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Abstract. The square root velocity transformation is crucial for efficiently em-
ploying the elastic approach in functional and shape data analysis of curves. We
study fundamental geometric properties of curves under this transformation.
Moreover, utilizing natural geometric constructions, we employ the approach
for intrinsic comparison within several classes of surfaces and augmented curves,
which arise in the real world applications such as tubes, ruled surfaces spherical
strips, protein molecules and hurricane tracks.
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1 Introduction

Metric comparison of curves is a core task in a wide range of application areas such as
morphology, image and shape analysis, computer vision, action recognition and signal
processing. Thereby, a Riemannian structure is highly desirable, since it naturally
provides powerful tools, beneficial for such applications.

In the recent years, the use of Riemannian metrics for the study of sequential data,
such as shapes of curves, trajectories given as longitudinal data or time series, has
rapidly grown. In elastic analysis of curves, one considers deformations caused from
both bending and stretching. A Riemannian metric, which quantifies the amount of
those deformations is called elastic (cf. [18,19]). Therein, in contrast to landmark-based
approaches (cf. [12,20,22]), one considers whole continuous curves instead of finite num-
ber of curve-points. Consequently, the underlying spaces are infinite dimensional and
computational cost becomes a significant issue. The square root velocity (SRV) frame-
work provides a convenient and numerically efficient approach for analysing curves via
elastic metrics and has been widely used in the recent years (cf. [14,11,4,3] and the
comprehensive work [24]).

In many applications the curves are naturally manifold-valued. For instance, Lie
groups such as the Euclidean motion group, or more generally, symmetric spaces includ-
ing the Grassmannian and the Hadamard-Cartan manifold of positive definite matrices
are widely used in modelling of real world applications. Extensions of SRV framework
from euclidean to general manifold-valued data can be found in [13,27,25,9,26].
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Our contributions are the following. We expose for plane curves the behaviour of
speed and curvature under the SRV transformation and geometric invariants. More-
over, we apply the elastic approach to augmented curves, determining certain classes of
surfaces, tubes, ruled surfaces and spherical strips, as well as hurricane tracks consid-
ered with their intensities. We recall that with distance and geodesic at hand, signifi-
cant ingredients of statistical analysis such as mean and principal geodesic components
as well as approximation and modelling concepts such as splines can be computed.

This paper is organized as follows. Section 2, presents the Riemannian setting and
notations. Section 3 is devoted to applications. Therein, we consider time series, for
which in addition to spatial data, auxiliary information give rise to augmented curves
and some classes of surfaces generated by them. Thereby, we apply the elastic approach
to both euclidean and spherical trajectories. Future prospects and concluding remarks
are presented in 4.

For the convenience of those readers primary interested in the applications, we
mention that, advanced parts and details from differential geometry, presented in 2,
can be skipped. Thereby, the essential point is the use of a framework (SRV) for
computation of shortest paths on the spaces of curves and their shapes.

2 Riemannian Framework

2.1 Preliminaries

For the background material on Riemannian geometry, we refer to [8] and [10]. Let
(M, g) be a finite dimensional Riemannian manifold and M the Fréchet manifold of
smooth immersed curves from D in M , where D denotes either the unit circle S1 or
the unit interval I := [0, 1] for closed or open curves respectively. Moreover, we denote
the group of orientation preserving diffeomorphisms on D by Diff+. The following
reparametrization invariance is crucial for a Riemannian metric G on M:

Gc◦φ(h ◦ φ, k ◦ φ) = Gc(h, k),

for any c ∈ M, h, k ∈ TcM and φ ∈ Diff+. The above equivariance ensures that the
induced distance function satisfies the following, which is often desirable in applica-
tions:

d(c0 ◦ φ, c1 ◦ φ) = d(c0, c1),

for any two curves c0 and c1 in M. Similarly, denoting the isometry group of M by
Isom(M) and the tangent map of F ∈ Isom(M) by TF , the invariance

GF◦c(TF ◦ h, TF ◦ k) = Gc(h, k),

ensures that
d(F ◦ c0, F ◦ c1) = d(c0, c1).

With the above invariances, we can divide out the spaces Isom(M) and Diff+, and
consider the natural induced distance dS on the quotient space

S = M/(Diff+ × Isom(M))
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given by

dS([c0], [c1]) = inf {d(c0, f ◦ c1 ◦ φ) : φ ∈ Diff+, f ∈ Isom(M)}
= inf {d(f ◦ c0 ◦ φ, c1) : φ ∈ Diff+, f ∈ Isom(M)}.

In the context of shape analysis of curves, M and S are called the pre-shape and shape
space, respectively. Note that the order of quotient operations does not matter, since
the left action of Isom(M) and the right action of Diff+ commute. M/Diff+ is the
space of unparametrized curves and its inherited distance reads

inf {d(c0, c1 ◦ φ) : φ ∈ Diff+}.

We remark that particular essential challenges are due to the fact that some basic
concepts and results from finite dimensional differential geometry such as Hopf-Rinow
theorem, do not carry over to the infinite dimensional case. Now, let ∇ be the Levi-
Civita connection of M and denote the arc length parameter, speed and unit tangent
of c by θ, ω and T respectively. Thus, we have ω = |ċ|, dθ = ωdt and T = ċ

ω , where
dot stands for derivation with respect to the parameter t.

Due to a remarkable result in [16] the geodesic distance induced by the simplest
natural choice, the L2-metric

GL2

c (h, k) =

∫
D
gc(h, k) dθ,

always vanishes. Consequently, some stronger Sobolev metrics have been considered in
several works including [17,7,5]. They are given by

Gc(h, k) =

n∑
i=0

∫
D
aigc(∇i

Th,∇i
T k) dθ,

with a1 non-vanishing and all ai non-negative, distinguish the curves. We consider
first order metrics with constant coefficients. We remark that the coefficients ai can
be chosen such that the metric is scale invariant, which is a desired property for some
applications in shape analysis. A family of certain weighted Sobolev-type metrics, the
so-called elastic metrics, based on a decomposition of derivatives of the vector fields
into normal and tangent components, has been introduced in [18,19]:

Ga,b
c (h, k) =

∫
D
agc((∇Th)

⊤, (∇T k)
⊤) + bgc((∇Th)

⊥, (∇T k)
⊥) dθ,

with 4b ≥ a > 0. In this work, we use the square root velocity (SRV) framework, which
allows for a convenient and computationally efficient elastic approach. The main tool
in this framework is the square root velocity transformation, which for euclidean M
reads

q : c 7→ ċ√
|ċ|

.
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It isometrically maps curves modulo translations, with the metric G1,1/4 to M with
the flat L2-metric given by

G0(v, w) =

∫
D
g(v(t), w(t))dt.

This metric is frequently called (cf. [15,2,6]) flat, to emphasize its footpoint indepen-
dence. Note that the elastic metric G1,1 corresponds to the first order Sobolev metric
with a0 = 0 and a1 = 1. We remark, that for plane curves, the work [23] has extended
the SRV transformation to general parameters a, b > 0. For further reading on the
SRV framework and applications in shape analysis, we refer to [14], [11] (numerical
aspects), the survey [6] and particularly, the comprehensive work [24].

2.2 Plane Curves

A natural question that arises is, how essential geometric characteristics of a curve
behave under the SRV transformation. In the following, we provide an answer for
speed and curvature in the case of plane curves. Let M = R2, c̃ := q(c) and denote
the curvature of c by κ. Note that c̃ does not need to be an immersion.

Proposition 1. Denoting the speed of c̃ by ω̃, we have

ω̃ =

√
ω̇2

4ω
+ ω3κ2. (1)

Moreover, c̃ is an immersion if and only if κ and ω̇ have no common zeros. In this
case,

κ̃ω̃ = κω + φ̇, (2)

where κ̃ denotes the curvature of c̃ and

φ := arctan

(
2ω2κ

ω̇

)
.

Proof. Let N denote the unit normal of c. With the shorthand notations α :=
√
ω

and β := α3κ, a straightforward application of the Frenet equations Ṫ = ωκN and
Ṅ = −ωκT , yields

˙̃c = α̇T + βN,

¨̃c = (α̈− β2

α
)T + (β̇ +

α̇β

α
)N.

Thus, we have

ω̃ =
√
α̇2 + β2,

immediately implying (1). Obviously, zeros of ω̃ are common zeros of κ and ω̇. Thus,
c̃ is an immersion if and only if κ and ω̇ have no common zeros. In this case, κ̃ and

φ = arctan (β/α̇) = arctan
(

2ω2κ
ω̇

)
are well-defined and

κ̃ω̃3 = ω̃2β/α+ α̇β̇ − α̈β,

which immediately implies the curvature formula (2).
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Next, we apply the proposition to study some geometric quantities, which are invariant
under the SRV transformation. For closed curves, integrating the curvature formula
above over D = S1 (note that in this case, ω̃ > 0 almost everywhere), we see that the
SRV transformation preserves the total curvature and particularly the turning number.
Moreover, κω is preserved if and only if κ = a d

dt

(
1
ω

)
with a constant a.

Clearly, with κ and ω at hand, utilizing Frenet equations, we can compute c up to
rigid motions. The following explicit solution is an immediate application of the above
proposition. In light of the above proposition, immersed curves, which are mapped to
straight lines, can easily be determined as follows.

Example 1. Let a, b, A be constants with ab, A > 0, ω(t) = A/ sin2(at+b) and κ = a/ω.
A straightforward computation, utilizing the curvature formula (2), implies κ̃ = 0.

2.3 Curves in Homogeneous Spaces

For the background material on Lie groups and homogeneous spaces, we refer to [10].
The works [13,27] provide extensions of the SRV framework for euclidean curves to
the case of general manifolds. The former has high computational cost, while the
latter, transported SRV, depends on a reference point and also suffers from distortion
or bias caused by holonomy effects. We use the natural extension to homogeneous
spaces exposed in [26,9]. For reader’s convenience, we sketch the core ingredients of
the approach and refer to the mentioned works for details and some applications.

Let M be a homogeneous space, i.e., M = H/K, where K is a closed Lie subgroup
of a Lie Group H. Let ∥ · ∥ denote the induced norm by a left invariant metric on H, L
the tangent map of the left translation, and Imm(D, H) the space of immersed curves
from D to H. The SRV transformation is given by Q(α) = (α(0), q(α)), where

q(α) =
Lα−1 α̇√

∥α̇∥

Here, α−1(t) denotes the inverse element of α(t) in H and H the Lie algebra of H.
The map Q is a bijection from Imm(D, H) onto H × L2(D,H). Now, M can be
equipped with the Riemannian metric given by the pullback of the product metric
of H × L2(D,H) using the map Q and horizontal lifting. Let c1 and c2 be immersed
curves in M with horizontal lifts α1 and α2 respectively. The induced distance on M
reads

d(c1, c2) = inf

{√
d2H(α1(0), α2(0)x) + ∥q(α1)−Adx−1(q(α2)∥2L2 : x ∈ K

}
.

3 Applications

Frequently, besides spatiotemporal data, represented by a curve γ in a manifold M ,
there are additional or auxiliary information associated with the curve, thus with the
same time-correspondence. These can jointly with γ be comprised and represented as a
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so-called augmented curve γ̃ in a higher dimensional manifold M̃ . In some applications,
the curve γ̃ uniquely determines a submanifold N of M via a natural construction. An
important example is provided, when M̃ is a submanifold of the tangent bundle of M ,
where the auxiliary information is represented as a vector field along γ and the con-
struction is given by the Riemannian exponential map. Significant special cases occur,
when M is R3 or the unit two-sphere S2 and N a surface. In the next two subsections,
we consider certain classes of surfaces in R3, which often arise in applications and
are determined by augmented curves in R4. In the last two subsections, we consider
certain spherical regions as well as hurricane tracks together with their intensities. In
both cases, we utilize the Riemannian distance from subsection 2.3 to S2 × R, which
is a homogeneous space (recall that S2 can be identified with SO(3)/SO(2)).

For our example applications, we present geodesic paths representing deformations,
minimizing the elastic energy within the SRV framework. We remark, that in a Rie-
mannian setting, distance and geodesics are essential Building blocks for many major
issues in the morphology and shape analysis, such as computation of mean and test
statistics as well as principal component or geodesic analysis. Moreover, besides sta-
tistical analysis, also some methods for clustering and classification use Riemannian
metrics and geodesics.

For the code implementing our approach, which particularly includes Riemannian
optimization for the computation of geodesic paths, we utilized our publicly available
python package https://github.com/morphomatics, introduced in [1].

3.1 Tubes

A tube or canal surface c is a one-parameter family of circles, whose centers constitute
a regular curve γ such that the circles are perpendicular to γ. More precisely, denoting
the radii of the circles by r,

c(s, .) = γ + r(N cos s+B sin s), 0 ≤ s ≤ 2π,

where N and B are the normal and binormal of the curve γ = γ(t), t ∈ D, resp. Due
to the unique correspondence of c to (γ, r), comparison of tubes reduces to comparison
of curves in R4. Figure 1 shows some examples of shortest paths of tubes. Real world
applications include a variety of fields such as examination of vein, pipes, capsules and
plant roots. Clearly, tubes include surfaces of revolution.

3.2 Ruled Surfaces

A ruled surface is formed by moving a straight line segment (possibly with varying
length) along a base curve. More precisely, let γ be a curve in R3 and v a unit vector
field along γ. Then

c(s, .) = γ + sv, s ∈ I,

parametrizes a ruled surface generated by (γ, v). Figure 2 depicts an example, where
each surface consists of straight line segments connecting the blue (for better visibility)
curves γ and γ + v. The class of ruled surfaces includes many prominent surfaces

https://github.com/morphomatics
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Fig. 1. Two shortest paths of tubes

such as cone, cylinder, helicoid (a minimal surface) and Möbius strip. They arise in
manufacturing (construction by bending a flat sheet), cartography, architecture and
biochemistry (secondary and tertiary structure of protein molecules).

Fig. 2. Shortest path of ruled surfaces

3.3 Spherical Strips

Let exp denote the exponential map of the unit two-sphere S2. We recall that for any
non-zero tangent vector to S2 at a point x:

expx(v) = cos(|v|)x+ sin(|v|) v

|v|
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and expx(0) = x. Now, let γ be a curve in S2 with binormal B (cross product of γ and
its unit tangent), and r a scalar function along γ. Then, the map c given by

c(s, .) := expγ s(rB), s ∈ I,

parametrizes a spherical strip with bandwidth r. Figure 3 depicts an example of the
shortest path between two spherical curves comprised with their bandwidth functions
visualised as strips.

Fig. 3. Shortest path of spherical strips

3.4 Hurricane Tracks

Hurricanes belong to the most extreme natural phenomena and can cause major im-
pacts regarding environment, economy, etc. Intensity of a hurricane is determined by
the maximum sustained wind (maxwind), monotonically classifying the storms into
categories (due to Saffir–Simpson wind scale; for instance, maxwind ≥ 137 knots cor-
responds to category 5). Due to their major impacts on economy, human life and envi-
ronment, as well as extreme variability and complexity, hurricanes have been studies in
a large number of works. For our example, we used the HURDAT 2 database provided
by the U.S. National Oceanic and Atmospheric Administration publicly available on
https://www.nhc.noaa.gov/data/, supplying latitude, longitude, and maxwind on a
6 hours base of Atlantic hurricanes.

Fig. 4. 2010 Atlantic hurricane tracks (left) and the shortest path between two of them (right)
with color-coded maximum sustained wind (in knots)

https://www.nhc.noaa.gov/data/
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We represent the tracks as discrete trajectories in S2. For further details and com-
parison with other approaches, we refer to [24,25] and the recent work [21]. The latter,
also provides statistical analysis and a classification of hurricane tracks in terms of their
intensities. Fig. 4 illustrates this data set with a visualization of the 2010 hurricane
tracks and a shortest path, where the intensities, considered as auxiliary information,
are color-marked.

4 Conclusion

In this paper, we analysed the behaviour of speed and curvature under the square
root velocity framework for elastic approach to plane curves. Moreover, we applied an
extension of this framework to homogeneous Spaces, to metrically compare augmented
curves and special surfaces, generated by those curves, using a natural construction via
the Riemannian exponential map. Our approach, allows for computationally efficient
determination of geodesic paths in the shape spaces of the respective classes of surfaces.
Our example applications include tubes, ruled surfaces, spherical strips and hurricane
tracks. Future work includes further real world applications, particularly concerning
statistical analysis of longitudinal data such as comparison of group wise trends within
a hierarchical model as well as classification and prediction.

Acknowledgements This work was supported through the German Research Foun-
dation (DFG) via individual funding (project ID 499571814).
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