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Abstract We consider a strong variant of the crash fault-tolerant gathering problem
called stand-up indulgent gathering (SUIG), by robots endowed with limited visibility
sensors and lights on line-shaped networks. In this problem, a group of mobile robots
must eventually gather at a single location, not known beforehand, regardless of the
occurrence of crashes. Differently from previous work that considered unlimited
visibility, we assume that robots can observe nodes only within a certain fixed distance
(that is, they are myopic), and emit a visible color from a fixed set (that is, they are
luminous), without multiplicity detection. We consider algorithms depending on
two parameters related to the initial configuration: Minit , which denotes the number
of nodes between two border nodes, and Oinit , which denotes the number of nodes
hosting robots. Then, a border node is a node hosting one or more robots that cannot
see other robots on at least one side. Our main contribution is to prove that, if Minit
or Oinit is odd, SUIG can be solved in the fully synchronous model.
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1 Introduction

The Distributed Computing research community actively studies mobile robot
swarms, aiming to characterize what conditions make it possible for robots that
are confused (each robot has its own ego-centered coordinate system), forgetful
(robots may not remember all their past actions) to autonomously move around and
solve global problems [17]. One of these conditions is about how the robots coordi-
nate their actions [12]: robots can either act all together (FSYNC), act whenever they
want (ASYNC), or act in subsets (SSYNC).

One of the problems that researchers have explored is the gathering problem,
which serves as a standard for comparison [17]. It is easy to state (robots must meet
at the same place in a finite amount of time, without knowing where it is beforehand),
but hard to solve (two robots that move according to SSYNC scheduling cannot meet
in finite time [9], unless there are more assumptions).

Robot failures become more likely as the number of robots increases, or if robots
are deployed in dangerous environments, but few studies address this issue [11]. A
crash fault is a simple type of failure, where a robot stops following its protocol
unexpectedly. For the gathering problem, the desired outcome in case of crash faults
must be specified. There are two options: weak gathering requires all non-faulty
robots to meet, ignoring the faulty ones, while strong gathering (or stand-up indulgent
gathering – SUIG) requires all non-faulty robots to meet at the unique crash location.
We believe that SUIG is an attractive task for difficult situations such as dangerous
environments: for example, various repair parts could be transported by different
robots, and if a robot crashes, the other ones may rescue and repair it after robots
carrying relevant parts are gathered at the crash location.

In continuous Euclidean space, weak gathering is solvable in the SSYNC model [1,
3, 8, 10], while SUIG (and its variant with two robots, stand up indulgent rendezvous
– SUIR) is only solvable in the FSYNC model [5, 6, 7].

Some researchers have recently switched from studying robots in a continuous
space to a discrete one [12]. In a discrete space, robots can only be in certain locations
and move to adjacent ones. This can be modeled by a graph where the nodes are
locations, hence the term “robots on graphs”. A discrete space is more realistic for
modeling physical constraints or discrete sensors [2]. However, it is not equivalent to
a continuous space in terms of computation: a discrete space has fewer possible robot
positions, but a continuous space gives more options to resolve difficult situations
(e.g., by moving slightly to break a symmetry).

To our knowledge, SUIG in a discrete setting was only considered under the
assumption that robots have infinite range visibility (that is, their sensors are able to
obtain the position of all other robots in the system that participate to the gathering)
in line-shaped networks. Such powerful sensors may seem unrealistic, paving the
way for more practical solutions. With infinite visibility, Bramas et al. [4] showed
that the SUIG problem is solvable in the FSYNC model only.

When infinite range visibility is no longer available, robots become unable to
distinguish global configuration situations and act accordingly, in particular, robots
may react differently to different local situations, yielding in possible synchronization
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issues [13, 14]. In this paper, we consider the discrete setting, and aim to characterize
the solvability of the SUIG problem when robots have limited visibility (that is, they
are myopic) yet are endowed with visible lights taking colors from a finite set (that
is, they are luminous). In particular, we are interested in the trade-off between the
visibility range (how many hops away can we see other robots positions) and the
memory and communication capacity of the robots (each robot can have a finite
number of states that may be communicated to other robots in its visibility range). In
more details, we study SUIG algorithms that depend on two parameters of the initial
configuration: Minit and Oinit . The former is the number of nodes between two border
nodes, and the latter is the number of nodes with robots between two border nodes.
A border node has at least one robot and no robots on one or both sides. We show
that SUIG is solvable in the FSYNC model when either Minit or Oinit is odd.

2 Model

We consider robots that evolve on a line shaped network. The length of the
line is infinite in both directions, and consists of an infinite number of nodes
. . . ,u−2,u−1,u0,u1,u2, . . ., such that a node ui is connected to both u(i−1) and u(i+1).

Let R = {r1,r2, . . . ,rn} be the set of n ≥ 2 autonomous robots. Robots are as-
sumed to be anonymous (i.e., they are indistinguishable), uniform (i.e., they all
execute the same program, and use no localized parameter such as a particular orien-
tation), oblivious (i.e., they cannot remember their past actions), and disoriented (i.e.,
they cannot distinguish left and right). Then, we assume that robots do not know the
number of robots.

A node is considered occupied if it contains at least one robot; otherwise, it is
empty. If a node contains more than one robot, it is said to have a tower or multiplicity.

The distance between two nodes ui and u j is the number of edges between
them. The distance between two robots rp and rq is the distance between two nodes
occupied by rp and rq. Two robots or two nodes are adjacent if the distance between
them is one. Two robots are neighboring if there is no robot between them.

Each robot ri maintains a variable Li, called light, which spans a finite set of states
called colors. We call such robots luminous robots. A light is persistent from one
computational cycle to the next: the color is not automatically reset at the end of
the cycle. Let L denote the number of available light colors. Let Li(t) be the light
color of ri at time t. We assume the full light model: each robot ri can see the light
color of other robots, but also its own light color. Robots are unable to communicate
with each other explicitly (e.g., by sending messages), however, they can observe
their environment, including the positions (i.e., occupied nodes) and colors of other
robots.

The ability to detect towers is called multiplicity detection, which can be either
global (any robot can sense a tower on any node) or local (a robot can only sense a
tower if it is part of it). If robots can determine the number of robots in a sensed tower,
they are said to have strong multiplicity detection. We assume that robots do not
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have multiplicity detection capability even on their current node but still can sense
the visible colors: if there are multiple robots r1,r2, . . .rk in a node u, an observing
robot r can detect only colors {Li(t)|1≤ i≤ k}. So, r can detect there are multiple
robots at u if and only if at least two robots among r1,r2, . . .rk have different colors.
However, r cannot know how many robots are located in u even if it observe a single
color or multiple colors at u.

We assume that robots are myopic. That is, they have limited visibility: an observ-
ing robot r at node u can only sense the robots that occupy nodes within a certain
distance, denoted by φ , from u. As robots are identical, they share the same φ .

Let Xi(t) be the set of colors of robots located in node ui at time t. If a robot r j
located at ui takes a snapshot at t, the sensor of r j outputs a sequence, V j, of 2φ +1
sets of colors:

V j ≡ Xi−φ (t), . . . ,Xi−1(t), [Xi(t)],Xi+1(t), . . . ,Xi+φ (t).

This sequence V j is the view of r j at ui. To distinguish the sequence center, we
use square brackets. If the sequence Xi+1, . . . ,Xi+φ is equal to the sequence
Xi−1, . . . ,Xi−φ , then the view V j of r j is symmetric. Otherwise, it is asymmet-
ric. In V j, a node uk is occupied at time t whenever |Xk(t)|> 0. Conversely, if uk is
empty at t, then Xk(t) = /0 holds.

If there exists a node ui such that |Xi(t)|= 1 holds, ui is singly-colored. Note that
|Xi(t)| denotes the number of colors at node ui, thus even if ui is singly-colored, it
may be occupied by multiple robots (sharing the same color). Now, if a node ui is
such that |Xi(t)|> 1 holds, ui is multiply-colored. As each robot has a single color,
a multiply-colored node always hosts more than one robot.

In the case of a robot r j located at a singly-colored node ui, [Xi(t)] in r j’s view
V j can be written as [L j]. Then, without loss of generality, if the left adjacent node
of ui contains one or more robots with color Lk, and the right adjacent node of ui
contains one or more robots with color Ll , while ui only hosts r j, then V j can be
written as Lk[L j]Ll . Now, if robot r j at node ui occupies a multiply-colored position
(with two other robots rk and rl having distinct colors), then |Xi(t)|= 3, and we can

write Xi(t) in V j as

 Lk
Ll
[L j]

. When the observed node in the view is with multiple

colors, we use brackets to distinguish the current position of the observing robot in
the view and the inner bracket to explicitly state the observing robot’s color. Note
that, because we assume that robots do not have multiplicity detection capability, at
ui, there may be two or more robots with Lk and Ll respectively, and there may be
two or more robots with L j other than r j.

Our algorithms are driven by observations made on the current view of a robot, so
we use view predicates: a Boolean function based on the current view of the robot.
The predicate L j matches any set of colors that includes color L j, while predicate

(L j,Lk) matches any set of colors that contains L j or Lk. Now the predicate
(

L1
L2

)
matches any set that contains both L1 and L2. Some of our algorithm rules expect
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that a node is singly-colored, e.g., with color Lk, in that case, the corresponding
predicate is denoted by Lk!. To express predicates in a less explicit way, we use
character ‘?’ to represent any set, including the empty set. The ¬ operator is used to
negate a particular predicate P (so, ¬P returns false whenever P returns true and vice

versa). Then, the predicate
(
¬L1!
¬L2!

)
matches any set that is neither singly-colored

L1 nor singly-colored L2. Also, the superscript notation Py represents a sequence of
y consecutive sets of colors, each satisfying predicate P. Observe that y ≤ φ . In a
given configuration, if the view of a robot r j at node ui satisfies predicate /0φ [?] or
predicate [?] /0φ , then r j is a border robot and ui a border node.

At each time instant t, robots occupy nodes, and their positions and colors form a
configuration C(t) of the system. Then, each robot r executes Look-Compute-Move
cycles infinitely many times: (i) first, r takes a snapshot of the environment and
obtains an ego-centered view of the current configuration (Look phase), (ii) according
to its view, r decides to move or to stay idle and possibly changes its light color
(Compute phase), (iii) if r decided to move, it moves to one of its adjacent nodes
depending on the choice made in the Compute phase (Move phase). We consider
the FSYNC model in which at each round, each robot r executes an LCM cycle
synchronously with all the other robots. We also consider the SSYNC model where a
nonempty subset of robots chosen by an adversarial scheduler executes an LCM cycle
synchronously, at each round. At time instant t = 0, let Hinit be the maximum distance
between neighboring occupied nodes, Minit be the number of nodes between two
borders including border nodes, and Oinit(≤Minit) be the number of occupied nodes.
We assume that φ ≥ Hinit ≥ 1, i.e., the visibility graph is connected. As previously
stated, no robot is aware of Hinit , Minit and Oinit .

In this paper, each rule in the proposed algorithms is presented in the similar
notation as in [16]: < Label > : < Guard > :: < Statement >. The guard is a
predicate on the view V j = Xi−φ , . . . ,Xi−1, [Xi],Xi+1, . . . ,Xi+φ obtained by robot
r j at node ui during the Look phase. If the predicate evaluates to true, r j is enabled,
otherwise, r j is disabled. In the first case, the corresponding rule < Label > is also
said to be enabled. If a robot r j is enabled, r j may change its color and then move
based on the corresponding statement during its subsequent Compute and Move
phases. The statement is a pair of (New color, Movement). Movement can be (i)→,
meaning that r j moves towards node ui+1, (ii)←, meaning that r j moves towards
node ui−1, and (iii) ⊥, meaning that r j does not move. For simplicity, when r j does
not move (resp. r j does not change its color), we omit Movement (resp. New color)
in the statement. The label < Label > is denoted as R followed by a non-negative
integer (i.e., R0, R1, etc.) where a smaller label indicates higher priority. If the integer
in the label is followed by an alphabet (i.e., R1a, R1b, etc.), the priority is determined
by the lexicographic order.

Problem definition. A robot is said to be crashed at time instant t if it stops executing
at any time t ′ ≥ t. That is, a crashed robot stops execution and remains with the
same color at the same position indefinitely. We assume that robots cannot identify
a crashed robot in their snapshots (i.e., they are able to see the crashed robots but
remain unaware of their crashed status). A crash, if any, can occur at any phase
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of the execution, and break the LCM-atomic (i.e., it can occur the end of round,
but also between Look phase and Compute phase or between Compute phase and
Move phase). More than one crash can occur, however we assume that all crashes
occur at the same node. In our model, since robots do not have multiplicity detection
capability, a node with a single crashed robot and with multiple crashed robots with
the same color are indistinguishable. Similarly, multiple robots with the same color
at the same node have the same behavior, but some or all of them can crash.

We consider the Stand Up Indulgent Gathering (SUIG) problem defined in [6].
An algorithm solves the SUIG problem if, for any initial configuration C0 (that may
contain multiplicities), and for any execution E = (C0,C1, . . .), there exists a round t
such that all robots (including the crashed robot, if any) gather at a single node, not
known beforehand, for all t ′ ≥ t. Note that, if there are multiple crashed nodes, the
problem cannot be solved. Thus, we need to assume that all the crashes occur at the
same node.

Because we assume that robots are anonymous and uniform, all robots have the
same color in the initial configuration.

3 Impossibility Results

Several impossibility results from the literature hint at which situations are solvable
for our problem. Theorem 1 and Corollaries 1–2 are for the case where robots have
no lights.

Theorem 1 ([15]). The gathering problem is unsolvable in FSYNC on line networks
starting from an edge-symmetric configuration even if robots can see all the positions
of the other robots with global strong multiplicity detection.

Corollary 1 ([4]). The SUIG problem is unsolvable in FSYNC on line networks
starting from an edge-symmetric configuration even for robots with infinite visibility
and global strong multiplicity detection.

Corollary 2 ([14]). Starting from a configuration where Minit is even and Oinit is
even, there exist initial configurations that a deterministic algorithm cannot gather
for myopic robots.

As above results, we suppose in the following section that either Minit or Oinit is
odd, that is, the initial configurations are not edge-symmetric. The following lemma
is also for the case where robots have no lights.

Lemma 1 ([4]). Even starting from a configuration that is not edge-symmetric, the
SUIG problem is unsolvable in SSYNC for robots with infinite visibility and global
strong multiplicity detection.

Lemma 2. Even starting from a configuration that is not edge-symmetric, the SUIG
problem is unsolvable in SSYNC for infinite visibility, global strong multiplicity
detection, infinite colors luminous robots.
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Proof. Let us suppose for the purpose of contradiction that there exists an algorithm
A that solves SUIG for infinite visibility and global strong multiplicity detection
luminous robots with an infinite number of colors in SSYNC. Consider the config-
uration C that occurs just before gathering is achieved. Now, configuration C has
either three consecutive occupied nodes (let us call this configuration class C3) or two
consecutive occupied nodes (let us call this configuration class C2). In a configuration
in C3, the border robots must be ordered to move inwards by A, otherwise gathering
is not achieved in the next configuration. From a configuration in C3, the SSYNC
scheduler may select only one of the border robots for execution, then reaching a
configuration in C2. So, for any algorithm A that solves SUIG, an SSYNC scheduler
can reach a configuration in C2. In the sequel, we show that we may never reduce the
number of occupied nodes in any execution that starts from a configuration in C2,
and hence the gathering is not solved.

Assume that we are in a configuration in C2. Let k1 denote the number of robots
on the first occupied node u1, and k2 the number of robots on the second occupied
node u2. Suppose now that the particular combination of colors at both nodes yields
all robots at u1 not to move. Then, we can crash robots at u2. As a result, gathering
is never achieved, as the configuration remains in C2 forever. The same argument
holds for robots at u2. As a result, algorithm A must command at least one robot
at each node to move. Now, the scheduler executes those two robots (from the two
nodes) that move. Either they both move inwards (exchanging their nodes) and the
configuration remains in C2, or at least one of them moves inwards and the resulting
configuration remains in C2, or another configuration with more occupied nodes
and possibly holes. In any case, the number of occupied nodes is not reduced from
two to one, so one can again construct an execution that reaches a configuration in
C2, and repeat the argument forever. Hence, algorithm A does not solve SUIG, a
contradiction. 2

As per Lemma 2, we assume the FSYNC model in the following section.

4 Possibility Results for Myopic Robots

4.1 The case where Minit is odd

In this case, we show that the gathering is achieved even if robots do not have lights.
For this purpose, in the following we assume that all robots have a single color
W (White) which they do not change. The strategy of our algorithm is as follows:
The robots on two border nodes move towards other occupied node. The formal
description is shown in Algorithm 1.

Lemma 3. Starting from a configuration C where Minit is odd, even if there is a
crashed robot, all robots gather in O(Minit) rounds by Algorithm 1.
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Algorithm 1: Algorithm for the case where Minit is odd.
/* Do nothing after gathering. */
R0: /0φ [W !] /0φ :: ⊥
/* Border robots move. */
R1: /0φ [W !](¬( /0φ )) ::→

Proof. Because we assume FSYNC model, if there is no crashed robot, it is clear that
all robots gather on the central node between initial borders in ⌊Minit/2⌋ rounds. If a
border robot rb crashed at time t < ⌊Minit/2⌋ on a node ui, it stops at ui. If there are
other (non-crashed) border robots on ui at t, they move toward other occupied node,
thus they are in ui+1 at t +1. After that, they cannot move before they become border
robots. On the other hand, the other border robots move towards ui. Thus, eventually,
they arrive at ui+1 at Minit−2(t+1)+t-th round, and robots on ui+1 become a border.
After that, all robot at ui+1 move to ui, and the gathering is achieved. 2

4.2 The case where Oinit is odd

In this section, we show that the gathering is achieved if robots have lights with
three colors: W (White), R (Red) and B (Blue). We assume that all robots have the
same color White in the initial configuration. The formal description is shown in
Algorithm 2.

The transition diagram of configurations by the algorithm in the case that no crash
occurs represents in Figs. 1–5. In these figures, each small blue box represents a
node, and each circle represents the set of robots with the color W, R and B. The
robots represented by doubly lined circles are enabled. If no crash occurs during
the execution, the strategy of our algorithm is as follows: Initially, all robots are
White, and robots on two border nodes become Red in the first round by rule R1
(See Fig. 1(a)). The robots on two border nodes move towards other occupied
node. Then, the border robots keep their lights Red or Blue, then the algorithm can
recognize that they are border robots. If there exists a White robot in the adjacent
node, the border robot changes its color to Blue or Red by rule R2b or R3b (See
Fig. 1(b)→(c),(e)→(f)). Otherwise, it just moves without changing its color by rule
R2a or R3a (See Fig. 1(a),(d)). When non-border White robots become border, they
change their color to Red (resp. Blue) by rule R4a (resp. R4b) if borders that join the
node have Red (resp. Blue) (See Fig. 1(f)→(a) or (b) (resp. (c)→(d) or (e))). We say
that White robots are captured by a border if a border moves to the node occupied
by the White robots. When a border node becomes singly-colored, the border robot
moves toward other occupied nodes. Eventually, two borders are neighboring and
they have Blue and Red respectively because Oinit is odd. To achieve the gathering,
depending on the initial occupied nodes, one of the followings occurs.
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• Case 1: If two borders are singly-colored, the distance between them is two and
the central node is empty, both borders move to the central node by rules R2a and
R3a (See Fig. 2(b))

• Case 2: If two borders are adjacent and singly-colored, then Blue robots join Red
robots by rule R3a at the same time that Red robots become Blue by rule R4c
(See Fig. 3(c)).

• Case 3: If two borders are adjacent, one border has White and Red (resp. Blue)
robots and the other border is singly-colored Blue (resp. Red), then White robots
become Red (resp. Blue) by rule R4a (resp. R4b) and the singly-colored Blue
(resp. Red) border moves to the adjacent border by R3a (resp. R2a) (See Fig. 4(b)
(resp. (c)).

• Case 4: If two borders are singly-colored Blue (resp. Red), the distance between
them is two and the central node is occupied by White robots, then both borders
move to the central node by rule R3b (resp. R2b) (See Fig. 5(b) (resp. (d))).

During the execution, if White robot crashes, one border eventually stops executing
at the crashed node, but the other border can join the crashed border by rule R2a or
R3a. For the case where Red or Blue robots crash, by special rules R5a–R5c, we are
able to respond to various failure patterns.

We prove the correctness of Algorithm 2.

Lemma 4. Starting from a configuration C where Oinit is odd, if no robot crashes,
all robots gather in O(Minit) rounds by Algorithm 2.

Proof. Let ri and r j be the initial border robots on different sides in the initial
configuration C. Even if they are towers, we can recognize each of them as a robot
because we assume they do not crash in the FSYNC model. Because all robots have
White color in C, only ri and r j execute rule R1 and become Red in the first round
(Fig. 1(a)). After that, ri and r j with Red execute R2a or R2b. If the adjacent node
is occupied by White robots (Fig. 1(b)), border robots execute R2b, change their
color to Blue and move to the adjacent occupied node (Fig. 1(c)). Then, the White
robots captured by the border execute R4b and the border becomes singly-colored
Blue (Fig. 1(d) or (e)). Otherwise, they execute R2a and move to their adjacent node,
keeping their color (Fig. 1(a)). After the border robots become Blue, they execute
R3a or R3b. If the adjacent node is occupied by White robot (Fig. 1(e)), border
robots execute R3b, change their color to Red and move to the adjacent occupied
node (Fig. 1(f)). Then, the White robots captured by the border execute R4a and the
border becomes singly-colored Red (Fig. 1(a) or (b)). Otherwise, they execute R3a
and move to their adjacent node, keeping their color (Fig. 1(d)). Thus, ri and r j move
toward each other, changing their colors Red and Blue repeatedly when they move to
an occupied node. Note that, borders can only move when they are singly-colored.

Let t be the round when the distance between ri and r j becomes two, and Ct be
the configuration at t. Let di (resp. d j) be the distance that ri (resp. r j) moved before
t. Then, it is clear that Minit −3 = di +d j. In addition, let ci (resp. c j) be the number
of nodes occupied by White robots such that ri (resp. r j) captured before t. Then,
ci + c j is at most Oinit . Because Oinit ≤Minit , t is O(Minit) rounds.
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Algorithm 2: Algorithm for the case where Oinit is odd.
Colors
W (White), R (Red), B (Blue)
Rules
/* Do nothing after gathering. */
R0: /0φ [?] /0φ :: ⊥
/* Start by the initial border robots. */
R1: /0φ [W !](¬ /0φ ) :: R
/* Border robots on singly-colored nodes move inwards. */

R2a: /0φ [R!]
(
¬W !
¬B!

)
(?φ−1) ::→

R2b: /0φ [R!](W !)(?φ−1) :: B,→
R3a: /0φ [B!](¬W !)(?φ−1) ::→
R3b: /0φ [B!](W !)(?φ−1) :: R,→
/* When White robots become border robots, they change their color to the same color as

the border robots. */

R4a: /0φ

[
R
[W ]

]
(?φ ) :: R

R4b: /0φ

[
B
[W ]

]
(?φ ) :: B

R4c: /0φ [R!](B!)( /0φ−1) :: B
/* Only for the case that Blue or Red robot crashes. */

R5a: /0φ

 R
B
[W ]

(R!,B!)( /0φ−1) :: R

R5b: /0φ

[
B
[R]

]
(R!,B!)( /0φ−1) ::→

R5c: /0φ

[
R
[B]

]
(R!,B!)( /0φ−1) ::→

Consider the execution starting from Ct . First, consider the case that there is no
White robot between two borders in Ct , i.e., the node between two borders is empty.
Because Oinit is odd, robots in a border have Red and robots in the other border have
Blue.

• If both borders are singly-colored in Ct , then they move toward each other by R2a
and R3a respectively (Fig. 2(b)). Then, the gathering is achieved.

• If both borders include White robots in Ct , then White robots in both borders
execute R4a or R4b respectively (Fig. 2(a)) and both border becomes singly-
colored at t +1.

• Consider the case that a border includes White and Red robots and the other has
only Blue robots in Ct (Fig. 3(a)). At t + 1, White border robots change their
color to Red by R4a and Blue border robots move toward the Red border by R3a.
Then, a singly-colored Red border and a singly-colored Blue border are adjacent
(Fig. 2(c)). Then, while Red border robots change their color to Blue by R4c, Blue
border robots execute R3a, and the gathering is achieved.

• Consider the case that a border includes White and Blue robots and the other
has only Red robots in Ct (Fig. 3(b)). At t +1, White border robots change their
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color to Blue by R4b and Red border robots move toward the Blue border by R2a.
Then, a singly-colored Red border and a singly-colored Blue border are adjacent
(Fig. 2(c)). Then, while Red border robots change their color to Blue by R4c, Blue
border robots execute R3a, and the gathering is achieved.

Next, consider the case that there is a White robot rw between two borders in Ct .
Because Oinit is odd, both borders have Blue or both borders have Red.

• If both borders are singly-colored Red (resp. Blue) at t (Fig. 5(d) (resp. (b))), they
moves toward rw by R2b (resp. R3b). Then, the gathering is achieved.

• If both borders include White robots at t (Fig. 5(a),(c)), the White border robots
change their color to the same color as other border robots by R4a or R4b. Then,
we finished the discussion about this case.



12 Q. Bramas, H. Kakugawa, S. Kamei, A. Lamani, F. Ooshita, M. Shibata, and S. Tixeuil

• Consider the case that a border is singly-colored Red robots and the other border
includes White robots and Red robots at t (Fig. 4(d)). Then, the White border
robots execute R4a and the border becomes singly-colored Red at t +1. At the
same time, the singly-colored Red border executes R2b, changes its color to
Blue and moves to the node occupied by rw at t + 1 (Fig. 4(c)). After that, the
singly-colored Red border moves to the other border including rw by R2a and the
gathering is achieved, while rw changes its color to Blue by R4b.

• Consider the case that a border is singly-colored Blue robots and the other border
includes White robots and Blue robots at t (Fig. 4(a)). Then, the White border
robots execute R4b and the border becomes singly-colored Blue at t +1. At the
same time, the singly-colored Blue border executes R3b, changes its color to
Red and moves to the node occupied by rw at t + 1 (Fig. 4(b)). After that, the
singly-colored Blue border moves to the other border including rw by R3a and the
gathering is achieved, while rw changes its color to Red by R4a.

Therefore, in any case, the gathering is achieved in O(Minit) rounds. 2

Lemma 5. Starting from a configuration C where Oinit is odd, even if a White robot
crashes, all robots gather in O(Minit) rounds by Algorithm 2.

Proof. We assume that all robots have White initially, and there is no rule such that
White robot moves in Algorithm 2. Thus, we can discuss the case where the crash of
the White robot occurs during the execution by the same way as the case the crash
occurs initially.

If a robot rk at a border ui of the initial configuration crashes, (1) other robots at
ui becomes Red or (2) the border remains White (i.e., all the robots at ui crashed).
In both cases, the border at ui cannot move because rk remains White. On the other
hand, the robots r j at the other border change their color to Red by R1 and move
toward ui by R2a or R2b. By repeating executions of R2a, R2b, R3a and R3b, the
border r j eventually reaches the adjacent node ui+1 of ui (Of course, White robots
at other nodes than ui change their color with r j by R4a or R4b and move as the
border).

• In the case (1), the border at ui has Red and White robots, and the other border at
ui+1 is Blue and White, or singly-colored Blue because Oinit is odd. In the former
case, the White robots at ui+1 change their color to Blue by R4b, and the border
at ui+1 becomes singly-colored Blue. Then, the singly-colored Blue border moves
to ui by R3a, and the gathering is achieved.

• In the case (2), the border at ui+1 also becomes singly-colored Blue by the same
discussion as above. After that, the Blue border robots at ui+1 move to ui by R3b,
and the gathering is achieved.

Next, consider the case that a robot at a non-border node of the initial configuration
C crashes. Let o1 be a border node ui, o2 be its neighboring occupied node, ok be the
k-th occupied node from ui, o(Oinit ) be the other border node u(i+Minit−1) in C. Let ri
(resp. r j) be the (sets of) initial border robots at ui (resp. u(i+Minit−1)) in C. Without
loss of generality, the crash occurs at ok. Starting from C, both borders move toward
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ok, and eventually at least one border becomes adjacent to ok. Let t be the round
when at least one border becomes adjacent to ok. Without loss of generality, then ri
is adjacent to ok at t.

• Consider the case that k is odd. Then, the border ri includes Blue robots.

– Consider the case that r j is also adjacent to ok at t, and both of ri and r j include
White robots or both do not include White robots. Then, r j also includes Blue
robots because Oinit is odd. When both borders include White robots, White
border robots execute R4b and change their color to Blue. Thus, both borders
become singly-colored Blue. Then, they move to ok by R3b, and the gathering
is achieved.

– Consider the case that r j is also adjacent to ok at t, and one of borders includes
White robots. Without loss of generality, assume that ri includes White robot at
t. Then, r j is singly-colored Blue. The White robot occupied with ri executes
R4b at t +1. At the same time, r j executes R3b, changes its color to Red and
moves to ok. After that, ri moves to ok by R3a, and the gathering is achieved.

– Consider the case that r j is not adjacent to ok at t. Then, ri executes R3b,
changes its color to Red and moves to ok. After that, because the White robot
on ok crashes, it cannot change its color. Thus, the border ri cannot move from
ok. Eventually, r j with Blue robots arrives at the adjacent node of ok (If the node
is ok+1, the White robots execute R4b and the border r j becomes singly-colored
Blue). Then, r j moves to ok by R3a, and the gathering is achieved.

• Consider the case that k is even. Then, the border ri includes Red robots.

– Consider the case that r j is also adjacent to ok at t, and both of ri and r j include
White robots or both do not include White robots. Then, r j also includes Red
robots because Oinit is odd. When both borders include White robots, White
border robots execute R4a and change their color to Red. Thus, both borders
become singly-colored Red. Then, they move to ok by R2b, and the gathering
is achieved.

– Consider the case that r j is also adjacent to ok at t, and one of borders includes
White robots. Without loss of generality, assume that ri includes White robot
at t. Then, r j is singly-colored Red. The White robot occupied with ri executes
R4a at t +1. At the same time, r j executes R2b, changes its color to Blue and
moves to ok at t + 1. After that, ri moves to ok by R2a, and the gathering is
achieved.

– Consider the case that r j is not adjacent to ok at t. Then, ri executes R2b,
changes its color to Blue and moves to ok. After that, because the White robot
on ok crashes, it cannot change its color. Thus, the border ri cannot move from
ok. Eventually, r j with Red robots arrives at the adjacent node of ok (If the node
is ok+1, the White robots execute R4a and the border r j becomes singly-colored
Red). Then, r j moves to ok by R2a, and the gathering is achieved.

Thus, the lemma holds. 2
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Lemma 6. Starting from a configuration C where Oinit is odd, even if a Red robot
crashes during the execution, all robots gather in O(Minit) rounds by Algorithm 2.

Proof. By the definition of Algorithm 2 and the proof of Lemma 4, if a Red robot
crashes, it occurs at a border node during the execution. Let rk be the crashed robot
with Red, and uk be the occupied node by rk. Let r j be the border robots at the other
(non-crashed) border node.

• Consider the case that the crash occurs just after the execution of R1.

– If all robots at uk crash, the border is singly-colored Red and stops its execution
completely. The other border r j moves toward rk. The neighboring White robot
ri of rk eventually becomes neighboring to r j, then r j becomes singly-colored
Red. After that, r j moves to the node occupied by ri by R2b. Then, ri changes
its color to Blue by R4b. The Blue border including ri and r j moves toward rk
by R3a and eventually moves to uk. The gathering is achieved.

– If there is a non-crashed robot ri in uk when rk crashed, then ri continue to
execute, and move toward the other border r j by R2a or R2b. Let ui be the
node adjacent to uk where ri moves. Then, ri cannot execute any rule before it
becomes border.
· Consider the case that ri executes R2a. Because Oinit is odd, when r j reaches

to the neighboring White robot of ri, r j becomes Blue and the border
becomes singly-colored Blue. After that, r j moves to ui holding Blue by
R3a. Then, ri and r j execute R5b and R5c respectively and move to uk. The
gathering is achieved.

· Consider the case that ri executes R2b. Then, ri is Blue, and there are White
robots at ui. If r j moves to ui at the same time as ri moves, White robots
at ui change their color to Blue by R4b, and all robots at ui move to uk
by R3a. Then, the gathering is achieved. Otherwise, because Oinit is odd,
when r j is adjacent to ri, r j has Red. Then, r j moves to ui by R2a and ui has
White, Blue and Red robots. After that, White robot in ui executes R5a and
changes its color to Red, and robots on ui becomes Blue and Red. Because
rk is singly-colored Red, robots on ui execute R5b and R5c, and move to uk.
The gathering is achieved.

• Consider the case that the crash occurs just before the execution of R2a. Then, uk
is a border with singly-colored Red robots.

– Consider the case that its adjacent node uk+1 is a border with Blue robots and
White robots.
· Consider the case that all robots at uk crash. Then, White robots at uk+1

change their color to Blue by R4b and the border at uk+1 becomes singly-
colored Blue. After that, robots at uk+1 executes R3a, and the gathering is
achieved.

· Consider the case that there are non-crashed robots ri at uk. Then, ri moves
to uk+1. At the same time, White robots at uk+1 change their color to Blue
by R4b. Thus, the border uk+1 becomes Blue and Red. In the next round,
they moves to uk by R5b and R5c. Then, the gathering is achieved.
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– If the adjacent node uk+1 is empty, we can discuss the same way as the case
just after the execution of R1.

• Consider the case that the crash occurs just before the execution of R2b or just
after the execution of R2a. Then, we can discuss the same way as the case just
after the execution of R1.

• Consider the case that the crash occurs just before the execution of R4c. Then,
rk is singly-colored Red border, and the other border r j is adjacent to uk and
singly-colored Blue. Thus, r j moves to uk by R3a, and the gathering is achieved.

• Consider the case that the crash occurs just after the execution of R4a. Then, rk is
a singly-colored Red border, and it is just before the execution of R2a, R2b, or
R4c.

• Consider the case that the crash occurs just after the execution of Compute phase
of R3b. Then, rk is adjacent to singly-colored node uk+1 with White robots, and
rk changes its color to Red, but does not move.

– If all robots at uk crash, they are Red robots and uk+1 is occupied by White
robots. Because Oinit is odd, when the other borders r j become adjacent to
uk+1, then r j has Blue. After that, r j changes its color to Red and moves to
uk+1 by R3b, and then, White robots at uk+1 changes its color to Red by R4a.
Then, uk+1 becomes singly-colored Red. Thus, all robots at uk+1 move to uk
by R2a, the gathering is achieved.

– If there is non-crashed other robots ri at uk, ri moves to uk+1 with Red color.
The other borders r j move toward uk+1. If r j moves to uk+1 at the same time
as ri moves, White robots at uk+1 changes their color to Red by R4a, and all
robots at uk+1 moves to uk by R2a. Then, the gathering is achieved. Otherwise,
because Oinit is odd, when r j becomes adjacent to uk+1, r j have Blue (Even
if there are White robots with them, they eventually become singly-colored
Blue by R4b). After that, r j moves to uk+1 by R3a, then uk+1 is occupied by
White, Red and Blue robots. Then, White robots at uk+1 changes its color to
Red by R5a. Thus, because all robots at uk+1 move to uk by R5b and R5c, the
gathering is achieved.

• Consider the case that the crash occurs just after the execution of Move phase of
R3b. Then, rk moved to an adjacent singly-colored node uk with White robots at
round t.

– If r j is also adjacent to uk and is singly-colored Blue at t, then r j also moves to
uk+1 by R3b at the same time, and the gathering is achieved.

– If r j is adjacent to uk and is with White robots at t +1, White robots in both
borders execute R4a and R4b, then both borders becomes singly-colored. Then,
r j moves to uk by R3a and the gathering is achieved.

– If r j is adjacent to uk and is singly-colored Blue at t +1, then it moves to uk by
R3a. Then, the gathering is achieved.

– If r j is not adjacent to uk at t +1, White robots at uk changes its color to Red
by R4a and all robots at uk becomes Red. After that, we can discuss this case
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by the same way as the above cases such that crash occurs in a singly-colored
Red border.

Thus, the lemma holds. 2

Lemma 7. Starting from a configuration C where Oinit is odd, even if a Blue robot
crashes during the execution, all robots gather in O(Minit) rounds by Algorithm 2.

Proof. By the definition of Algorithm 2 and the proof of Lemma 4, if a Blue robot
crashes, it occurs at a border node during the execution. Let rk be the crashed robot
with Blue, and uk be the occupied node by rk. Let r j be the other (non-crashed)
border robots.

• Consider the case that the crash occurs just before the execution of R3a. Then, rk
is a singly-colored Blue border.

– Consider the case that the adjacent node uk+1 is a singly-colored Red border.
· If all robots in uk crash, Red robots at uk+1 change their color to Blue by

R4c, and move to uk by R3a. Then, the gathering is achieved.
· If there are non-crashed Blue robots ri in uk, ri executes R3a, and moves

to uk+1. At the same time, Red robots at uk+1 changes their color to Blue
by R4c. Then, all robots at uk+1 are only non-crashed Blue robots, and all
robots at uk are only crashed Blue robots. Thus, all robots at uk+1 moves to
uk by R3a. Thus, the gathering is achieved.

– Consider the case that the adjacent node uk+1 has White and Red robots.
· If all robots at uk crash, White robots at uk+1 change their color by R4a

and the border at uk+1 becomes singly-colored Red. After that, the robots at
uk+1 execute R4c and R3a in sequence, then the gathering is achieved.

· If there are non-crashed Blue robots ri in uk, ri executes R3a, and moves to
the node uk+1. At the same time, White robots at uk+1 change their color
to Red by R4b. Thus, the border becomes Blue and Red. In the next round,
they moves to uk by R5b and R5c, and the gathering is achieved.

– Consider the case that the adjacent node uk+1 is empty.
· If all robots rk at uk crash, r j moves toward uk. Eventually, r j becomes

adjacent to uk and singly-colored Red. After that, r j becomes singly-colored
Blue by R4c, and moves to uk by R3a. Then, the gathering is achieved.

· If there are non-crashed robots ri at uk when rk crashes, ri moves to the
adjacent node uk+1 by R3a toward r j. After that, ri cannot execute any rule
before it becomes border. When r j becomes adjacent to uk+1, r j has Red
because Oinit is odd. Then, r j moves to uk+1 by R2a, and the border robots
at uk+1 have Red and Blue robots. They move to uk by R5b and R5c, and
the gathering is achieved.

• Consider the case that the crash occurs just before the execution of R3b. In this
case, rk is also a singly-colored Blue border, and the adjacent occupied node uk+1
has singly-colored White robots rw.
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– Consider the case that all robots at uk crash, then r j eventually becomes
adjacent to uk+1. Then, r j has Blue because Oinit is odd. If r j includes White
robots, the White robots executes R4b and r j becomes singly-colored Blue.
Then, r j executes R3b and moves to uk+1. After that, rw executes R4a and the
border at uk+1 becomes singly-colored Red. Then, robots at uk+1 execute R4c
and R3a in sequence, and the gathering is achieved.

– Consider the case that there are non-crashed border robots ri in uk when rk
crashes, ri continues to execute and moves to uk+1 by R3b. Then, ri become
Red and move to uk+1 at time t. Because Oinit is odd, when r j is neighboring
to rw, r j has Blue. If r j is also adjacent to uk+1 and moves to uk+1 at t, then we
can discuss the case in the same way as above. Otherwise, ri cannot execute
any rule before it becomes border. After r j becomes singly-colored Blue, it
moves to uk+1 by R3a, and uk+1 becomes a border with White, Red and Blue
robots. After that, White robots rw at uk+1 change their color to Red by R5a,
and then, there are only Blue and Red robots at uk+1. Then, all robots at uk+1
move to uk by R5b and R5c, and the gathering is achieved.

• Consider the case that the crash occurs just after the execution of R3a or R4b.
Then, rk is a singly-colored Blue border. We can discuss it by the same way as the
case just before the execution of R3a or R3b.

• Consider the case that the crash occurs just after the execution of R4c. By the
proof of Lemma 4, the gathering is achieved.

• Consider the case that the crash occurs just after the execution of Compute phase
of R2b. Then, just before the execution, the color of rk is Red, and rk is adjacent
to singly-colored node uk+1 with White robots. After the execution, rk changes its
color to Blue, but does not move. The other borders r j move toward uk+1. Because
Oinit is odd, when r j become neighboring to uk+1, r j have Red (Even if there are
White robots with them, they eventually become singly-colored Red by R4a).

– If all robots at uk crash, when r j moves to uk+1 by R2b, then uk+1 is occupied
by White and Blue robots. Then, White robots at uk+1 change their color to
Blue by R4b. Thus, because all robots at uk+1 move to uk by R3a, the gathering
is achieved.

– If there are non-crashed other robots ri at uk just before the execution of R2b,
ri moves to uk+1 with Blue color. If r j moves to uk+1 at the same time as ri
moves, White robots at uk+1 change their color to Blue by R4b, and all robots
at uk+1 move to uk by R3a. Then, the gathering is achived. Otherwise, r j moves
to uk+1 by R2a, then uk+1 is occupied by White, Red and Blue robots. Then,
White robots at uk+1 change their color to Red by R5a. Thus, because all robots
at uk+1 move to uk by R5b and R5c, the gathering is achieved.

• Consider the case that the crash occurs just after the execution of Move phase of
R2b. Then, rk moved to an adjacent singly-colored node with White robots. Then,
White robots at uk changes its color to Blue by R4b, and let t be the round. If r j
is adjacent to uk at t, r j moves to uk by R2a and the gathering is achieved at t. If
r j is not adjacent to uk at t, uk becomes singly-colored Blue. After that, we can
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discuss this case by the same way as the above cases such that crash occurs in a
singly-colored Blue border.

Thus, the lemma holds. 2

From Lemmas 4–7, we can deduce:

Theorem 2. Starting from a configuration C where Oinit is odd, Algorithm 2 solves
the SUIG problem on line-shaped networks without multiplicity detection in O(Minit)
rounds.

5 Conclusion

We presented the first stand-up indulgent gathering algorithms for myopic luminous
robots on line graphs. One is for the case where Minit is odd, while the other is for
the case where Oinit is odd. The hypotheses used for our algorithms closely follow
the impossibility results found for the other cases.

Some interesting questions remain open:

1. Are there any algorithms for the case where crashed robots are located at different
nodes? (In that case, one has to weaken the gathering specification, e.g., by
requiring each correct robot to eventually gather at a crashed location, if any)

2. Are there any deterministic algorithms for the case where Minit and Oinit are
even (Such solutions would have to avoid starting or ending up in edge-view-
symmetric situations)?

3. Are there any algorithms for the case where Oinit is odd that use fewer colors
than ours?

4. We present distinct solutions for the cases where Minit is odd and Oinit is odd. It
would be interesting to design a single algorithm that handles both cases.
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