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Abstract. The machine learning of lattice operators has three possible
bottlenecks. From a statistical standpoint, it is necessary to design a
constrained class of operators based on prior information with low bias,
and low complexity relative to the sample size. From a computational
perspective, there should be an efficient algorithm to minimize an em-
pirical error over the class. From an understanding point of view, the
properties of the learned operator need to be derived, so its behavior can
be theoretically understood. The statistical bottleneck can be overcome
due to the rich literature about the representation of lattice operators, but
there is no general learning algorithm for them. In this paper, we discuss
a learning paradigm in which, by overparametrizing a class via elements
in a lattice, an algorithm for minimizing functions in a lattice is applied
to learn. We present the stochastic lattice descent algorithm as a general
algorithm to learn on constrained classes of operators as long as a lattice
overparametrization of it is fixed, and we discuss previous works which are
proves of concept. Moreover, if there are algorithms to compute the basis
of an operator from its overparametrization, then its properties can be
deduced and the understanding bottleneck is also overcome. This learning
paradigm has three properties that modern methods based on neural
networks lack: control, transparency and interpretability. Nowadays, there
is an increasing demand for methods with these characteristics, and we
believe that mathematical morphology is in a unique position to supply
them. The lattice overparametrization paradigm could be a missing piece
for it to achieve its full potential within modern machine learning.
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1 Algebraic representations of operators

Let (L,≤) be a complete lattice. A lattice operator ψ : L → L is a mapping
from L into itself, and we denote by Ψ = LL the set of all lattice operators in L.
The collection Ψ inherits the complete lattice structure of L by considering the
pointwise partial order. Let Ω ⊂ Ψ be a complete sublattice of Ψ .

An algebraic representation of (Ω,≤) is any complete lattice (Θ,≤) such that
there exists a lattice isomorphism R : Ω → Θ. The element θ ∈ Θ is the parameter
that represents the operator ψθ = R−1(θ) and (R,Θ) is a parametrization of Ω.
The algebraic representations are not unique and, although they are all equivalent,
some have advantages over others.

A general algebraic representation of a lattice operator ψ is through its kernel,
as proposed in3 [5]. Let ΘK = P(L)L be the collection of all maps F from L to
P(L) equipped with the pointwise partial order

F1 ≤ F2 ⇐⇒ F1(Y ) ⊂ F2(Y ) ∀Y ∈ L

for F1,F2 ∈ ΘK, and consider the lattice isomorphism RK : Ω → ΘK given by

RK(ψ)(Y ) = K(ψ)(Y ) = {X ∈ L : Y ≤ ψ(X)} (Y ∈ L).

See [5, Proposition 6.1] for a proof that RK is a lattice isomorphism.
The operators in specific lattices, such as finite lattices, and subclasses of

operators in general lattices, such as upper semi-continuous operators [6], have a
minimal algebraic representation by the maximal intervals lesser or equal to the
kernel. Formally, for ψ ∈ Ψ let

A(K(ψ)) = {[α, β] : [α, β] ≤ K(ψ)}

be the intervals4 which are lesser or equal to the kernel of ψ. The basis of ψ is
defined as the maximal intervals in A(ψ), that is

B(ψ) = Max (A(K(ψ)))
= {[α, β] ∈ A(ψ) : [α′, β′] ∈ A(ψ), [α, β] ≤ [α′, β′] =⇒ [α, β] = [α′, β′]}

in which ≤ above is the partial order in (ΘK,≤). Under certain conditions, of
which more details may be found in [4,5,6], it follows that

ψ = ∨
{
λ[α,β] = α ∧ β : [α, β] ∈ B(ψ)

}
(1)

in which

α(X) = ∨{Y ∈ L : α(Y ) ≤ X} and β(X) = ∨{Y ∈ L : X ≤ β(Y )}

for X ∈ L. Decomposition (1) is called sup-generating decomposition of ψ and it
has a dual inf-generating decomposition.
3 We are calling kernel what [5] defined as left-kernel.
4 See [5] for the formal definition of interval in this context.



Lattice Overparametrization Paradigm 3

Assuming that (1) holds for all ψ ∈ Ω, denote by

ΘB = {Max (A(F)) : F ∈ ΘK}

the maximal intervals associated to each F ∈ ΘK and consider the map RB :
ΘK → ΘB given by

RB(F) = Max (A(F)) .

It follows that (ΘB,≤) is a complete lattice isomorphic to (ΘK,≤) with partial
order

B1 ≤ B2 ⇐⇒ ∀[α, β] ∈ B1,∃[α′, β′] ∈ B2 : [α, β] ≤ [α′, β′]

in which the partial order on the right-hand side is that of (ΘK,≤). From now
on, we assume that Ω is a subclass of operators on L with a basis representation.

Specific classes of operators may have other algebraic representations. For
instance, when L = P(E) and (E,+) is an Abelian group, then the class of
translation invariant (t.i.) and locally defined lattice operators (i.e., W-operators),
which in this case are set operators, can also be represented by a characteristic
Boolean function. Denoting by ΨW the class of t.i. set operators locally defined
within a window W ∈ P(E) and by B = {0, 1}P(W ) the Boolean functions in
P(W ), we consider the lattice isomorphism RB : ΨW → B given by

RB(ψ)(X) =

{
1, if o ∈ X
0, otherwise

(X ∈ P(W ))

in which o is the zero element E. See [8] for more details.
Clearly, the isomorphisms may be composed to obtain isomorphisms between

distinct algebraic representations and all algebraic representations are equivalent.
For example, RB,B : B→ B given by RB,B = RB ◦RK ◦R−1

B is an isomorphism
between (B,≤) and (B,≤). The isomorphisms defined so far are illustrated in
Figure 1.

From an algebraic perspective, the basis representation has some advantages
over other representations, since algebraic properties of an operator may be
deduced from its basis. For example, in the case of W-operators, the intervals in
the basis of increasing operators are of form [A,W ] for A ∈ P(W ); the basis of
extensive increasing operators contains the interval [o,W ]; and the basis of an
increasing anti-extensive operator is such that o ∈ A for all lower limits A of the
intervals in its basis (see [21] for more details). Hence, reducing an operator to
its basis representation is enough to verify its mathematical properties.

2 Lattice overparametrization

An algebraic representation R is an isomorphism between a class Ω and a
parametric set Θ. Such a representation is obtained by departing from a fixed Ω
and defining an isomorphism R : Ω → Θ. This is done in [4,5,6]. Another family
of representations may be obtained by departing from a Θ and defining an onto
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map R̃ : Θ → Ω, so each parameter θ ∈ Θ represents an operator ψθ = R̃(θ) ∈ Ω
and for each ψ ∈ Ω there exists at least one θ ∈ Θ such that ψ = ψθ.

When R̃ is not injective, (R̃, Θ) is an overparametrization of Ω by the parame-
ters in Θ since a same operator can be represented by more than one parameter. If
(Θ,≤) is a lattice, we say that (R̃, Θ) is a lattice overparametrization of Ω. Since
R̃ is not an isomorphism, the partial relation in Θ is not equivalent to that in Ω.
The basis of the operator represented by θ is given by R̃B(θ) = (RB ◦RK ◦ R̃)(θ).

As an example, assume that L = P(E) and (E,+) is an Abelian group. For
a finite subset W ∈ P(E) let

Ω = {ϵA ∨ ϵB ∨ ϵC : A,B,C ∈ P(W ); {[A,W ], [B,W ], [C,W ]} is maximal} (2)

be the class of t.i. operators locally defined within W that can be written as the
supremum of three erosions. We note that B(ϵA∨ϵB∨ϵC) = {[A,W ], [B,W ], [C,W ]}
and Ω is actually the class of the increasing W -operators with at most three
elements in their basis5. By making Θ = P(W )3 and R̃((A,B,C)) = ϵA∨ ϵB ∨ ϵC
we have a lattice overparametrization of Ω since R̃((A,B,C)) = ψ for all
(A,B,C) ∈ P(W )3 satisfying K(ψ) = [A,W ] ∪ [B,W ] ∪ [C,W ]. By lifting the
restriction that the intervals {[A,W ], [B,W ], [C,W ]} are maximal, we depart
from an algebraic representation of Ω to a lattice overparametrization by a
Boolean lattice.

A lattice overparametrization may be useful for representing a constrained
class of operators defined via the composition, supremum, and infimum of opera-
tors that can be parametrized by elements in a lattice. A special case is when
the operators can be written as combinations of erosions and dilations with
structural elements in a lattice. In [22] we proposed the discrete morphological
neural networks (DMNN) to represent constrained classes of W -operators via
the composition, supremum and infimum of W-operators, which are an example
of overparametrizations of a class of operators. In special, the canonical DMNN
are those in which the W -operators computed in the network can be written as
the supremum, infimum, complement, or composition of erosions and dilations
with a same structuring element, an example of which is the class in (2) (see
Example 5.8 in [22]). The canonical DMNN are a specific example of lattice
overparametrization.

The main advantage of considering a lattice overparametrization is the possi-
bility of applying general, efficient algorithms to learn operators in a constrained
class. This is the case since the lattice (Θ,≤) is known and can be chosen with
desired computational properties, so minimizing a function in it may be more
efficient than doing so in (Ω,≤), specially when Ω is not a lattice. We further
discuss the advantages of considering a lattice overparametrization to learn lattice
operators in Section 4.

5 Observe that if some of the elements A,B,C are equal, then |B(ϵA ∨ ϵB ∨ ϵC)| < 3.
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3 The machine learning of lattice operators

The general framework for learning lattice operators consists of a class Ω, a
sample DN = {(X1, Y1), . . . , (XN , YN )} of N pairs of input and output elements
X and Y in L, in which Y is obtained by a possibly random transformation of
X, and a loss function ℓ : L2 × Ψ → R2 which evaluates the error ℓ((X,Y ), ψ)
incurred when ψ(X) is applied to approximate Y , for each pair (X,Y ) ∈ L2 and
operator ψ ∈ Ψ .

It is assumed that the pairs in DN are sampled from an unknown, but fixed,
statistical distribution P over L2. Each ψ ∈ Ψ has a mean expected error under
distribution P defined as L(ψ) = EP [ℓ((X,Y ), ψ)], in which the expectation
is over a random vector (X,Y ) with distribution P . A target operator of Ψ is
a minimizer of L in Ψ and a target operator of Ω is a minimizer of L in Ω.
We denote the target operators by ψ⋆ and ψ⋆Ω, respectively, and they satisfy
L(ψ⋆) ≤ L(ψ),∀ψ ∈ Ψ , and L(ψ⋆Ω) ≤ L(ψ),∀ψ ∈ Ω. For the sake of the argument,
we assume that both target operators exist and are unique.

Defining

LDN
(ψ) =

1

N

N∑
i=1

ℓ((Xi, Yi), ψ)

as the mean empirical error of ψ ∈ Ψ in sample DN , the empirical risk minimiza-
tion paradigm propose as an estimator for ψ⋆Ω the operator that minimizes LDN

in Ω:
ψ̂ = argmin

ψ∈Ω
LDN

(ψ) = argmin
θ∈Θ

LDN
(ψθ) (3)

in which Θ is any representation, algebraic or otherwise, of Ω. The quality of the
estimator ψ̂ is measured by L(ψ̂), which is called its generalization error, and
assesses how it is expected to perform on data not in the sample, but generated
by the same unknown distribution P .

The goal of learning is to obtain an estimator such that L(ψ̂) ≈ L(ψ⋆) so
its generalization quality is close to the best possible. On the one hand, it is
necessary to have L(ψ⋆Ω) ≈ L(ψ⋆) for otherwise there is a systematic bias in
the learning process since ψ̂ cannot generalize better than ψ⋆Ω. On the other
hand, if Ω is chosen as a class of complex operators, or as Ω = Ψ , then, even if
ψ⋆Ω is as good as or equal to ψ⋆, if the sample size is not great enough, there
may be a complex operator ψ̂ in Ω that completely fits the data, so it has zero
empirical error, but that does not generalize very well. When this happens, we say
overfitting occurred. Actually, if Ω = Ψ and Ψ has infinite VC dimension, which
is a measure of the complexity of a class of operators [29], not even an infinite
sample suffices to guarantee that L(ψ̂) ≈ L(ψ⋆). This is the usual bias-variance
trade-off in machine learning [1].

Hence, we have the following statistical bottleneck for learning lattice opera-
tors:

(B1) To fix a class of operators with low bias and relative low complexity
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The recipe to circumvent (B1) is the core of mathematical morphology:
to design a class of operators based on prior information about the practical
problem and on the mathematical properties of lattice operators. Geometrical and
topological properties of the transformation applied to Xi to obtain Yi in sample
DN are identified, and based on them a class Ω of lattice operators is designed
via the mathematical morphology toolbox. If prior information is right, so the
best operator in Ω well generalizes, and Ω is not too complex, then learning is
feasible and ψ̂ is expected to well generalize. As an example, the class in (2) can
be applied to a problem in which it is known that an increasing transformation
was applied to Xi to obtain Yi, and the maximum number of elements in the
basis controls the complexity of Ω.

There are almost 60 years of rich literature in mathematical morphology, that
we could not possibly cite here without committing huge injustices, which can
be directly applied to solving (B1), so it is not really a bottleneck for learning
lattice operators. However, there is a second, computational, bottleneck that has
not yet been overcome in general:

(B2) To compute ψ̂ by solving (3)

Despite their practical success, many proposed methods for the machine
learning of lattice operators in the literature are heuristics that seek to control
the complexity of the class of operators relative to the sample size, but do not
strongly restrict the operator class based on prior information. The ISI algorithm
[17], iterative designs [18] and multiresolution designs [13,19] offer methods to
control the complexity of the class based on data, however are not flexible to
represent specific classes of operators, but only general classes such as filters.

Furthermore, methods such as the those based on envelope constraints [9,10]
can insert sharp prior information into the learning process by projecting the
operator learned by a heuristic method into a constrained class, but do not
guarantee that the projected operator well approximates the target of the class.
Finally, we note that methods to solve (3) for specific classes, such as stack filters
[16], have been proposed, but are not general methods that can be easily extended
to other classes of operators. See [7] for more details on methods for the machine
learning of operators.

We propose as a general paradigm to overcoming (B2) the development of
algorithms to efficiently minimize, or approximately minimize, a function in a
lattice so (3) can be at least approximately computed whenever Ω has a lattice
overparametrization (Θ,≤). Such an algorithm would be a general optimizer
for learning operators once a subclass Ω and a lattice overparametrization for
it is fixed. This abstract idea, which is behind the DMNN proposed in [22],
can be a paradigm for the machine learning of lattice operators based on the
stochastic lattice descent algorithm (SLDA). The general framework for the
machine learning of lattice operators is depicted in Figure 1.
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4 Stochastic lattice descent as a general learning algorithm

The U-curve algorithm was first proposed by [27] for minimizing U-shaped
functions in Boolean lattices, and was then improved by [3,14,26]. It has also
been applied to solve other problems in mathematical morphology [25]. Inspired
by this algorithm and by the success of stochastic gradient descent algorithms for
minimizing overparametrized functions in Rd, such as the regularized empirical
error of a neural network, we propose the SLDA to learn operators in a class
with lattice overparametrization (Θ,≤).

Informally, the SLDA performs a greedy search of a lattice to minimize an
empirical error. At each step, n neighbors of an element are sampled and the
empirical error on a fixed sample batch of the operator represented by each
sampled neighbor is calculated. The algorithm jumps to the sampled neighbor
with the least empirical error on the sample batch. The algorithm starts again
from this new element, by sampling n neighbors and calculating their empirical
error on a new sample batch. This process goes on for a predetermined number
of epochs. An epoch ends when all sample batches have been considered, and
the algorithm returns the element visited at the end of an epoch with the least
empirical error on the whole sample. We now formally define the SLDA.

For each θ ∈ Θ, let N(θ) be a neighborhood of θ in (Θ,≤). If Θ is countable,
then N(θ) may be composed by the elements of Θ at distance one from θ. When
Θ is uncountable and d(θ, θ′) is a distance measure, with d(θ, θ′) =∞ whenever
θ ≰ θ′ and θ′ ≰ θ, then one could consider N(θ) = {θ′ : d(θ, θ′) < δ} for a fixed
δ > 0. Assume that, given θ and a constant n, there exists an algorithm which
samples n elements from N(θ). If N(θ) is a finite set, then the elements may be
sampled uniformly, while if it is countable or uncountable then other statistical
distributions should be considered.

The SLDA is formalized in Algorithm 1. The initial point θ ∈ Θ, a batch size6 b,
the number n of neighbors to be sampled at each step, and the number of training
epochs is fixed. The initial point is stored as the point with minimum empirical
error visited so far. For each epoch, the sample DN is randomly partitioned
in N/b batches {D̃(1)

b , . . . , D̃(N/b)
b }. For each batch D̃(j)

b , n neighbors of θ are
sampled and θ is updated to a sampled neighbor with the least empirical error
LD̃(j)

b

, that is calculated on the sample batch D̃(j)
b . Observe that θ is updated at

each batch, so during an epoch, it is updated N/b times.
At the end of each epoch, the empirical error LDN

(θ) of θ on the whole sample
DN is compared with the error of the point with the least empirical error visited
so far at the end of an epoch, and it is stored as this point if its empirical error
is lesser. After the predetermined number of epochs, the algorithm returns the
point with the least empirical error on the whole sample DN visited at the end of
an epoch. For finite lattices, if b = N and n is equal to the number of neighbors
of θ, i.e., n = n(θ) = |N(θ)|, then Algorithm 1 reduces to the (deterministic)
lattice descent algorithm.
6 We assume that N/b is an integer to easy notation. If this is not the case, the last

batch will contain less than b points.
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Algorithm 1 Stochastic lattice descent algorithm for learning lattice operators.
Ensure: θ ∈ Θ,n, b, Epochs
1: Lmin ← LDN

(ψθ)

2: θ̂ ← θ
3: for run ∈ {1, . . . ,Epochs} do
4: {D̃(1)

b , . . . , D̃(N/b)
b } ← SampleBatch(DN , b)

5: for j ∈ {1, . . . , N/b} do
6: Ñ(θ)← SampleNeighbors(θ, n)
7: θ ← θ′ s.t. θ′ ∈ Ñ(θ) and LD̃(j)

b

(ψθ′) = min{LD̃(j)
b

(ψθ′′) : θ
′′ ∈ Ñ(θ)}

8: if LDN
(ψθ) < Lmin then

9: Lmin ← LDN
(ψθ)

10: θ̂ ← θ
11: return θ̂

An implementation of Algorithm 1 for a finite lattice has been done in [22]
and good results were obtained in a simple binary image transformation problem.
We note that in order for the algorithm to work for uncountable lattices, the
statistical distribution applied to sample the neighbors should be chosen in a
way to give a meaningful probability to chains in which the error decreases.
The challenge of doing so is defining such a distribution without computing the
error on the chains, what is computationally unfeasible. An implementation of
the SLDA, or a modification of it, for uncountable lattices is currently an open
problem.

We argue that, in general, it is not computationally feasible to apply the SLDA
directly on lattice (Ω,≤). On the one hand, since (Θ,≤) is known a priori, for any
θ ∈ Θ the set N(θ) is known, so the complexity of sampling n neighbors should be
that of sampling from a known statistical distribution, which is usually very low.
On the other hand, if the SLDA was applied directly on (Ω,≤), fixed a ψ ∈ Ω,
the computation of its neighborhood in (Ω,≤) would be problem-specific and
could have a great complexity. Therefore, suboptimally minimizing the empirical
error in Θ via the SLDA should be less computationally complex than doing so
in Ω. Furthermore, it is possible to learn on a poset (Ω,≤) as long as it has a
lattice overparametrization. In this case, minimizing the empirical error in (Ω,≤)
is a constrained optimization problem, while minimizing it in the lattice (Θ,≤)
is an unconstrained one which ought to be more efficiently solved.

We also note that the SLDA could be applied to the case in which Θ is a poset
possibly contained in a lattice. In this case, the complexity of the algorithm could
increase significantly due to the restrictions on N(θ). For example, sampling n
neighbors of an element in a Boolean lattice is trivial, while sampling n neighbors
which are also in a set of elements (the poset Θ) may be quite complex, specially
when Θ ∩N(θ) needs to be computed. In other cases, Θ being a poset may not
meaningfully increase the complexity (see the application in [22]).
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5 Degrees of prior information and hierarchical SLDA

When one has strong prior information about the properties that ψ⋆ satisfies, then
he can properly fix a constrained Ω and, having a lattice overparametrization of
Ω, he can in principle approximately compute (3). However, when strong prior
information is not available, Ω may be too complex, so overfitting occurs, or
the lattice Θ may be too complex, so high computational resources are needed.
Either way, if one can decompose Θ into a lattice (L(Θ),⊂) of subsets of Θ
then he can apply an algorithm analogous to the SLDA to minimize a validation
error in (L(Θ),⊂) to select a subset Θ̂ ⊂ Θ, which represents a constrained class
{ψθ : θ ∈ Θ̂} ⊂ Ω, and then learn an operator in it. This is a specific instance of
learning via model selection and is also represented in Figure 1 (see [24] for a
formal definition of learning via model selection).

We proposed in [23] a hierarchical SLDA in the context of the unrestricted
sequential DMNN proposed in [22] to represent W-operators. The class repre-
sented by these DMNN is composed of all operators that can be represented
via the composition of d W-operators locally defined in W1, . . . ,Wd, which is
overparametrized by the Boolean characteristic functions of the W-operators. The
set of possible sequences of Boolean functions is a Boolean lattice, and hence this
is a lattice overparametrization. Since this class is quite complex, it is prone to
overfit the data, so we propose a SLDA to select the windows of the W-operators,
what is equivalent to creating equivalence classes on the characteristic functions’
domain. Each possible sequence of windows defines a subset of Θ and varying all
possible windows generates a lattice (L(Θ),⊂) of subsets of Θ. This is an example
where it is possible to learn lattice operators without strong prior information,
and we refer to [23] for more details.

We are currently working on more general methods to learn lattice operators
via a hierarchical SLDA in contexts where prior information is not available.

6 Control, transparency and interpretability

The lattice overparametrization paradigm for the machine learning of lattice
operators has by design three important properties that modern learning methods
lack in general: control, transparency and interpretability. Due to the extensive
knowledge about lattice operators and the mathematical morphology toolbox,
the practitioner has all the resources necessary to design Ω to fulfill its needs, so
he has complete control over the class of operators. This is clear in the case of
canonical DMNN in the context of set operators [22], which can represent any
class of operators that can be decomposed via supremum, infimum, complement,
and composition of erosions and dilations.

All the steps of the machine learning are transparent: the practitioner knows
the properties of the operators in Ω since he can compute the basis of each one
via R̃B; he knows the lattice overparametrization, which he chose; and he can
trace the path of the SLDA and inspect the choices of the algorithm at each step.
By monitoring the properties of θ each time it is updated, one can make sense of
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ψ f

BF

θ

Data

Model Selection

(Ω,≤) (ΘB,≤)

(ΘB,≤)

(Θ,≤)

(ΘK,≤)

(L(Θ),⊂)

RB

R−1
B

RK R−1
K RB,BR−1

B,B

RB

R−1
B

R̃B

SLDA

Fig. 1. The lattice isomorphisms between representations of (Ω,≤). The dashed lines
represent an isomorphism that holds when the operators in Ω have a basis representation.
The dotted lines represent isomorphisms that hold for t.i. and locally defined set
operators when L = P(E) and (E,+) is an Abelian group. The orange arrows represent
frameworks for the learning of lattice operators via the SLDA and via model selection
based on data.

a possible logic that the algorithm is following. This monitoring may be that of
the basis R̃B(θ) or of the values of the parameters θ in case they have semantic
information.

Finally, the mathematical properties of the learned operator ψθ̂ are completely
known, since it suffices to compute its basis R̃B(θ̂) from which its properties can
be deduced. From these properties, it is possible to explain what the operator
is doing, foresee cases in which it might not properly work and obtain insights
about the relation between X and Y .

We note that these three properties are present in a learning framework only if
R̃B can be computed, for otherwise, if one cannot reduce an operator to its basis,
then he may not be able to deduce its properties. This is a possible bottleneck to
this learning paradigm:

(B3) To compute R̃B(θ) for θ ∈ Θ
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For canonical DMNN in the context of set operators this is not a bottleneck
since results in [8] allow computing the basis for each θ ∈ θ (see [22, Remark 5.2]
for more details). Moreover, results in [21] present general algorithms to compute
the basis of many classes of set operators. Having these kinds of results for more
general lattices is needed to overcome (B3).

7 Conclusion

In the last decades, neural networks (NN) have been the main paradigm in
image processing and its outstanding performance overshadowed mathematical
morphology (MM), that has been relegated in favor of them (see the discussion
in [2]). To this date, there has been no definitive method that brought MM to the
deep learning era and many attempts try to insert MM into NN, as if NN were the
golden standard and MM was only a second class tool. This last fact is completely
false: in the context of lattice operators, NN do not have any advantage over
MM from a theoretical perspective, and do not have the essence of MM, which
control, transparency and interpretability are a part of. Indeed, needless to say,
neural networks do not have, in general, any of these three properties: one does
not have control over the class it represents, its learning algorithm and behavior
is opaque, and its results are hardly interpretable.

Indeed, learning methods based on neural networks have been proposed in
the last decades in the form of morphological neural networks [11,12,28]. More
recently, they have been studied in the context of convolutional neural networks
[15,20]. Although these methods do not suffer from (B2), since they can be
efficiently trained, they are opaque and as much a black-box as usual neural
networks. In special, it is not trivial to insert constraint into them to achieve (B1)
and once they are trained it is not possible to solve (B3) efficiently. Therefore,
MNN do not address all the bottlenecks, but could maybe be adapted to fit the
paradigm proposed in this paper. This is a current line of research.

However, NN do have great advantages from a practical standpoint, since
they obtain good results and can be efficiently trained, and a great part of this
success appears to be due to the possibility of proper learn in an overparametrized
context. The paradigm proposed in this paper asks the following question: what
if we could consider overparametrization to learn, but do not lose control and
semantic understanding? To this day, there is no way of doing so with neural
networks, but we argued in this paper that it is possible with MM as long as
bottlenecks (B1), (B2) and (B3) are overcome.

Since solving (B1) has been the purpose of MM for decades, it is necessary
to overcome only (B2) and (B3). The latter can be done by extending results
such as those in [8,21] to general lattices, and the former can be overcome via
implementations of algorithms analogous to the SLDA. We believe one should
value MM and embrace aspects of NN, such as overparametrization, that can
enhance MM without losing its spirit, instead of embracing NN and trying to
insert MM into it.
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The works in [22] and [23] are proofs of concept of the paradigm we discussed
in this paper that, we believe, could be the guide for research in the machine
learning of mathematical morphology in the deep learning era. The potential
of such a line of research is enormous, since even if the performance of these
methods come only close to that of neural networks, they may be preferred since
they are controllable, transparent, and interpretable by design. Nowadays, there
is an increasing demand for methods with these characteristics, and we believe
that MM is in a unique position to supply them. The lattice overparametrization
paradigm could be a missing piece for MM to achieve its full potential within
modern machine learning.
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