and the membership problem

for D and S + D are easy and we can efficiently sample uniformly at random from D.
We call the maximal statistical distance between the first two boxed distributions the
structure-preserving error.

To provide some intuition about the introduced notion, let us demonstrate the defi-
nition of a concrete example that we use later in the paper. Namely, we show that cosets
of subgroups are uniformly structure-preserving.

Example 3.2 (Cosets of subgroups). Every coset S of an additive subgroup G ≤ Z
d
q is

uniformly structure-preserving.

Proof. By definition of a coset, all the sets Ss = {s + d | d ∈ G} (for s ∈ S) are the
same set S again. Thus by picking D := G, we get that for all s, s′ ∈ S, s + d and
s′ + d for d ←R D are identically distributed. Hence the first part of the definition is
satisfied and the structure-preserving error is 0.

For x ∈ Z
d
q \ S, we know that x ∈ S′ for S′ �= S being another coset of G. Thus

for every d ∈ G, we have x + d ∈ S′. Since different cosets are disjoint, the second
part of the definition is satisfied as well. ��
Remark 3.3. The above example, in particular, implies that

1. all additive subgroups of Zd
q are uniformly structure-preserving; and

2. all singleton sets are uniformly structure-preserving, because they are cosets of the
trivial subgroup {0}.

In order to define lattice-based structure-preserving signatures and encryptions, we
will need a more generic definition of a structure-preserving set. Namely, we do not
want to restrict ourselves to d being sampled uniformly at random, but from any dis-
tribution on Z

d
q . Looking ahead, since we work with lattice-based primitives, we are

particularly interested in Gaussian distributions. Along with the change of distribution
for d, we generalize the definition by loosening some of its condition. At a high level,
in both the first and the second part of the definition, we allow for small errors with
some probability.

Definition 3.4 (Structure-Preserving Set). We say that a set S ⊆ Z
d
q is structure-

preserving with noise growth δ if there exists an efficiently sampleable probability dis-
tribution D on Z

d
q , a constant α ∈ (0, 1], that we will call the no-abort constant, and a

function success : S × S × supp(D) → (0, 1], that we will call the no-abort function,
such that (i) for all messages s, s′ ∈ S
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d ← D

Output :

⎧
⎪⎨

⎪⎩

s + d with prob.

success(s, s′,d)
⊥ otherwise

≈s

d ← D
Output :

{
s′ + d with prob. α

⊥ otherwise

and (ii) there exists a set D′ ⊆ Z
d
q , that we will call the smudging set, such that

Prd←D[d ∈ D′] ≥ 1−negl(λ) for a negligible function negl, and for Sδ := Z
d
q \Bδ(S),

it holds that (S + D′)∩(
Sδ + D′) = ∅. Moreover, the membership problem for D′ and

(S + D′) are easy.11 We call negl the soundness error.

It is easy to see that uniformly structure-preserving sets are special cases of
structure-preserving sets.

Lemma 3.5. Let S be an uniformly structure-preserving set. Then S is a structure-
preserving set with noise growth 0 and soundness error 0.

Proof. By setting D to be the uniform distribution on D, success to be the constant
function 1, α := 1 and D′ = D, we directly obtain that S is a structure-preserving with
noise growth 0 and soundness error 0. ��

Let us provide an example of a structure-preserving set which is not uniformly
structure-preserving.

Example 3.6 (Close vectors). Every set S ⊆ Z
d
q where S − S is T -bounded (i.e.,

S − S ⊆ BT ({0})) is structure-preserving with noise growth 4Td + 1, when d grows
polynomially with the security parameter.

Proof. Pick D := DZd,σ with σ := T
√

d. For all s, s′ ∈ S, by Lemma 2.7, the dis-
tribution that outputs s − s′ + d for d ← DZd,σ with probability success(s, s′,d) :=

min
(

ρ
Zd,σ

(s−s′+d)

Mρ
Zd,σ

(d) , 1
)

is statistically close to outputting d ← DZd,σ with probability

α := 1/M for a constant M . By adding s′ to the output of these two distributions, we
get that the first condition for a structure-preserving set is satisfied.

Pick D′ := B2Td({0}) as smudging set. By the tail bound for Gaussian distribu-

tions (Lemma 2.1) we have Prd←D
Zd,σ

[‖d‖ > 2Td] < 2de
−3d
2 =

(
2e−3/2

)d
< 1

2d ,

which shows that this choice is valid. For x ∈ Sδ := Z
d
q \ B4Td+1(S) and d ∈ D′ we

have x + d ∈ Z
d
q \ B2Td(S). On the other hand, for s ∈ S we have s + d ∈ B2Td(S).

This implies that (S + D′) ∩ (Sδ + D′) = ∅ which is the second condition for a
structure-preserving set. ��
Remark 3.7. This example, in particular, implies that sets of small vectors are structure-
preserving. Namely, let S ⊆ Z

d
q be a T -bounded set. Then by triangular inequality,

S − S is 2T -bounded and hence S structure-preserving with noise growth 8Td + 1.

Next, we show that structure-preserving sets are closed under the cartesian product.

11 The membership problem for S does not need to be easy.
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Example 3.8. When S1 ⊆ Z
d1
q is a structure-preserving set with noise growth δ1 and

S2 ⊆ Z
d2
q is a structure-preserving set with noise growth δ2, then S1 × S2 ⊆ Z

d1+d2
q is

structure-preserving with noise max{δ1, δ2}.

Proof. Let D1, success1, α1 be the distribution, abort function and abort constant that
make S1 a structure-preserving set with noise δ1 and D2, success2, α2 be the distribu-
tion, abort function and abort constant that make S2 a structure-preserving set with
noise δ2. Then the distribution D1 × D2 with the success function

success((m1,m2), (m′
1,m

′
2),d) := success1(m1,m′

1,d) · success2(m2,m′
2,d)

and success probability constant α := α1α2 makes the set S1 ×S2 structure-preserving
with noise max{δ1, δ2}. ��

We complete this section with an alternative formulation of the structure-preserving
set property that is easier to use in some of the proofs.

Lemma 3.9. For a structure-preserving set S with noise growth δ and smudging set D′

we have S + D′ − D′ ⊆ Bδ(S).

Proof. We prove this Lemma by contradiction. Suppose there exist s ∈ S and d,d′ ∈
D such that x := s + d − d′ /∈ Bδ(S), i.e. x ∈ Sδ := Z

d
q \ Bδ(S). But then

S + D′ � s + d = x + d′ ∈ Sδ + D′,

which is in contradiction to part (ii) of Definition 3.4. ��

4 Lattice-Based Structure-Preserving Signatures

A lattice-based structure-preserving signature (SPS) scheme Σ expresses its verifica-
tion algorithm in the framework of structure-preserving sets. Namely, a signature σ can
be split into two separate parts σ = (core, tag). In order to verify that σ is valid, the Σ
verification algorithm checks whether f(core) belongs to a structure-preserving set S.
The function f is publicly computable from tag, along with public verification key vk
and the message m.

The requirement to use tag arises from specific properties of known lattice-based
SPS schemes. The tag is publicly samplable and, for example, it could be a random
string. At a technical level, the tag is usually required in all known lattice-based sig-
natures that satisfy strong-unforgeability, and can remain unused in some schemes that
are only existentially-unforgeable.

Definition 4.1 (Lattice SPS). A lattice-based F-structure-preserving signature Σ for
a family F of functions f : S → Z

d′
q is a digital signature with signature space

S × T where for every verification key vk, every message msg and every signature
(core, tag) ∈ S × T

Ver(vk,msg, (core, tag)) = 1 ⇐⇒ f(core) ∈ S
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where f ∈ F and S ⊆ Z
d′
q are derived from vk, msg and tag. Furthermore, S is a

structure-preserving set. Finally, we require that tags are publicly samplable. That is,
there exists an algorithm TagGen that, given the verification key vk and a message m
generates a tag tag that has the same distribution as the tag part of the signatures
generate with the signing algorithm.

Fig. 1. Security experiment for SPS-EUF-CMA and SPS-sEUF-CMA security of lattice-
based structure-preserving signatures.

Remark 4.2. Since we do not require the membership problem for the sets S to be easy,
this definition does not give immediately rise to an alternative verification procedure.

We are particularly interested in the cases where F is the set of linear functions
or the set of functions that can be computed by bounded-depth Boolean circuits after
encoding the signature as a binary string.

For structure-preserving signatures we require a slightly stronger security notion
(defined below) than standard (strong) existential unforgeability under chosen mes-
sage attacks ((s)EUF-CMA). Compared to (s)EUF-CMA, we relax the verification of
the forged signature as follows: Instead of requiring that the forged signature sig =
(core, tag) satisfies f(core) ∈ S, we only require f(core) ∈ BδS

(S).

Definition 4.3 (SPS-(s)EUF-CMA). We call a structure-preserving signature scheme
(KeyGen,Sign,Ver) SPS-EUF-CMA or SPS-sEUF-CMA-secure, if every PPT adver-
sary can win the respective game in Fig. 1 with at most negligible probability.

4.1 SPS Instantiation

Examples of structure-preserving signatures are Boyen’s signature scheme [14], Rück-
ert’s signature scheme [46] and a new scheme, that combines the advantages of these
two schemes. Namely, it achieves strong unforgeablity and has a simpler verification
(because it does not need the non-zero signature check). Furthermore, it is more effi-
cient (due to shorter signatures) than Rückert’s scheme. We only show that the new
scheme satisfies Definition 4.1 here and present the remaining details in the full ver-
sion.

As a prerequisite, we state some facts that are needed in the signature scheme
description, and define and construct chameleon hash functions.
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Fact 1 ([14, Fact 5]). There is a PPT algorithm TrapGen that, on input the security
parameter λ, an odd prime q = poly(λ), and two integers n = Θ(λ) and m ≥ 6n log q,
outputs a matrix A ∈ Z

n×m
q statistically close to uniform, and a basis TA for Λ⊥(A)

such that ‖T̄A‖ ≤ Θ̃(
√

m) ≤ L with overwhelming probability. We assume L =
Ω̃(

√
m).

Fact 2 ([14, Lemma 22]). For a security parameter λ, let q = poly(λ) be an odd prime,
n = Θ(λ), m ≥ 6n log q, L = Ω̃(

√
m) and σ ≥ Lω(

√
logm). Then there exist a PPT

algorithm SamplePre that on input a Gaussian parameter σ, a modulus q, a matrix
F := [A|B] ←R Z

n×2m
q , and a basis TA ⊂ Λ⊥(A) of norm ‖T̄A‖ ≤ L, and a vector

u, outputs d ∈ Λ⊥(F) from the distribution DZm,σ conditioned on Fd = u.

Fact 3 ([4, Section 4.2]). Given matrices A,B ∈ Z
n×m
q , B needs to have rank n, a

short basis TB for B and a short matrix R ∈ Z
m×m
q , one can compute efficiently a

short basis TF for F := (A|AR + B) with ‖T̃F‖ ≤ ‖T̃B‖(‖R‖ + 1).

Definition 4.4 (Chameleon hash function). A chameleon hash function with message
space M and hash space N consists of an efficiently sampable distribution R on some
randomness space R and two PPT algorithms (GenCH,TrapColl) with the following
syntax

GenCH(1λ): Given an unary encoded security parameter λ as input, it outputs an effi-
ciently computable chameleon hash function ch : M × R → N and a trapdoor
τ .

TrapColl(τ,m ∈ M, r ∈ R,m∗ ∈ M): Given the trapdoor τ for a chameleon hash
function ch, two messages m,m∗ and one randomness r this algorithm outputs r∗

such that ch(m, r) = ch(m∗, r∗) and r∗ is distributed according to R.

The security property we require for chameleon hash functions is collision resistance.
That is, for every PPT adversary A, the following probability is negligible

Pr[(ch, τ) ←R GenCH, (m, r,m∗, r∗) ←R A(1λ, ch) : ch(m, r) = ch(m∗, r∗)
∧(m, r) �= (m∗, r∗)].

An example of a chameleon hash function based on the SIS assumption is by
[18]. It has message space M := {0, 1}k and randomness space R := {r ∈
Z

m | ‖r‖ < s
√

m} with a tail-truncated discrete Gaussian distribution DR,s where
s = L · ω(

√
logm) and n,m, and L are as in Fact 1. It works as follows:

GenCH(1λ) samples A0 ←R Z
n×k
q and A1 ∈ Z

n×m
q with short basis S using TrapGen.

Output A := (A0|A1) to describe the chameleon hash function

chA : {0, 1}k × R → Z
n
q

(m, r) �→ A ·
(
m
r

)

TrapColl(τ,m ∈ M, r ∈ R,m∗ ∈ M) samples and outputs a vector r∗ according to
(a distribution statistically close to) DR,s condition on chA(m∗, r∗) = chA(m, r)
using Fact 2.
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Lemma 4.5 ([18, Lemma 4.1]). The above chameleon hash function is collision-resis-
tant under the SISm,n,q,β problem where β :=

√
k + 4s2m.

The ISIS-based signature scheme requires a chameleon hash function (GenCH,
TrapColl) with message space M, randomness space R and hash space N = {0, 1}�

and is described as follows:

KeyGen(1λ): Given unary encoded security parameter λ as input, proceed as follows:
1. Execute the TrapGen algorithm to obtain a matrix A ∈ Z

n×m
q and a basis TA ∈

Λ�(A) such that ‖T̄A‖ ≤ L.
2. Sample y ←R Z

n
q , (C0, . . . ,C�) ←R Z

n×m
q × . . . ,Zn×m

q .
3. Sample (ch, τ) ←R GenCH(1λ).
4. Output vk := (A,C0, . . . ,C�,y, ch) and sk := TA.

Sign(sk,msg): Given a signing key sk = TA and a message msg ∈ M as input proceed
as follows:
1. Sample r ← R and set msg′ := ch(msg, r).
2. Compute Cmsg := C0 +

∑�
i=1 msg′

iCi and set Fmsg := [A | Cmsg] ∈ Z
n×2m
q .

3. Execute the algorithm SamplePre on Fmsg, TA and σ ≥ 2Lω(
√
logm) to

obtain a short non-zero random point d with Fmsgd = y.
4. Output the signature sig := (core = d, tag = r).

Ver(vk,msg, sig): Given a verification key vk = (A,C0, . . . ,C�,y, ch), a message
msg ∈ M and signature sig = (d ∈ Z

2m
q , r) as input, set msg′ := ch(msg, r) and

output 1 if (1) ‖d‖ ≤ √
2m · σ and (2) [A | C0 +

∑�
i=1 msg′

iCi]d = y mod q.
Otherwise, output 0.

Lemma 4.6. The ISIS-based signature scheme from above is a SPS scheme.

Proof. A signature sig is of the form (core, tag) = (d, r). Clearly, these tags are pub-
licly samplable.

According to definition Definition 4.1, what remains to show is that the signature
verification can be expressed as f(core) ∈ S for some function f : Z2m

q → Z
d′
q and

some set S ⊆ Z
d′
q which is structure-preserving. Both the function f and the set S might

depend on the message being signed, the verification key and the public parameters of
the scheme. We show that the signature verification can be expressed as two checks of
the type fi(core) ∈ Si (i ∈ {1, 2}). These check can then be combined to a single
check by setting f(core) := (f1(core), f2(core)) and S := S1 × S2. The set S is
structure-preserving when S1 and S2 are structure-preserving by Example 3.8.

The first check is ‖core‖ ≤ √
2m · σ, i.e., that core is a small vector. For this, we

can set n′
1 := 2m and

f1(core) := core, and S1 := {x ∈ Z
2m
q | ‖x‖ ≤

√
2m · σ} = B√

2m·σ({0}).
By triangular inequality, we have that S1 − S1 ⊆ B2

√
2m·σ({0}). By Remark 3.7, we

can conclude that S1 is structure-preserving with noise growth 16mσ + 1.
For the second check, we can set n′

2 := n and

f2(core) :=

[

A

∣
∣
∣
∣
∣
C0 +

�∑

i=1

msgiCi

]

core and S2 := {y} ⊂ Z
n
q .
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Note that the function f2 is defined by the message and the verification key. Moreover,
S2 is a singleton set and hence by Remark 3.3 and Lemma 3.5, we know that it is
structure-preserving with noise growth 0. ��

We prove SPS-sEUF-CMA-security of our scheme in the full version.

5 Lattice-Based Structure-Preserving Encryption

Our notion of a structure-preserving encryption (SPE) captures the common properties
of known lattice-bases encryption schemes which are compatible with efficient lattice-
based sigma protocols and NIZKs that prove statements about ciphertexts. In particular,
the randomness space needs to be a structure-preserving set (Definition 3.4) and cipher-
texts are of the form ct = Bαr + gα(msg), where Bα is a public matrix depending on
the message dimension α, and gα is an invertible encoding function.

In addition, SPE needs to satisfy a series of technical properties on the noise, which
provides bounds on the noise levels. This is a crucial property that allows for compati-
bility with the sigma protocols in later sections.

Definition 5.1 (Lattice SPE). A PKE scheme (KeyGen,Enc,Dec) is a lattice-based
structure-preserving encryption scheme if it satisfies the following properties:

– It has message space M∗ for some base set M. That is, we can encrypt arbitrary
dimensional vectors of some base set M. The ciphertexts will reveal the dimensions
of the vectors.

– Public key: The public key implicitly defines matrices (Bα ∈ Z
d(α)×r(α)
q )α∈N+ and

efficiently sampleable distribution (Rα)α∈N+ such that r ← Rα lies with over-
whelming probability in a structure-preserving set Rα ⊆ Z

r
q . The parameter α

denotes the dimension of the message, i.e. to encrypt a message msg ∈ Mα we
will use Bα and Rα.

– Message encoding: The public key implicitly defines for every α ∈ N+ an additively

homomorphic invertible function gα : Mα → Z
d(α)
q such that Enc is equivalent to

an algorithm that samples a vector r ← Rα and outputs ct = Bαr + gα(msg).
– Noise Levels: There exists a polynomial time algorithm NoiseLevel(sk, ct) that com-

putes a noise level ν ∈ N0 for each ciphertext and satisfies the following:
• Initial noise level: For every security parameter λ there is a constant νinit ∈ N0

such that for every key pair (pk, sk) in the range of KeyGen(1λ) and every
ciphertext ct in the range of Enc(pk,msg) for a message msg ∈ Mα we have
NoiseLevel(sk, ct) ≤ νinit.

• Maximum noise level: For every security parameter λ there is a constant
νmax ≥ 2νinit such that for every key pair (pk, sk) in the range of KeyGen(1λ)
and every ciphertext ct = Bαr + gα(msg) with NoiseLevel(sk, ct) ≤ νmax we
have Dec(sk, ct) = msg.

• Symmetry: For every secret key sk and ciphertext ct

NoiseLevel(sk, ct) = NoiseLevel(sk,−ct).
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• Subadditivity: For every secret key sk and any two ciphertexts ct1, ct2 with
NoiseLevel(sk, ct1),NoiseLevel(sk, ct2) ≤ νmax/2 satisfy

NoiseLevel(sk, ct1 + ct2) ≤ NoiseLevel(sk, ct1) + NoiseLevel(sk, ct2).

• Boundedness: For every security parameter λ there exists an efficiently com-
putable functionMaxNoiseLevel : N0 → N0 such that for every message dimen-
sion α and vector r of suitable length

‖r‖ < δ → NoiseLevel(sk,Bαr + gα(0)) ≤ MaxNoiseLevel(δ)

holds with overwhelming probability over the choice of the secret key sk. We will
later require in Sect. 6 that MaxNoiseLevel is small for small inputs.

Definition 5.2. We say that a lattice-based SPE scheme is F-homomorphic for a family
of functions F if for all f ∈ F , f : Mαin → Mαout when there exists a maximum noise
level νin ≥ νinit and a deterministic polynomial time algorithm Evalf that takes pk
and a ciphertext ct = Bαinr+ gαin(msg) that encrypts a αin-dimensional message msg
under pk with noise levelNoiseLevel(sk, ct) ≤ νin. It outputs a new ciphertextBαoutrf+
gαout(f(msg)) with rf ∈ Rf , where Rf is a structure-preserving set with noise growth
δRf

such that every ciphertext ct = Bαoutr + gαout(msg) with r ∈ BδRf
(Rf ) and

msg ∈ Mαout has NoiseLevel(sk, ct) ≤ νmax.

We further require that there is a deterministic polynomial time algorithm Evalrandf

that takes the public key pk and r ∈ R and outputs rf such that

Bαoutrf + g(f(msg)) = Evalf (pk,Bαinr + g(msg))

Note that every SPE scheme is linearly homomorphic. In more detail, given
two ciphertexts ct1 = Bαr1 + gα(msg1) and ct2 = Bαr2 + gα(msg2) with
NoiseLevel(sk, ct1), NoiseLevel(sk, ct2) ≤ νmax/2, the ciphertext Eval+(pk, ct1,
ct2) := ct1 + ct2 is a valid ciphertext for msg1 + msg2 with randomness
Evalrandf (pk, r1, r2) := r1 + r2, since gα is additively homomorphic. This can be
extended to linear functions (with sufficiently small coefficients) of multiple cipher-
texts.

5.1 SPE Instantiation

Examples of SPE schemes are Regev’s encryption scheme, the Dual Regev encryption
scheme and the GSW encryption scheme. We only prove that Regev’s scheme is a SPE
scheme here and present the proof for the remaining two schemes in the full version.

As Regev’s original scheme [45] allows to encrypt a single bit only, we recall its
variant, put forward by Peikert et al. [44], that allows to encrypt messages from the
message space M = Zp for p s.t. q

p is sufficiently large. We assume that q = pk,

for a sufficiently large k ∈ N, and we denote c := q
p = pk−1. In addition to the

LWE modulus q, the scheme is parametrized by a dimension n, number of samples
m ≥ n log q and an error distribution χ = DZ,σ . We recall this scheme with α = 1.
To encrypt a higher-dimensional message (msg1, . . . ,msgα)� ∈ Mα, we encrypt each
component individually, i.e. generate cti = Enc(pk,msgi) for i ∈ {1, . . . , α} and chain
the ciphertext together, i.e. ct� = (ct�1 , . . . , ct�α ).
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KeyGen(1λ): Sample A ←R Z
n×m
q , s ←R Z

n
q and e ← χm. Output the secret key

sk := s and the public key pk = (A, s�A + e�) ∈ Z
n×m
q × Z

1×m
q .

Enc(pk,msg): Parse pk as (A,x). Sample z ←R {−1, 0, 1}m and compute c0 :=
Az ∈ Z

n
q and c1 := xz+ c · msg ∈ Zq. Then output the ciphertext ct := (c0, c1) ∈

Z
n
q × Zq.

Dec(sk, ct): Parse ct as (c0, c1) and set s := sk. Compute d := c1 − s�c0 ∈ Zq and
output x ∈ Zp, such that d − c · x mod q is closest to 0.

Lemma 5.3. Regev’s encryption scheme is a lattice-based SPE scheme.

Proof. For a public key pk = (A,x) ∈ Z
n×m
q × Z

1×m
q , dimension α, and a message

msg ∈ Mα, let us define the matrix B ∈ Z
α(n+1)×αm
q and the function gα : Mα →

Z
α(n+1)
q as follows :

B := Iα ⊗
(

A
x

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A
x

. . .
A
x

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, gα

⎛

⎜
⎝

msg1
...

msgα

⎞

⎟
⎠ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
c · msg1

...
0

c · msgα

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Let R be the uniform distribution over R := {−1, 0, 1}αm. Clearly, r ← R lies
in R with probability 1. We need to show that R is a structure-preserving set. R =
{−1, 0, 1}αm ⊆ Z

αm
q is a

√
αm-bounded set which, by Remark 3.7, implies that R is

structure-preserving with noise growth δR := 8m + 1.
As a next set, we need to argue that g is invertible and additively homomorphic.

Let g−1
α : Img(gα) → Zp be a function that on input y = (0�, y1, . . . ,0�, yα)� ∈

Img(gα), outputs x ∈ Z
α
p , such that yi − cxi mod q = 0 for all i ∈ {1, . . . , α}. It is

easy to see that g−1 is the inverse of g. It is easy to see that gα is additively homorphic,
because it is composed of additively homomorphic functions.

Furthermore, we need to prove that the encryption algorithm is equivalent to sam-
pling r ← Rα and computing Bαr + gα(msg). For msg ∈ Z

α
p and r ← Rα, we have,

for r� = (r�
1 , . . . , r�

α ) with ri ∈ Z
m
q ,

Bαr + gα(msg) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ar1
xr1 + c · msg1

...
Arα

xrα + c · msgα

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎝

ct1
...

ctα

⎞

⎟
⎠ = ct

which shows that this procedure indeed gives us a well-distributed ciphertext.
Finally, we need to prove that the existence of the NoiseLevel(sk, ct) algorithm.

Let us define NoiseLevel(sk, ct) as follows: Parse ct as (ct1, . . . , ctα) and each cti as
(ci,0, ci,1) and set s := sk. Compute di := c1,i − s�ci,0 ∈ Zq and νi := |di − c ·
Dec(sk, cti)|. Output max1≤i≤α νi.
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To show that this definition satisfies the desired properties, it suffices to prove it for
dimension α = 1, because all these properties only talk about upper bounds12 of the
noise level and the noise level of a ciphertext for α > 1 is simply the maximum of the
noise levels of the ciphertexts for each component of the message.

To show boundedness, define MaxNoiseLevel(δ) := 2σ
√

mδ. Then, for ‖z‖ < δ,
we have

NoiseLevel(sk, ct = (Az, ((s�A + e�)z + cmsg)) = |e�z|
(1)

≤ ‖e‖‖z‖
(2)

≤ 2σ
√

mδ,

where inequality (1) follows from the Cauchy-Schwartz inequality and inequality (2)
follows from the Gaussian tail bound (Lemma 2.1).

The maximal initial noise level is νinit := 2σm: An honestly generated ciphertext
has randomness z ∈ {0, 1}m and thus ‖z‖ ≤ √

m. Plugging this in the MaxNoiseLevel
function yields the desired bound.

The maximum noise level is νmax := �c/2�, because then for a ciphertext ct =
(c0, c1) for msg, the value d := c1 − s�c0 deviates at most by �c/2� from cmsg and so
the Dec algorithm will round to msg.

The Symmetry property of NoiseLevel follows immediately from the definition and
the subadditivity property follows immediately from the triangle inequality. ��

6 Σ-Protocol Constructions

In this section, we describe a generalization of the sigma protocols in [36] that, at a high
level, allow to prove that the value encrypted in an SPE scheme belongs to a structure-
preserving set S (up to an additional inherent error that comes from the noises of the
encryption scheme and the structure-preserving set S).

More formally, we construct a trapdoor gap Σ-protocol that can prove for a lattice-
based SPE scheme Π = (KeyGen,Enc,Dec�) that a ciphertext encrypts a message
msg ∈ S where S is a structure-preserving set with noise growth δ and Bδ(S) ⊆ Mα.
Let:

– α be the dimension of the message in the ciphertext
– Bα ∈ Z

d(α)×r(α)
q be the matrix defined by the public key for messages of length α,

– gα be the message encoding function for messages of length α,
– Rα be the randomness space with maximum noise level νR (i.e. for all r ∈ Rα and

messages msg we have NoiseLevel(sk,Bαr+ gα(msg)) ≤ νR). We also require Rα

to be structure-preserving with noise growth δR using the distribution DR, smudging
set D′

R, no-abort function successR and no-abort constant αR.
– S be a structure-preserving set with noise growth δ using distribution D, smudging

set D′
S with S,D′

S , S + D′
S ⊆ M, no-abort function success and no-abort constant

α,
– r′ ∈ Rα be an arbitrary fixed element of Rα,
– and msg′ ∈ S be an arbitrary fixed element of S.

12 Note that the symmetry property is equivalent to NoiseLevel(sk, ct) ≤ NoiseLevel(sk, −ct).
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– And assume that the parameters of the SPE scheme are selected such that

νinit + νR +MaxNoiseLevel(δR) < νmax/2. (1)

We construct a gap Σ-protocol for:

Lzk = {Bαr + gα(msg) | r ∈ Rα,msg ∈ S}
Lsound = {ct | NoiseLevel(sk, ct) ≤ 2 · νinit + νR + 2 · MaxNoiseLevel(δR),

Dec(sk, ct) ∈ Bδ(S)}

From the SPE definition we get Lzk ⊆ Lsound.
The language is described by the modulus q, the matrix Bα and the structure-

preserving sets Rα and S and the message encoding function gα. The Setup algo-
rithm will output as crs simply the language description, i.e. crs = (q,Bα, Rα, S, gα).
The membership testing trapdoor for the language is the secret key sk of the structure-
preserving encryption scheme and TrapSetup will simply output as trapdoor this secret
key, i.e. τΣ = sk. The definition of the prover and verifier can be found in Fig. 2.

Fig. 2. The interaction between Prover and Verifier in our Σ-protocol.

Theorem 6.1. The above construction is a trapdoor gap Σ-protocol for (Lzk,Lsound).
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Proof. Completeness: Suppose that rR ∈ D′
R and mS ∈ D′

S . Both of these events
happens with overwhelming probability by the second part of the structure-preserving
set definition. Given this, it is easy to verify that the protocol accepts for both Chal = 0
and Chal = 1 when x ∈ Lzk.

Special Soundness: Suppose that for a statement x and a first flow message a there
exist responses z0 and z1 that an honest verifier accepts for challenge Chal = 0 resp.
Chal = 1. Then

z0 ∈ D′
R (2)

z1 ∈ D′
R + Rα (3)

g−1
α (a − Bαz0) ∈ D′

S (4)

g−1
α (x + a − Bαz1) ∈ D′

S + S (5)

holds. By subtracting Eq. (4) from Eq. (5) and using the additive homomorphism of gα,
we get

g−1
α (x+a−Bαz1 − (a−Bαz0)) = g−1

α (x−Bα(z1 − z0)) ∈ S+D′
S −D′

S ⊆ Bδ(S),

where the last relation follows using Lemma 3.9. Since we also have z1 − z0 ∈ Rα +
D′

R − D′
R ⊆ BδR

(Rα) (again using Lemma 3.9) this proves x ∈ {Bαr + gα(msg) |
r ∈ BδR

(Rα),msg ∈ Bδ(S)} ⊆ {ct | NoiseLevel(sk, ct) ≤ νR +MaxNoiseLevel(δR),
Dec(sk, ct) ∈ Bδ(S)} ⊆ Lsound. For the first subset relationship we use that we can
write r = r′ + y with r′ ∈ Rα and ‖y‖ ≤ δR since r ∈ BδR

(Rα). The statement then
follows from using NoiseLevel(sk,Bαr′ + gα(msg)) ≤ νR, NoiseLevel(sk,Bαy) ≤
MaxNoiseLevel(δR) (boundedness property of the NoiseLevel function) and combining
this with the subadditivity property of the NoiseLevel function, which we can use due
to Eq. (1).

Special Zero-Knowledge: We show that there exists a zero-knowledge simulator,
that outputs statistically close transcripts and has statistically close aborting behav-
ior as the real protocol. The simulator ZKSim works as follows on input (crs =
(q,Bα, Rα, S, gα), x ∈ Lzk,Chal

� ∈ {0, 1}):
1. Sample r�

R ← DR; m�
S ← D.

2. Compute a� := Bαr�
R + Chal�(Bαr′ + gα(msg′) − x) + gα(m�

S).
3. Compute z� := r�

R + Chal� · r′.
4. Abort with probability 1 − αR.
5. Abort with probability 1 − α.
6. Output (a�, z�).

For x ∈ Lzk, we have x = Bαr + gα(msg) for r ∈ Rα and msg ∈ S.
First, we will focus on the case Chal� = 0. In the real protocol, the randomness rR

of the first flow a is sampled from DR and the protocol continues with probability θ1 :=
successR(r, r, rR). The zero-knowledge simulator samples the first flow randomness
from the same distribution, but continues with probability αR. We use now that Rα is a
structure-preserving set. By plugging in r and r (in the role of s and s′) in the first part
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of the structure-preserving set definition, we get that the distribution of the first flow
randomness in the real and the simulated protocol is statistically close.

Similarly, the distribution of the message part of the first flow is D both in the
real protocol and the simulated one, but the real protocol continues with probability
θ2 := success(msg,msg,mS) while the simulated one continues with probability α.
By using that S is a structure-preserving and plugging in msg and msg (in the role of s
and s′) in the first part of the definition, it follows that the distribution of the first flow
message in real and the simulated protocol is statistically close.

Next, we will discuss the remaining case Chal� = 1. In the real protocol, the
randomness part rR of the first flow a is sampled again from DR and the protocol
continues with probability θ1 := successR(r, r′, rR). The simulated protocol samples
r�

R ← DR and uses r�
R + r′ − r as randomness and continues with probability αR. We

use again that Rα is a structure-preserving set, but plug in r and r′ in the first part of the
structure-preserving set definition. This gives us that outputting r+ rR with probability
successR(r, r′, rR) is statistically close to outputting r�

R + r′ with probability αR.
The message part of the first flow is mS , sampled from D in the real protocol and

the protocol aborts with probability success(msg,msg′,mS). The simulator samples
m�

S ← D and uses msg′ −msg+m�
S as message part of the first flow. Furthermore, the

simulator aborts with probability α. Using that S is a structure-preserving set and plug-
ging in msg and msg′ in the first part of the definition, we get that these two distributions
are also statistically close.

Putting this together, we see that the simulated first flow is statistically close to an
honest first flow. And the third flow outputted by ZKSim is always the correct third flow
with respect to the first flow and challenge, so ZKSim is a correct simulator. Further-
more, the zero knowledge simulator only aborts with a constant probability, so the real
protocol also aborts only with constant probability.

Correctness of BadChallenge: We show that the following BadChallenge algorithm
outputs for any x /∈ Lsound a bad challenge. The BadChallenge algorithm proceeds on
input (τΣ = sk, crs, x, a) as follows:

1. If NoiseLevel(sk, a) > νinit+MaxNoiseLevel(δR)∨Dec(sk, a) /∈ D′
S , output Chal =

1 (indicating that the prover cannot finish the protocol for Chal = 0).
2. Otherwise, if NoiseLevel(sk, x+a) > νinit+νR+MaxNoiseLevel(δR)∨Dec(sk, x+

a) /∈ S + D′
S , output Chal = 0.

3. Otherwise, output ⊥.

First, assume that NoiseLevel(sk, a) > νinit +MaxNoiseLevel(δR) or Dec(a) /∈ D′
S

holds. Then a can not be written as a = BαrR+gα(mS) with rR ∈ D′
R,mS ∈ D′

S

because then it would have both of the above properties. In this scenario there is no third
flow that would make the Verifier accept for Chal = 0, so the BadChallenge correctly
returns 0.

Second, assume that NoiseLevel(sk, x + a) > νinit + νR +MaxNoiseLevel(δR) or
Dec(x + a) /∈ S + D′

S holds. Then x + a can not be written as x + a = Bαr +
gα(msg) with r ∈ Rα + D′

R,msg ∈ S + D′
S because then it would have both of

the above properties. In this scenario there is no third flow that would make the Verifier
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accept for Chal = 1, so the BadChallenge correctly returns 1 (if the first case does not
apply as well).

Finally, assume that neither of the two cases above applies. Then

NoiseLevel(sk, x) = NoiseLevel(sk, x + a − a)
≤ NoiseLevel(sk, x + a) + NoiseLevel(sk,−a)

= NoiseLevel(sk, x + a) + NoiseLevel(sk, a)
≤ 2 · νinit + νR + 2 · MaxNoiseLevel(δR).

The inequality follows from subadditivity of the NoiseLevel-function which we can use
due to Eq. (1). This guarantees that

Dec(sk, x) = Dec(sk, x + a) − Dec(sk, a) ∈ S + D′
S − D′

S ⊆ Bδ(S)

which shows that x ∈ Lsound, in contradiction to our initial assumption. ��

7 Lattice-Based Structure-Preserving NIZK Arguments

Definition 7.1 (SPNIZK). Let S be a structure-preserving set with noise growth δ and
SPE be a structure-preserving public key encryption scheme with message space Mα

and randomness distribution Rα, where r ←R R lies with overwhelming probability
in a structure-preserving set Rα ⊆ Z

r
q with noise growth δR. A NIZK argument system

(Genpar,GenL,P,V) is a structure-preserving NIZK (SPNIZK) argument with respect
to S and SPE if for any (pk, ·) ← SPE.Setup(1λ), encryption randomness r ←R R
and m ∈ S, SPNIZK supports the following functionality:

– ProveMembershipSS(crs, pk,m, ct, r) outputs a proof π that ct encrypts a message
m which belongs to the structure-preserving set S.

– VerifyMembershipSS(crs, pk, ct, π) verifies that ct indeed encrypts a message m
which belongs to the structure-preserving set S.

As in Definition 2.10, the SPNIZK must satisfy completeness, computational soundness,
and zero-knowledge. Moreover, we require our SPNIZK argument system to satisfy
unbounded simulation soundness [22,48]. We refer the reader to the full version for the
definition of these properties.

Due to lack of space, we defer to the full version an instantiation of Definition 7.1
with unbounded simulation soundness and multi-theorem zero-knowledge. Our instan-
tiation is obtained by compiling the sigma protocol from Sect. 6 into an SPNIZK argu-
ment using the Fiat-Shamir transformation. As mentioned in Sect. 1, we implement the
used hash function with a correlation-intractable hash function in this.

8 Verifiably Encrypted Signatures (VES)

Using a verifiable encrypted signature (VES), a signer can encrypt a signature under the
public key of a trusted-third party (the adjudicator) and then generate a proof that the
ciphertext encrypts a valid signature for a known message.
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The main application of VES is online contract signing, in which two parties Alice
and Bob agree on a contract by using the help of a trusted third party called an adjudi-
cator. Alice and Bob start the protocol by producing a VES ΩAlice, ΩBob on the agreed
contract m, using the public key apk of the adjudicator. Upon receipt of the VES ΩAlice,
ΩBob, both Alice and Bob reveal the unencrypted versions σAlice, σBob of their signa-
tures, agreeing to the contract. If any one of the parties, for example Bob, refuses to
release his signature σBob, Alice can contact the adjudicator and ask them to extract
σBob from ΩBob. This prevents Bob from not completing the protocol and using σAlice

to negotiate a better contract elsewhere.
We recall the formal definition of VES in the full version. We discuss it here only

informally. A VES is a tuple of PPT algorithms (Kg,AdjKg,Sig,Vf,Create,VesVf),
where Kg, Sig and Vf are defined similarly to a digital signature scheme. AdjKg gen-
erates a key pair (apk, ask) for the adjudicator, Create computes a VES on a given
message, and VesVf allows to verify that a given VES is a encryption of a valid signa-
ture on a given message. In addition to completeness, VES is required to satisfy four
security properties: unforgeability, abuse freeness, extractability and opacity.

Unforgeability guarantees that no PPT adversary given the public key and oracle
access Create and Adj, is able to compute a VES Ω for a message m that they have
never queried to its oracles. Abuse freeness requires that no malicious, PPT adjudicator
with access to a Create oracle is able to output a valid VES for a message that they have
never queried. Extractability requires that no malicious signer which can create their
own vk and is granted oracle access to Adj is able to efficiently output a valid VES Ω,
from which the Adj algorithm is unable to extract a valid signature. Opacity requires
that no PPT adversary, given public keys vk and apk and oracle access to Create and
Adj, can return a valid signature σ∗ for some message m∗, provided it has not queried
Adj on m∗.

8.1 The VES Construction

We are now ready to show how to use our notions of structure-preserving signatures,
encryptions and NIZK arguments to obtain verifiably encrypted signatures. Our con-
struction is given in Fig. 3 and informally discussed below.

The starting point of our construction is any structure-preserving SPS (see Defini-
tion 4.1), over a modulus q. Recall that signatures are tuples σ = (core, tag), which
consist of a vector core ∈ Z

γ
q and a public string tag ∈ {0, 1}ζ . To compute a VES Ω,

we encrypt the core part of the signature core and obtain a ciphertext ct1. The public
tag is not encrypted, and is revealed together with ct1 as part of Ω.

If we stop at this point, the verifier has no way of checking if core is valid, as it
is only given in its encrypted form. Therefore, we now want to convince the verifier
that the ciphertexts encrypt a vector core that is part of a valid signature. To this end, we
first compute efficiently the structure-preserving set and function (S, f) that correspond
to signature verification in the sense of Definition 4.1. Note that in our notation, f is a
function that takes γ inputs and outputs a vector in Z

τ
q . We then compute ciphertexts ct2

that correspond to homomorphic evaluation using function f over ct1. Then, we use our
SPNIZK argument to compute a proof π that ct2 actually encrypts a vector that belongs
to the structure-preserving set S. The resulting VES is hence Ω = (ct1, π, tag).
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Table 1. The table indicates which of the SPE schemes can be combined with which SPS scheme
to obtain VES.

Our ISIS-based signature scheme Rückert’s scheme Boyen’s scheme

Regev ✓ ✓ ✗

Dual Regev ✓ ✓ ✗

GSW ✓ ✓ ✓

We can combine an SPE scheme with an SPS scheme if the SPE scheme is F-
homomorphic where F is the set of all functions f that can appear in the signature
verification procedure in the sense of Definition 4.1. Table 1 summarizes which SPE
scheme can be combined with which SPS scheme.

Verification is now straightforward. Namely, we recompute (S, f) using vk,m and
the public tag, and check that the SPNIZK proof π is indeed valid. Finally, adjudication
is performed by simply decrypting ciphertexts ct1 and revealing the vector core.

We refer the reader to the full version for the security proof and for a discussion on
parameters. For the rest of this section, we discuss the efficiency considerations of our
VES scheme.

8.2 Efficiency Considerations

Let λ be the security parameter. Then SPE has dimension n′ = λ and modulus
q′ = poly(λ). The CI-Hash of [43] is implemented using GSW encryption. The decryp-
tion algorithm of SPE must be expressible as an NC1 circuit of depth O(log λ)—
which is the case with the schemes analysed in this paper. Such an NC1 circuit can
be translated to a branching program of size O(poly(λ)), and the GSW parameters are
q = poly(λ) = q′poly(λ) and n = λc−o(1), where c is a constant that depends on
the SPE decryption circuit. The output of the CI hash function consists of m bits, where
m = n�log(q)�. In addition, the compiler for obtaining an unbounded simulation-sound
NIZK also contains the ciphertexts of a generalised lossy encryption scheme—and the
entire construction requires a θ(λ) number of parallel repetitions.

While this machinery might sound daunting relative to pairing-based NIZK systems,
the NIZK presented here remains the most efficient lattice-based construction which is
secure in the standard model (for proving membership to structure-preserving sets).
There are several reasons for this:

1. The CI-Hash requires homomorphic encryption, but no bootstrapping is required
since SPE decryption circuits have low depth cDec · κSPE, where κSPE is the size of
SPE ciphertexts and cDec is a small constant cDec ≤ 44 (for example using the results
of [9]).

2. It avoids expensive Karp reductions, which would be necessary if one used general
purpose NIZKs such as the one of [43].

The standard model NIZK incurs a significant overhead when compared to the usage
of lattice NIZKs in the ROM, which is why the proposed NIZK is only semi-efficient.
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Fig. 3. A verifiably-encrypted signature (VES) scheme (Kg,AdjKg, Sig,Vf,Create,VesVf).
SPS denotes a structure-preserving signature scheme, while SPE is a lattice-based structure-
preserving encryption. SPNIZK is a structure-preserving NIZK argument for SPE, allowing to
prove that encryptions encode plaintexts that belong to a structure-preserving set S.
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For this reason, we do not provide more detailed efficiency comparisions with random-
oracle implementations. At the same time, we note that a gap can also be observed
between the Groth-Sahai NIZK and Fiat-Shamir compilations of more restricted sigma
protocols that only lead to secure NIZKs in the ROM. Nevertheless, such a gap in the
group setting appears to be smaller than in the lattice case.
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