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Abstract Traditional machine learning systems were designed in a centralized man-
ner. In such designs, the central entity maintains both the machine learning model
and the data used to adjust the model’s parameters. As data centralization yields pri-
vacy issues, Federated Learning was introduced to reduce data sharing and have a
central server coordinate the learning of multiple devices. While Federated Learning
is more decentralized, it still relies on a central entity that may fail or be subject to
attacks, provoking the failure of the whole system. Then, Decentralized Federated
Learning removes the need for a central server entirely, letting participating pro-
cesses handle the coordination of the model construction. This distributed control
urges studying the possibility of malicious attacks by the participants themselves.
While poisoning attacks on Federated Learning have been extensively studied, their
effects in Decentralized Federated Learning did not get the same level of attention.
Our work is the first to propose a methodology to assess poisoning attacks in De-
centralized Federated Learning in both churn free and churn prone scenarios. Fur-
thermore, in order to evaluate our methodology on a case study representative for
gossip learning we extended the gossipy simulator with an attack injector module.

Key words: Gossip learning, Decentralized federated learning, Poisoning attacks,
Methodology

1 Introduction

Machine learning algorithms use statistical methods to make predictions or clas-
sifications, and to discover patterns and insights in data. Typically, a ML approach
consists in collecting data, selecting a model, and tuning model parameters based on
collected data (in the model training phase) before actually using the trained model.

In traditional systems relying on ML, a central entity manages both the ML
model and the data collected for training the model. Such data centralization is prob-
lematic with regard to risk and responsibilities [13] when the data used to train the
model is sensitive and should be kept private, or simply to obey regulations.

In 2016, Google introduced Federated Learning (FL) [13] as a solution to
privacy-wise Machine Learning. In this framework, the central entity only manages
a global model and coordinates the training across local devices (e.g. smartphone,
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laptop etc.), which use their own data (that they do not share). Then, devices send
their newly adjusted local model’s parameters to the central entity that aggregates it
with other local models to create a new global model, and this process repeats. This
method enables private collaborative learning. However, despite its reduced role, the
existence of a central server yields a signle point of failure, and an obvious attack
target, as summarized by Liu et al. [11], and by Xia et al. [19].

Decentralized Federated Learning (DFL) aims to do FL without relying on a
central server [2], using P2P or Gossip Communications. The former relies on an
existing architecture to operate, while the latter assumes direct communications in
a neighborhood. In DFL, FL based attacks and defenses have also been studied. For
example, Bernstein et al. [3, 4] with SignSGD in the FL context, where they firstly
present and study their work as a compression mechanism, and then study it as a
defense mechanism. Later, Qu et al. adapted SignSGD in the DFL context [16]. In
the following, we focus on Gossip Learning (GL), which recently was instrumental
in many applications such as building a recommendation system [1], or improving
Channel State Information feedback performance [8].

Ormándi et al. [14] is one of the eldest traces of GL. Each node periodically
sends their model to a neighbor. When a node receives a model, the node merges it
with its current model and considers the result as its new model. Later, Hegedűs et
al. [9] improved the work by Ormandi et al [14] by introducing two useful mecha-
nisms in communication restrained networks. After, Danner et al. [5] improved the
merging process used by Hegedűs et al. [9]. It should be noted that none of the
aforementioned papers address attack or defense in this context.

In this work, we assess the impact of attackers (also called Byzantine or mali-
cious) nodes that try to poison models build through a GL algorithm. Our bench-
mark GL algorithm was proposed by Hegedűs et al. [9] as best-in-class in this line
of research. Close to our work, Giaretta and Girdzijauskas [7] studied the applica-
bility of GL, highlighting problems and providing fixes when data distribution is
correlated to either degree distribution or communication speed. However, they do
not consider Byzantine nodes in their work.

Our contributions. Our contribution is threefold. First, we propose a method-
ology to assess the effects of a poisoning attack in a system that executes a gossip
learning algorithm. Second, in order to evaluate our methodology, we implemented
an extension of the popular gossipy1 simulator. Our extensions are publicly avail-
able (with execution details)2, and implement a poison injector in gossipy, which
allows to assess the performances of both clean and corrupted dataset simultane-
ously. Finally, we apply our methodology on the state of the art gossip learning
algorithm by Hegedűs et al [9]. Our findings show that the resilience of this algo-
rithm to poisoning attacks depends on several factors such as topology, Byzantine
nodes distribution, and churn. Our analysis pave the way to efficiently design coun-
termeasures against poisoning attacks. We organize this work as follows. Section
2 briefly describes our case study. In Section 3 we describe our methodology. We

1 https://github.com/makgyver/gossipy/
2 https://gitlab.lip6.fr/apham/data-poisoning-attacks-in-gossip-learning
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present our results based on this methodology in Section 4. We discuss and conclude
with Section 5.

2 Case study: State-of-the-art Gossip Learning

Gossip Learning is a way to do Federated Learning in decentralized systems with-
out a central coordinator via gossip exchanges of parameters or updates, directly be-
tween nodes. Recently, Hegedűs et al [9] proposed a GL algorithm that outperforms
FL [13] with respect to the global performances (in the ML perspective) when taking
into account communication resources. Their algorithm, Partitioned Token Gossip
Learning Algorithm (PTGLA) uses two interesting mechanisms for communication-
restrained networks such as IoTs. The first one is a compression mechanism to de-
crease message size, by not sending all parameters during each exchange, but part
of it called Partition and, we denote S the total number of partitions that the sys-
tem is using, a high S implies smaller messages. The second mechanism enables
us to control the flow of communications, thanks to Tokens, by achieving a balance
between sending messages proactively, i.e. periodically, which may lead to com-
munication flooding and sending messages reactively, i.e. after an event e.g. a local
update or a message received, which may lead to starvation (no message circulates
in the network).

In the sequel, we study the resilience of this algorithm to various poisoning at-
tacks.

3 Methodology

In this section, we present the various elements of our methodology: the choice of
the topologies, Dataset and ML algorithm, the attack, the churn settings, and the
metrics used to assess the impact of the attacks.
Topologies for GL infrastructure. We investigate the following topologies with n
nodes:

• 20 fan-out network, as originally used by Hegedűs et al [9];
• random 20-regular with bidirectional links and same number of links for every

node;
• Watts-Strogatz (k = 20, p = 0.5) for its small-world property [17];
• Erdős-Rényi

(
with p = 2log(n)

n

)
for its balanced property [6];

• Zipf law graphs, where each node has at least one neighbor, with α = 2.

For the last two topologies, we restrict our simulations to instances where the net-
work is connected.
Dataset for ML model training. In this work, we use the MNIST handwritten digit
database [10] as our dataset. It is made of 2 sets: a training set and a test set that we
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denote Dtraining and Dtest, of cardinal 60000 and 10000 respectively3. An instance
of this dataset (either from the training or test) is a couple (x,y) ∈ IR784 × J0,9K, x
represents a 28×28 pixel images with the number y written on it. Each node k will
have as a local training set Dk

training of cardinal 250, which is drawn from Dtraining in
an i.i.d. fashion4 as it is the best case scenario for GL as pointed out in Giaretta and
Girdzijauskas [7] and such as

n
∩

i=1
D i

training = /0.

ML model. Similarly to Hegedűs et al. [9], each node k trains a (Multinomial)
Logistic Regression model to correctly classify images from the dataset described
previously. Hegedűs et al. [9] study thoroughly the choice of hyperparameters η

(learning rate) and λ (L2 regularization coefficient). In our work, we fix η = 1 and
λ = 0. We choose those values as they yield best performance on the churn-free
Erdős-Rényi case, but, the choice of those 2 values is not trivial and should be stud-
ied for all topologies as done by Hegedűs et al [9].
Byzantine attacks. As done by Wu et al. [18] in the FL setting, Byzantine nodes
insert a pattern on samples that they also mislabel. In this study, Byzantine nodes in-
sert a 9-pixel trigger pattern to 20% of the image of their dataset, which they relabel
to 0. Their goal is to make honest nodes classify marked images as 0, without de-
creasing the classification performances on untampered data (i.e. without the trigger
pattern). As Byzantine nodes attack the GL system by tampering with their dataset
to disturb the network, this is called a data poisoning attack, and as their goal is
to introduce a hidden objective, this kind of attack is also called backdoor attack.
To assess the performances and the impact of the attack on benign nodes, we draw
2000 images from the test set that we divide into two sets of equal size. The first
half will be used to assess the performances on the usual classification task. For the
remaining half, we remove all (x,y) where y = 0, and apply the same modifications
on x that Byzantine nodes do on the remaining samples. We call those two sets test
and backdoor set respectively from now and show samples from both in Figure 1.
In order to choose the Byzantine nodes5, we will use two strategies: classical and
random. In the classical strategy, we select nodes with the highest degree first. In
the random strategy, we select nodes by randomly sampling without replacement.
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(a) Clean instances of the MNIST
dataset: The number in the image
is the same as the number written
above (label)
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(b) Example of tampered sample:
Notice the label 0 despite the num-
ber 0 not written on the image

Fig. 1 Examples of clean and tampered data from the MNIST dataset.

3 This is done to evaluate the model against unseen data, but close to data that were used for
adjusting model’s parameters. This allows us to see whether the model generalize well.
4 This means that data is equally distributed among nodes, every node has approximately 25 images
of each number.
5 We borrow the idea behind these strategies from Magnien et al. [12], where they use these strate-
gies in order to select nodes to be removed from a graph to study the graph connectivity.
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Churn. Churn refers to the fact that in a network, devices can join and leave freely.
Hegedűs et al [9] used smartphone traces to get a realistic churn scenario (where
nodes can disconnect and reconnect). Based on their results, to get close to their
churn scenario, nodes have a 20% chance of being online at each round.
Metrics. We are interested here in the average accuracy of honest nodes on the test
and backdoor sets. Accuracy is defined as the number of correct predictions over
the total number of predictions, using the dataset as a reference. For the test set,
the higher, the better: (honest) nodes should perform well on data that has not been
marked with the pattern and for the backdoor set, it is the opposite: nodes should
perform badly on (maliciously) marked images.

4 Simulation results

To implement the study based on the methodology defined in the previous section,
we develop an extension of the gossipy simulator that makes use of the PyTorch [15]
library for its ML part. The gossipy simulator enables us to test multiple GL algo-
rithm (PTGLA is already implemented6) in a unified manner. However, gossipy has
two main limitations: it does not take into account the possible existence of Byzan-
tine alongside honest nodes, and it does not allow assessing the performances of
both a clean and a corrupted dataset simultaneously. By contrast, our extensions,
available (with execution details) on Gitlab7 address those shortcomings. Simula-
tions were done using Python 3.9.13 or 3.9.15, using CPU only, on Intel Xeon E5-
2650v3, and Intel Xeon Gold 6330 machines respectively. We define n ∈ {100,150}
as the number of nodes and f as the number of Byzantine nodes in a simulation (in
the worst case, f = 0.3n). Each curve shown here is an average over at least 10 ran-
dom runs. In the following, we present two scenarios, churn and churn-free, starting
with the churn-free scenario, i.e. when nodes are always online. Here, Byzantine
nodes want honest nodes to classify clean inputs (shown in Section 3) with high ac-
curacy, while also classifying tampered inputs (shown in Section 3) the way Byzan-
tine nodes want, i.e. tampered inputs are classified as 0.
Churn-free scenario. In Figure 2, we represent performances across the 2 sets de-
fined in Section 3 (test and backdoor sets) when n= 100 (resp. n= 150) with f = 30
(resp. f = 45) Byzantine nodes placed with the random strategy. We use Byzantine-
free simulations as baselines, selecting the number of partitions S that yields the
best performances on the test set. On this set (left column of Figure 2), we can
see that S = 1 and sometimes S = 4 (which are the smallest values studied here
for S) are special cases across all 4 topologies shown in Figure 2, as honest nodes
perform poorly on the usual classification task (compared to the baseline, which is
not what Byzantine nodes want), and is very sensitive to the attack as seen in the

6 https://github.com/makgyver/gossipy/tree/3d655829805fc0dc2f01f5b0862240fca08ffe1c
7 https://gitlab.lip6.fr/apham/data-poisoning-attacks-in-gossip-learning
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right column of Figure 2. This can be explained by the fact that if a Byzantine node
directly sends (proactively or reactively) a partition to an honest node, as honest
nodes are always online, they always receive and process the partition, and may
send it reactively to another node, speeding up the spread of malicious partitions.
When Byzantine nodes are placed randomly, if the topology is 20 fan-out, honest
nodes are the most sensitive against the attack, while they are more resilient when
the topology is Watts-Strogatz.

Besides, on the test set, we observe that when S ̸= 1 and 4, there are no notice-
able differences between the choice of S, as honest nodes perform very closely to the
baseline. This can be explained by the i.i.d. data distribution: honest nodes, having
the same ‘learning material‘, learn quickly and correctly to classify unaltered inputs.
On the backdoor set (right column of Figure 2), still excluding S = 1 and 4, we see
that the accuracy of honest nodes on the backdoor set is constrained between 0.1 and
0.2, and that, increasing S also increase the resiliency of honest nodes against this
particular attack. This can be explained by the fact that parameters that interact with
the trigger pattern are too diluted among all partitions as the number of partitions S
increase (which is the opposite when S is small), and that Byzantine nodes follow the
algorithm (except when training). Hence, corrupted parameters (that interacts with
the trigger pattern) are less likely to be updated by honest nodes. However, Byzan-
tine nodes successfully introduce (albeit not as high as they want) the unwanted
behavior, without affecting drastically the normal classification task, as we compare
the results of the different result of S studied and the baseline on the right column of
Figure 2: Byzantine nodes induce from 10 to 20 times more misclassification com-
pared to the baseline. Overall, for the 4 topologies studied, namely Erdős-Rényi, 20
fan-out, 20 random-regular and Watts-Strogatz, when Byzantine nodes are placed
randomly, against this particular attack, honest nodes are more resilient when the
system is using a (very) high number of partitions S.

In Figure 3, we compare the classical and random strategy for Byzantine nodes,
in systems that have hubs or where the degree distribution is skewed. Usually, for
S fixed, the classical strategy is more detrimental for honest nodes than the random
strategy, especially for the Zipf case or when S is low. On the left column of Fig-
ure 3, we can see that the accuracy of honest nodes on the test set drop drastically
when Byzantines nodes are placed classically compared to the random strategy. In
average, we observe a difference of 6% and 38% on the accuracy for the test set, for
Watts-Strogatz and Zipf-based topologies respectively, which is not what Byzan-
tine nodes want for honest nodes, that do classify the way Byzantine nodes want
in the backdoor set (right column of Figure 3): in average, we observe a difference
of 1% and 48% on the accuracy for the backdoor set between the 2 strategies for
Watts-Strogatz and Zipf-based topologies respectively.

Considering the case where Byzantine nodes are placed randomly, Watts-Strogatz,
and the other three topologies studied previously, are more suitable for honest nodes
compared to the Zipf-based topology as they are more resilient against this attack.
We notice that for Watts-Strogatz topology, when S is high, that Byzantine placed
classically has almost the same impact as if they were placed randomly, this can be
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attributed to the small-world property of the topology and the fact that the backdoor
is too diluted.

Interestingly, for Zipf-based topology, when Byzantine nodes are placed ran-
domly, excluding S = 1, on the right column, it sometimes seems detrimental for
honest nodes that the system use a high number of partitions S compared to the
other 4 topologies already studied previously.
Churn scenario. Here, we study the case where nodes can disconnect and reconnect
as described in Section 3 and have a 20% chance to be online.

In Figure 4, we fix the number of partitions to S = 8 and number of nodes to n =
150, and study the effect of Byzantine placement strategy and numbers up to f = 45
when nodes degree follow a Zipf law distribution. We can see, on the right column
of Figure 4, that Byzantine nodes, when placed with the classical and random with
f = 5, for the random and classical strategy, it is almost as if there is no attack (case
f = 0). While the classical strategy is more harmful to the network for f fixed,
considering the backdoor set, we note the fact that f = 40 Byzantine nodes selected
with the random strategy is about 5% more harmful than f = 20 Byzantine nodes
selected with the classical strategy.

In Figure 5, we again study n = 100 (resp. n = 150) and f = 30 (resp. f = 45),
with the random strategy, similarly to Figure 2. We see that honest nodes perform as
well as in the churn-free scenario on the test set (left column of Figure 5), still due
to the fact that data is distributed in an i.i.d. fashion. In this scenario, honest nodes
are also slower compared to the churn-free scenario, which is also expected as they
are offline most of the time, hence, they are less learning exchanges between nodes
for a given number of rounds compared to the churn-free scenario.

Interestingly, while S = 1 is again a special case here, unlike the churn-free sce-
nario, honest nodes classify badly clean inputs at the beginning, but they converge
to a much better solution at the end, as they successfully manage to classify clean
inputs with a better success rate and are less affected by the attack compared to the
churn-free scenario. This is due to the fact that all nodes are most of the time offline,
Byzantine nodes included, hence, the attack is not as powerful as in the churn-free
scenario, but we notice, that the results are close with the other value of S studied.
In the journal version of this work, we are planning to study the churn scenario
with the assumption that Byzantines nodes are always online. Overall, we notice
that values presented in the churn-free scenario (Figure 2) and the churn scenario
(Figure 5) are relatively close. This might be explained by the fact that the churn is
probabilistic, combining with the fact that the choice of the ith to send is random,
hence, over time, the churn-free scenario, looks very similar to the churn-free case
(except when S = 1).

5 Conclusion
In this paper, we proposed a methodology to study the resilience of gossip learning
in the presence of poisoning attacks. As case study we target the compression mech-
anism of GL algorithm proposed by Hegedűs et al. [9]. We investigate its resilience
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Fig. 2 Accuracy on the test set (left, higher is better) and backdoor set (right, lower is better) for
different topologies with n = 100 (gray) and n = 150 (black) with random Byzantine placement
strategy in a churn-free system with f = 30 and 45 respectively. ‘Baseline‘ curves represent the
results in Byzantine-free simulations, with the best choice of S among values studied here with
Byzantine.
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(b) Zipf law based degree distribution

Fig. 3 Accuracy on the test set and backdoor set for different topologies with n = 150 and f =
45 with random Byzantine placement strategy (gray) and classical Byzantine placement strategy
(black).
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Fig. 4 Accuracy on the test and backdoor set for n = 150, S = 8 for f ∈ {0,5,15,20,25,40,45}
with the random (gray) and classical (black) placement strategy when nodes degree follow a Zipf
law.
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(a) Erdős-Rényi
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(c) random 20-regular
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(d) Watts-Strogatz

Fig. 5 Accuracy on the test set and backdoor set for different topologies with n =
100 (gray) and 150 (black) with f = 30 and 45 respecively.
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in a broad range of topologies (e.g. Erdős-Rényi, 20 fan-out, random 20-regular,
Watts-Strogatz and Zipf-based graph) in both churn-free and churn scenarios. Our
findings show that the communication optimizations and the choice of the underly-
ing topology are not always favorable to the honest nodes. Moreover, the distribution
of the Byzantine nodes has also a strong impact on the accuracy metric.

Usually, in the churn-free and churn cases, when Byzantine nodes are placed
randomly, the use of a low number of partitions (i.e. bigger messages), is usually
detrimental for honest nodes. This is not necessarily true if the topology is Zipf-
based, in the churn-free scenario.

In the churn-free scenario, when Byzantine nodes are placed using the classical
strategy in Watts-Strogatz and Zipf topologies, the attacks can exhibit a completely
different impact on the network compared to when they are placed randomly. We
observe that in average, Byzantine nodes cause a drop of 1% and 38% on the usual
classification task and a 6% and 48% increase on the backdoor task respectively.

For honest nodes, when Byzantine nodes are placed randomly, we do not observe
noticeable differences between the churn-free and churn scenario (except when
nodes use bigger messages, as they are more resilient against the attack in the latter
scenario), this might be attributed to the probabilistic churn and probabilistic nature
of the GL algorithm.

In the future we plan to extend this work to more complex datasets and data
distribution, and study other proposals for GL algorithm including some that take
into account the possibility of poisoning data and models.
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