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Abstract. There have been attempts to insert mathematical morphology
(MM) operators into convolutional neural networks (CNN), and the most
successful endeavor to date has been the morphological neural networks
(MNN). Although MNN have performed better than CNN in solving some
problems, they inherit their black-box nature. Furthermore, in the case
of binary images, they are approximations that loose the Boolean lattice
structure of MM operators and, thus, it is not possible to represent a
specific class of W-operators with desired properties. In a recent work,
we proposed the Discrete Morphological Neural Networks (DMNN) for
binary image transformation to represent specific classes of W-operators
and estimate them via machine learning. We also proposed a stochastic
lattice descent algorithm (SLDA) to learn the parameters of Canonical
Discrete Morphological Neural Networks (CDMNN), whose architecture
is composed only of operators that can be decomposed as the supremum,
infimum, and complement of erosions and dilations. In this paper, we
propose an algorithm to learn unrestricted sequential DMNN, whose
architecture is given by the composition of general W-operators. We
illustrate the algorithm in a practical example.

Keywords: discrete morphological neural networks · image processing ·
mathematical morphology · U-curve algorithms · stochastic lattice descent
algorithm

1 Introduction

Mathematical morphology is a theory of lattice mappings which can be employed
to design nonlinear mappings, the morphological operators, for image processing
and computer vision. It originated in the 60s, and its theoretical basis was de-
veloped in the 70s and 80s [24,33,34]. From the established theory followed the
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proposal of many families of operators, which identify or transform geometrical
and topological properties of images. Their heuristic combination permits to
design methods for image analysis. We refer to [14] for more details on prac-
tical methods and implementations of the design of mathematical morphology
operators.

Since combining basic morphological operators to form a complex image
processing pipeline is not a trivial task, a natural idea is to develop methods
to automatically design morphological operators based on machine learning
techniques [9], what has been extensively done in the literature with great
success on solving specific problems. The problems addressed by mathematical
morphology concern mainly the processing of binary and gray-scale images, and
the learning methods are primarily based on discrete combinatorial algorithms.
More details about mathematical morphology in the context of machine learning
may be found in [7,19].

Mathematical morphology methods have also been studied in connection
with neural networks. The first papers about morphological neural networks
(MNN), such as [10,11,12,32], proposed neural network architectures in which the
operation performed by each neuron is either an erosion or a dilation. MNN usually
have the general structure of neural networks, and their specificity is on the fact
that the layers realize morphological operations. Many MNN architectures and
training algorithms have been proposed for classification and image processing
problems [4,13,17,26,38]. Special classes of MNN such as morphological/rank
neural networks [27,28], the dendrite MNN [5,31,36]; and the modular MNN
[3,37] have been proposed. We refer to [35] and the references therein for a review
of the early learning methods based on MNN.

More recently, mathematical morphology methods have been studied in con-
nection with deep neural networks, by either combining convolutional neural
networks (CNN) with a morphological operator [21], or by replacing the convo-
lution operations of CNN with basic morphological operators, such as erosions
and dilations [16,18,25]. Although it has been seen empirically that convolutional
layers could be replaced by morphological layers [16], and MNN have shown a
better performance than CNN in some tasks [20], they are not more interpretable
than an ordinary CNN. In this context, the interpretability is related to the
notion of hypothesis space, which is a key component of machine learning theory.

In [22] we proposed the Discrete Morphological Neural Networks (DMNN)
for binary image transformation to represent translation invariant and locally
defined operators, i.e., W-operators, and estimate them via machine learning. A
DMNN architecture is represented by a Morphological Computational Graph
that combines operators via composition, infimum, and supremum to build more
complex operators. In [22] we proposed a stochastic lattice descent algorithm
(SLDA) to train the parameters of Canonical Discrete Morphological Neural
Networks (CDMNN) based on a sample of input and output images under the
usual machine learning approach. The architecture of a CDMNN is composed
only of canonical operations (supremum, infimum, or complement) and opera-
tors that can be decomposed as the supremum, infimum, and complement of
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erosions and dilations with the same structural element. The DMNN is a true
mathematical morphology method since it retains the control over the design
and the interpretability of results intrinsic to classical mathematical morphology
methods, which is a relevant advantage over CNN.

In this paper, we propose an algorithm to train unrestricted sequential
DMNN (USDMNN), whose architecture is given by the composition of gen-
eral W-operators. The algorithm considers the representation of a W-operator by
its characteristic Boolean function, which is learned via a SLDA in the Boolean
lattice of functions. This SLDA differs from that of [22] which minimizes an
empirical error in a lattice of sets and intervals that are the structural elements
and intervals representing operators such as erosions, dilations, openings, closings
and sup-generating.

Unlike CDMNN, which can be designed from prior information to represent a
constrained class of operators, USDMNN are subject to overfitting the data, since
it can represent a great class of operators, that may fit the data, but not generalize
to new examples. In order to address this issue, we control the complexity of
the architecture by selecting from data the window of each W-operator in the
sequence (layer). By restricting the window, we create equivalence classes on the
characteristic function domain that constrain the class of operators that each
layer can represent, decreasing the overall complexity of the operators represented
by the architecture and mitigating the risk of overfitting. We propose a SLDA to
select the windows by minimizing a validation error in a lattice of sets within
the usual model selection framework in machine learning.

We note that both the CDMNN and the USDMNN are fully transparent,
the properties of the operators represented by the trained architectures are fully
known, and their results can be interpreted. The advantage of USDMNN is
that they are not as dependent on prior information as the CDMNN, which
require a careful design of the architecture to represent a simple class of operators
with properties necessary to solve the practical problem, as was illustrated in
the empirical application in [22]. When there is no prior information about the
problem at hand, an USDMNN may be preferable.

In Section 2, we present some notations and definitions, and in Section 3
we formally define the USDMNN that is a particular example of the DMNN
proposed by [22]. In Section 4, we present the SLDAs to learn the windows and
the characteristic functions of the W-operators in a USDMNN, and in Section 5
we apply the USDMNN to the same dataset used in [22] in order to compare the
results. In Section 6, we present the next steps of this research.

2 W-operators

Let E = Z2 and denote by P(E) the collection of all subsets of E. Denote by
+ the vector addition operation. We denote the zero element of E by o. A set
operator is any mapping defined from P(E) into itself. We denote by Ψ the
collection of all the operators from P(E) to P(E). Denote by ι the identity set
operator: ι(X) = X,X ∈ P(E).
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For any h ∈ E and X ∈ P(E), the set X +h := {x ∈ E : x−h ∈ X} is called
the translation of X by h. We may also denote this set by Xh. A set operator ψ
is called translation invariant (t.i) if, and only if, ∀h ∈ E, ψ(X + h) = ψ(X) + h
for X ∈ P(E).

Let W be a finite subset of E. A set operator ψ is called locally defined within a
window W if, and only if, ∀h ∈ E, h ∈ ψ(X) ⇐⇒ h ∈ ψ(X ∩Wh) for X ∈ P(E).
The collection ΨW of t.i. operators locally defined within a window W ∈ P(E)
inherits the complete lattice structure of (P(E),⊆) by setting, ∀ψ1, ψ2 ∈ ΨW ,

ψ1 ≤ ψ2 ⇐⇒ ψ1(X) ⊆ ψ2(X),∀X ∈ P(E). (1)

Define by Ω = ∪W∈P(E),|W |<∞ΨW the collection of all operators from P(E) to
P(E) that are t.i. and locally defined within some finite window W ∈ P(E). The
elements of Ω are called W -operators.

Any W-operator can be uniquely determined by its kernel, its basis or its
characteristic function (see [8] for more details). In special, denote by BW :=
{0, 1}P(W ) the set of all Boolean functions on P(W ) and consider the mapping
T between ΨW and BW defined by

T (ψ)(X) =

{
1, if o ∈ ψ(X)

0, otherwise.
ψ ∈ ΨW , X ∈ P(W ). (2)

The mapping T constitutes a lattice isomorphism between the complete lat-
tices (ΨW ,≤) and (BW ,≤), and its inverse T−1 is defined by T−1(f)(X) =
{x ∈ E : f(X−x ∩W ) = 1} for f ∈ BW andX ∈ P(E). We denote by fψ := T (ψ)
the characteristic function of ψ.

3 Unrestricted Sequential Discrete Morphological Neural
Networks

In this section, we formally define the USDMNN. In Section 3.1, we define the
morphological computational graph of USDMNN. This is a concept introduced
in [22] that is related to their architecture, defined in Section 3.2. In Section
3.3, we propose a representation of USDMNN by the windows and characteristic
functions of the operators in their layers.

3.1 Sequential Morphological Computational graph

Let G = (V, E , C) be a computational graph, in which V is a general set of vertices,
E ⊂ {(v1, v2) ∈ V×V : v1 ̸= v2} is a set of directed edges, and C : V → Ω∪{∨,∧}
is a mapping that associates each vertex v ∈ V to a computation given by either
applying a t.i. and locally defined operator ψ ∈ Ω or one of the two basic
operations {∨,∧}.

Denoting V = {vi, v1, . . . , vn, vo} for a n ≥ 1, G is a sequential morphological
computational graph (MCG) if

E = {(vi, v1), (vn, vo)}
⋃
{(vj , vj+1) : j = 1, . . . , n− 1} , (3)
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with C(vi) = C(vo) = ι and C(vj) ∈ Ω, j = 1, . . . , n. This computational graph
satisfies the axioms of MCG (see [22] for more details).

In a sequential MCG, the computation of a vertex vj in G receives as input
the output of the computation of the previous vertex vj−1, and the output of
its computation will be used as the input of the computation of the vertex vj+1.
We assume there is an input vertex vi, and an output vertex vo, that store
the input, which is an element X ∈ P(E), and output of the computational
graph, respectively, by applying the identity operator. Furthermore, each vertex
computes an operator in Ω and there are no vertices computing supremum or
infimum operations.

Denote by ψG(X) the output of vertex vo when the input of vertex vi is
X ∈ P(E) and let ψG : P(E) → P(E) be the set operator generated by MCG
G. The operator ψG is actually t.i. and locally defined within a window WG (cf.
Proposition 5.1 in [22]). We define the sequential Discrete Morphological Neural
Network represented by G as the translation invariant and locally defined set
operator ψG .

3.2 Sequential Discrete Morphological Neural Networks Architecture

A triple A = (V, E ,F), in which F ⊆ ΩV , is a sequential Discrete Morphological
Neural Network (SDMNN) architecture if (V, E , C) is a sequential MCG for all
C ∈ F . A SDMNN architecture is a collection of sequential MCG with the
same graph (V, E) and computation map C in F . Since a SDMNN architecture
represents a collection of MCG, it actually represents a collection of t.i. and locally
defined set operators that can be represented as the composition of W-operators.

For an architecture A = (V, E ,F), let G(A) = {G = (V, E , C) : C ∈ F} be
the collection of MCG generated by A. We say that G ∈ G(A) is a realization
of architecture A and we define H(A) = {ψ ∈ Ω : ψ = ψG ,G ∈ G(A)} as the
collection of t.i. and locally defined set operators that can be realized by A.

A SDMNN is said unrestricted if its interior vertices vj can compute any W-
operator locally defined within a Wj , so it holds F = {ι}×ΨW1

×· · ·×ΨWn
×{ι}.

We denote by n = |V| − 2 the depth of an unrestricted sequential DMNN
(USDMNN) and by |Wj | the width of the layer represented by vertex vj , j =
1, . . . , n.

As an example, consider an USDMNN with three hidden layers. For fixed
windows W1,W2,W3 ∈ P(E), this sequential architecture realizes the operators
in ΨW , with W =W1 ⊕W2 ⊕W3, in which ⊕ stands for the Minkowski addition,
that can be written as the composition of operators in ΨW1

, ΨW2
and ΨW3

, that
is, H(A) = {ψ ∈ ΨW : ψ = ψW3ψW2ψW1 ;ψWi ∈ ΨWi

, i = 1, 2, 3}. For a proof of
this fact, see [8].

3.3 Representation of USDMNN

The USDMNN realized by MCG G = (V, E , C) can be represented by a se-
quence {ψ1, . . . , ψn}, n ≥ 2, of W -operators with windows W1, . . . ,Wn as the
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composition
ψG = ψn ◦ · · · ◦ ψ1 (4)

in which ψj = C(vj), j = 1, . . . , n. Based on (4), we propose a representation
for the class of operators realized by an USDMNN based on the window and
characteristic function of the operators ψj .

For each i = 1, . . . , n, we fix a di ≥ 3 odd and assume that each window
Wi, i = 1, . . . , n, is a connected subset of Fdi = {−(di − 1)/2, . . . , (di − 1)/2}2,
the square of side di centered at the origin of E. This means that, for every
w,w′ ∈ Wi, there exists a sequence w0, . . . , wr ∈ Wi, r ≥ 1, such that w0 =
w,wr = w′ and ∥wi − wi+1∥∞ = 1, for all i = 0, . . . , r − 1. Denoting Cd =
{W ⊆ Fd :W is connected}, we assume that Wi ∈ Cdi for all i = 1, . . . , n.

For each W ∈ Cdi , let BW = {f : P(W ) 7→ {0, 1}} be the set of all binary
functions on P(W ), and define Fi = {(W, f) : W ∈ Cdi , f ∈ BW } as the
collection of W -operators with window W in Cdi and characteristic function f
in BW , which are completely defined by a pair (W, f). Finally, let Θ =

∏n
i=1 Fi

be the Cartesian product of Fi. Observe that an element θ in Θ is actually a
sequence of n W -operators with windows in Cdi , i = 1, . . . , n, which we denote by
θ = {(W1, f1), . . . , (Wn, fn)}. Denoting the W -operator represented by (Wi, fi)
as ψi, a θ ∈ Θ generates a USDMNN ψθ via expression (4).

The USDMNN architecture A = (V, E ,F) with n hidden layers and F =
{ι} × ΨFd1

× · · · × ΨFdn
× {ι} is such that H(A) = {ψθ : θ ∈ Θ}, so Θ is a

representation for the class of operators generated by the architecture A.
Since an operator locally defined in W is also locally defined in any W ′ ⊃W

(cf. Proposition 5.1 in [8]) it follows that Θ is actually an overparametrization
of H(A) since there are many representations (W ′, fψ) for a same W-operator
locally defined in W ⊊ Fdi . This overparametrization, discussed more generally
in [23], also happens in the representation of CDMNN proposed in [22] and we
take advantage of it to propose a SLDA to train USDMNN and mitigate the risk
of overfitting.

4 Training USDMNN via the stochastic lattice descent
algorithm

The training of a USDMNN is performed by obtaining a sequence θ̂ ∈ Θ of W -
operators via the minimization of an empirical error on a sample {(X1, Y1), . . . ,
(XN , YN )}, of N input images X and output target transformed images Y . In
order to mitigate overfitting the sample, the training of a USDMNN will be
performed by a two-step algorithm that, for a fixed sequence of windows, learns
a sequence of characteristic functions by minimizing the empirical error Lt in
a training sample, and then learns a sequence of windows by minimizing an
empirical error Lv in a validation sample over the sequences of windows. More
details about the empirical errors Lt and Lv will be given in Section 5.

These two steps are instances of an algorithm for the minimization of a
function in a subset of a Boolean lattice. On the one hand, the set C :=

∏n
i=1 Cdi
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of all sequences of n connected windows is a subset of a Boolean lattice isomorphic
to

∏n
i=1{0, 1}Fdi , so minimizing the validation error over the windows means

minimizing a function in a subset of a Boolean lattice. On the other hand, for
a fixed sequence of windows (W1, . . . ,Wn) ∈ C, the set BW1 × · · · ×BWn of all
sequences of characteristic functions with these windows is a Boolean lattice
isomorphic to {0, 1}P(W1) × · · · × {0, 1}P(Wn), so minimizing the training error
in this space means minimizing a function in a Boolean lattice.

The U-curve algorithms [6,15,29,30] were proposed to minimize a U-curve
function on a Boolean lattice. In summary, these algorithms perform a greedy
search of a Boolean lattice, at each step jumping to the point at distance one
with the least value of the function, and stopping when all neighbor points have
a function value greater or equal to that of the current point. This greedy search
of a lattice, that at each step goes to the direction that minimizes the function,
is analogous to the dynamic of the gradient descent algorithm to minimize a
function with domain in Rp. Inspired by the U-curve algorithms and by the
success of stochastic gradient descent algorithms for minimizing overparametrized
functions in Rp, and following the ideas of [22], we propose a stochastic lattice
descent algorithm (SLDA) to train USDMNN. In Figure 1, we present the main
ideas of the algorithm, and in Sections 4.1 and 4.2 we formally define it.

Fig. 1. Illustration of the deterministic version of the SLDA to (a) learn the USDMNN
windows and (b) train a USDMNN with fixed windows. To simplify the illustration, we
considered only the possibility of adding a point to a window, and flipping a bit from 0
to 1 of a characteristic function, at each step, even though a point can be erased from a
window, and a flipping from 1 to 0 may happen, if they have the least respective error.
The training error Lt or validation error Lv of each point is on top of it.
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4.1 Training a USDMNN with fixed windows

For each W := {W1, . . . ,Wn} ∈ C let ΘW := {{(W1, f1), . . . , (Wn, fn)} : fi ∈
FWi

, i = 1, . . . , n} be all sequences of W -operators with windows W . Observe
there is a bijection between ΘW and the Boolean lattice

∏n
i=1{0, 1}P(Wi), and

consider the Boolean lattice (ΘW ,≤).
Denoting by d the distance in the acyclic directed graph (ΘW ,≤), we define

the neighborhood of a θ ∈ ΘW as N(θ) = {θ′ ∈ ΘW : d(θ, θ′) = 1}. Observe
that θ, θ′ ∈ ΘW are such that d(θ, θ′) = 1 if, and only if, all their characteristic
functions but one are equal, and in the one in which they differ, the difference
is in only one point of their domain. In other words, θ′ is obtained from θ by
flipping the image of one point of one characteristic function from 0 to 1 or from
1 to 0.

The SLDA for learning the characteristic functions of a USDMNN with fixed
windows is formalized in Algorithm 1. The initial point θ ∈ ΘW , a batch size b,
the number n of neighbors to be sampled at each step, and the number of training
epochs are fixed. For each epoch, the training sample is randomly partitioned in
N/b batches, and we denote the training error on batch j by L(j)

t . For each batch,
n neighbors of θ are sampled and θ is updated to the sampled neighbor with the
least training error L(j)

t , that is calculated on the sample batch j. Observe that
θ is updated at each batch, so during an epoch, it is updated N/b times. At the
end of each epoch, the training error Lt(θ) of θ on the whole training sample is
compared with the error of the point with the least training error visited so far
at the end of an epoch, and it is stored as this point if its training error is lesser.
After the predetermined number of epochs, the algorithm returns the point with
the least training error on the whole sample visited at the end of an epoch.

Observe that Algorithm 1 has two sources of stochasticity: the sampling of
neighbors and the sample batches. If n = n(θ) := |N(θ)| and b = N , then this
algorithm reduces to the deterministic one illustrated in Figure 1. Furthermore,
the complexity of the algorithm is controlled by the number n of sampled
neighbors, the batch size b and the number of epochs. See [22] for a further
discussion about a SLDA.

4.2 Learning the windows of USDMNN windows

In order to learn the windows of a USDMNN, we apply the SLDA on C, that is
a subset of the Boolean lattice

∏n
i=1{0, 1}Fdi . For each W ∈ C, let Lv(W ) :=

Lv(θ
A
W ) be the validation error of the USDMNN realized by θAW , which was

learned by Algorithm 1.
We define the neighborhood of W in C as N(W ) =

{
W ′ ∈ C, d(W ,W ′) = 1

}
in which d means the distance in the acyclic directed graph (C,≤). Observe that
W ,W ′ ∈ C are such that d(W ,W ′) = 1 if, and only if, all their windows but
one are equal, and in the one in which they differ, the difference is of one point.
In other words, W ′ is obtained from W by adding or removing one point from
one of its windows.
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Algorithm 1 Stochastic lattice descent algorithm for learning the characteristic
functions of a USDMNN with fixed windows W = {W1, . . . ,Wn}.
Ensure: θ ∈ ΘW , n, b, Epochs
1: Lmin ← Lt(θ)
2: θAW ← θ
3: for run ∈ {1, . . . ,Epochs} do
4: ShuffleBatches(b)
5: for j ∈ {1, . . . , N/b} do
6: Ñ(θ)← SampleNeighbors(θ, n)
7: θ ← θ′ s.t. θ′ ∈ Ñ(θ) and L(j)

t (θ′) = min{L(j)
t (θ′′) : θ′′ ∈ Ñ(θ)}

8: if Lt(θ) < Lmin then
9: Lmin ← Lt(θ)

10: θAW ← θ
11: return θAW

The SLDA for learning the windows of a USDMNN is formalized in Algorithm
2. The initial point W ∈ C, a batch size b, the number n of neighbors to be
sampled at each step, and the number of training epochs are fixed. For each
epoch, the validation sample is randomly partitioned in N/b batches, and we
denote the validation error of any W on batch j by L(j)

v (W ) := L
(j)
v (θAW ) which

is the empirical error on the j-th batch of the validation sample of the USDMNN
realized by θAW , learned by Algorithm 1.

For each batch, n neighbors of W are sampled and W is updated to the
sampled neighbor with the least validation error L(j)

v . At the end of each epoch,
the validation error Lv(W ) of W on the whole validation sample is compared
with the error of the point with the least validation error visited so far at the end
of an epoch, and it is stored as this point if its validation error is lesser. After
the predetermined number of epochs, the algorithm returns the point with the
least validation error on the whole sample visited at the end of an epoch.

Algorithms 1 and 2 are analogous and differ only on the lattice (ΘW and
C) they search and the function they seek to minimize (the training and the
validation error).

5 Application: Boundary recognition of digits with noise

As an example, we treat the problem of boundary recognition of digits with
noise. We consider the USDMNN with two layers, and windows contained in
the 3× 3 square trained with a training sample of 10, and a validation sample
of 10, 56× 56 binary images. The training and validation samples are the same
used in [22] and the initial windows were considered as the five point cross
centered at the origin. The initial characteristic functions for the first sequence
of windows were randomly chosen, while the initial characteristic functions of
a later sequence of windows were those that minimized the training error of its
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Algorithm 2 Stochastic lattice descent algorithm for learning the windows of a
USDMNN.
Ensure: W ∈ C, n, b, Epochs
1: Lmin ← Lv(W )
2: W A ←W
3: for run ∈ {1, . . . ,Epochs} do
4: ShuffleBatches(b)
5: for j ∈ {1, . . . , N/b} do
6: Ñ(W )← SampleNeighbors(W , n)

7: W ← W ′ s.t. W ′ ∈ Ñ(W ) and L(j)
v (W ′) = min{L(j)

v (W ′′) : W ′′ ∈
Ñ(W )}

8: if Lv(W ) < Lmin then
9: Lmin ← Lv(W )

10: W A ←W
11: return W A

neighbor visited before, except for the window on which they differ, where the
characteristic function is initiated randomly. The algorithms were implemented
in python and are available at https://github.com/MarianaFeldman/USDMM.
The training was performed on a personal computer with processor Intel Core
i7-1355U x 12 and 16 GB of RAM.

We consider the intersection of union (IoU) error that is more suitable for
form or object detection tasks. The IoU error of ψθ in the training sample is

Lt(θ) = 1− 1

10

10∑
k=1

|Yk ∩ ψθ(Xk)|
|Yk ∪ ψθ(Xk)|

(5)

that is, the mean proportion of pixels in Y ∪ ψθ(X) that are not in Y ∩ ψθ(X)
among the sample points in the training sample. The respective error on the
validation sample is denoted by Lv(θ).

The results are presented in Table 1 and Figure 2. We trained the two layer
USDMNN with batch sizes 1, 5 and 10, sampling 8 neighbors in the SLDA for
the characteristic functions and considering all neighbors in the SLDA for the
windows. These batch sizes refer to the SLDA for the characteristic functions,
and in all cases we considered a batch size of 10 in the SLDA for the windows.
We considered 50 epochs to train the windows and 100 epochs to train the
characteristic functions. Each scenario was trained ten times, starting from
distinct initial values of the characteristic functions. We present the minimum,
mean and standard deviation of the results over the ten repetitions in Table 1.

The best results were obtained with batch size 10, and it seems that, with
the initial windows and characteristic functions we are considering, it is not
possible to properly train with batch sizes 1 and 5. The training and validation
error of the USDMNN trained with batch size 10 did not vary a lot over the
repetitions, so the algorithm is not sensible to the initial value for batch size 10.
Moreover, with batch size 10, the SLDA for the characteristic functions took

https://github.com/MarianaFeldman/USDMM
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in average around 80 epochs to reach the minimum in all repetitions, and the
SLDA for the windows took an average of 26 epochs to the minimum over the
ten repetitions, although the variation was great and there was a repetition in
which the minimum was achieved after only five epochs.

The time it took to train the USDMNN was greater than that it took to train
CDMNN in [22], but it can be decreased with a more sophisticated implementation
of the algorithms. The minimum training and validation error of the trained
operator attained with USDMNN (0.032 and 0.052) was slightly greater than the
respective minimum error obtained in [22] (around 0.029 and 0.042). Therefore,
the USDMNN have obtained similar empirical results as the CDMNN in [22]
without strong prior information.

Table 1. Results of the two layer USDMNN trained with batch sizes b = 1, b = 5, and
b = 10 for the characteristic function SLDA. The results are in the form Minimum
- Average (Standard Deviation) over the ten repetitions. We present the minimum
training error observed during training; the training and validation error of the trained
USDMNN; the algorithm total time and time until the minimum validation error; the
number of epochs to the minimum validation error; and the average number of epochs
until the minimum training error with fixed windows.

b Min. Train Learned Train Min Val. Total time (h) Time to min. (h) Epo. to min. (W) Mean Epo. to min (f)
1 0.442 - 0.57 (0.07) 0.597 - 0.677 (0.053) 0.183 - 0.238 (0.031) 113.4 - 135.6 (16.1) 11.6 - 45.7 (37.2) 4 - 16.8 (15.4) 47.8 - 49.0 (0.8)
5 0.421 - 0.49 (0.04) 0.492 - 0.611 (0.076) 0.127 - 0.155 (0.015) 78.5 - 91.9 (20.3) 13.648 - 32.478 (19.0) 4 - 18.7 (11.9) 51.4 - 52.9 (1.3)
10 0.031 - 0.036 (0.004) 0.032 - 0.039 (0.006) 0.052 - 0.056 (0.003) 173.6 - 182.6 (13.3) 14.262 - 98.324 (70.9) 5 - 26.2 (17.7) 80.9 - 82.6 (1.3)

Fig. 2. Result obtained after applying, to the validation sample, each layer of the
USDMNN trained with a batch size of 10 that had the least validation error.

6 Next steps and future research

In this paper, we proposed a hierarchical SLDA to train USDMNN and illustrated
it in a simple example. We obtained empirical results almost as good as that of
[22], but without the necessity to design a DMNN based on prior information. The
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next step of this work is to develop an efficient implementation of the algorithms
and perform a more extensive experimental study to better understand features
of them. In particular, it is necessary to better understand the sensitivity to the
initial values and the role of the batch size on both the SLDA for the windows and
for the characteristic functions. A more thorough comparison with the CDMNN
proposed in [22] is also necessary.

We are currently working on an efficient implementation of the hierarchical
SLDA that, we believe, will significantly decrease the training time, so methods
based on USDMNN may also be competitive with CDMNN from a computational
complexity perspective. With a more efficient algorithm, it will be possible to fine
train USDMNN and better study the effect of settings such as the number of layers
and the window size on the performance. An efficient method to train DMNN
without the need of strong prior information may help popularize methods based
on them among practitioners which do not have strong knowledge in mathematical
morphology to design specific CDMNN architectures.

A promising line of research is to compare the USDMNN and CDMNN
with other methods proposed in the literature. Since the DMNN are exact
representations of morphological operators, an interesting study would be to
compare them with other exact methods, rather than with approximations such
as the classical MNN. In particular, it would be interesting to compare the DMNN
with the binary morphological neural networks proposed in [1,2]. We leave such
a comparison as a topic for future research.
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