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Abstract
The optimized network architectures and interconnect technologies employed

in high-performance cloud computing environments introduce challenges when it
comes to developing monitoring solutions that effectively capture relevant network
metrics. Moreover, network monitoring often involves capturing and analyzing a
large volume of network traffic data. This process can introduce additional over-
head and consume system resources, potentially impacting the overall performance
of HPC applications. Balancing the need for monitoring with minimal disruption to
application performance is a key challenge. In this paper, we study different strate-
gies to enable a low-overhead monitoring system utilizing emerging programmable
network devices.

1 Introduction

Cloud service providers strategically design High Performance Computing (HPC)
systems with a focus on fault tolerance to guarantee uninterrupted application ex-
ecution in the face of potential hardware or software failures. Undoubtedly, moni-
toring constitutes a fundamental element in establishing fault tolerance within HPC
systems, affording timely insights into the health, performance, and behaviors of
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diverse components within a HPC cloud infrastructure. The network stands out as a
vital constituent within HPC applications. This prominence arises from the prevalent
utilization of parallel processing and distributed computing in HPC applications, en-
tailing task division across multiple processors or nodes.

By continuously monitoring network traffic, bandwidth usage, and device per-
formance, administrators can identify areas of congestion, predict future growth re-
quirements, and make informed decisions regarding network upgrades, expansions,
or optimization strategies. Furthermore, communication-intensive HPC applications
can exploit network monitoring information to improve their performance by effi-
ciently utilizing the network resources [11].

In the early stages of network monitoring, only basic tools like packet sniffers
were accessible. These tools enabled network administrators to capture and analyze
network traffic, aiding in the identification of connectivity problems and abnormal
behavior. Over time, specialized monitoring protocols, such as the Simple Network
Management Protocol (SNMP) introduced in the 1990s [5], emerged, specifically
tailored to cater to the needs of network monitoring. SNMP enabled the monitoring
of network devices and provided a standardized way to collect and manage informa-
tion about their performance and health. With the advent of Software Defined Net-
working (SDN) network monitoring has significantly increased due to the easy net-
work observation with a centralized control plane. One of the key benefits of SDN
is the centralized control and management of network devices through a software-
based controller [9]. This centralized control enables network administrators to have
a holistic view of the entire network.

In spite of significant advancements in network monitoring, the task of efficiently
monitoring HPC networks remains a challenging endeavor, primarily due to the
unique characteristic of HPC network, which necessitates specialized monitoring
tools tailored for their requirements. One of the primary factors contributing to this
challenge arises from a specific characteristic exhibited by HPC protocols that by-
pass the processing unit (CPU) and operating system (OS) of a remote system when
accessing data, rendering conventional monitoring approaches ineffective in captur-
ing and analyzing network traffic within the HPC context at an end node. Moreover,
because of the high cost associated with HPC devices allocating a dedicated pro-
cessing unit solely for network monitoring is an inefficient and undesirable solution.
These circumstances have compelled us to investigate low-overhead approaches for
monitoring HPC networks through the utilization of emerging programmable net-
work devices, effectively leveraging their computing power to analyze network traf-
fic.

In Section 2, we present monitoring protocols and existing HPC monitoring tools.
In Section 3, we propose and detail our in-network solutions for monitoring HPC
networks. Section 4 evaluates the in-network monitoring solution. Finally, in Sec-
tion 5 we conclude and indicate directions for future work.
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2 Network monitoring

The first step in network monitoring is data measurement. Data measurement in-
cludes obtaining and preserving data which is then subjected to various analysis for
investigation. Measured data can also be visualized, e.g. to provide network opera-
tors with easy to interpret network status overviews. Certain control and monitoring
protocols, such as the Internet Control Message Protocol (ICMP), are character-
ized by their simplicity and primarily serve the purpose of reporting communication
errors between nodes. Nonetheless, there exist more sophisticated monitoring pro-
tocols specifically designed to cater to advanced monitoring requirements. Below,
we discuss some of the commonly utilized monitoring protocols:

Simple Network Management Protocol (SNMP) is one of the most used pro-
tocols to monitor network status [5]. SNMP for instance can be used to request
per-interface port-counters and overall node statistics from a switch. It is imple-
mented in most network devices. Monitoring using SNMP is typically achieved by
regularly polling the switch, though switch efficiency may degrade with frequent
polling due to CPU overhead. Although vendors are free to implement their own
SNMP counters, most switches are limited to counters that aggregate traffic for the
whole switch and each of its interfaces, disabling insight into flow level statistics
necessary for fine-grained traffic engineering. Therefore, SNMP is not suitable for
flow based monitoring.

sFlow is an industry standard network traffic monitoring solution with sampling
technology provided by a wide range of network equipment and software applica-
tion vendors [18]. It is a scalable technique for measuring network traffic, collecting,
storing, and analyzing traffic data. One of the advantages of sFlow is scalability of
monitoring high speed links without adding significant network load.

Vendor supplied Software Development Kits (SDKs) provide APIs to imple-
ment desired functionality in a switch without compromising packet rate perfor-
mance [14]. In particular, they allow to monitor several objects or performance
counters of a network infrastructure. However, these SDKs are vendor specific and
limited to the APIs provide by a vendor, thus they do not represent a standard mon-
itoring approach.

2.1 HPC monitoring tools

Communications over traditional LAN technologies and the TCP/IP protocol stack
are unfit for HPC networks because of inferior performance characteristics and
significant CPU and memory usage. Consequently, a new category of network
fabrics emerged, using a technology known as Remote Direct Memory Access
(RDMA) [6]. RDMA is a high-performance networking technology that allows di-
rect memory access between computers in a network, bypassing traditional network
stack layers and reducing latency. In HPC environments, where data-intensive ap-
plications require fast and efficient data transfers, RDMA plays a crucial role. This
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makes the monitoring of RDMA protocols more fundamental to ensure optimal per-
formance, to troubleshoot issues, and to maintain the overall health of the network.

Monitoring RDMA networks requires specialized tools and techniques designed
to capture and analyze RDMA-specific traffic and performance metrics. These tools
provide insights into key parameters such as bandwidth utilization, latency, and con-
gestion [19]. In the following, some of the known tools are discussed:

ibdiagnet [13] is an advanced diagnostic tool designed to analyze and trou-
bleshoot InfiniBand networks. The primary purpose of ibdiagnet is to perform in-
depth tests and verification on various components of an InfiniBand network. It can
diagnose potential problems related to link connectivity, network congestion, hard-
ware failures, and other issues that may affect the overall performance and reliability
of the fabric. ibdiagnet operates by utilizing the Subnet Manager (SM) component
of the InfiniBand fabric, which is responsible for managing and configuring the
network. It communicates with the SM to obtain information about the network’s
topology, nodes, and configuration. Based on this data, ibdiagnet performs a series
of tests and analyses to evaluate the network’s integrity and identify any abnor-
malities or potential bottlenecks. A significant drawback of utilizing ibdiagnet for
network monitoring is the necessity to parse its output in order to extract the desired
information. This additional step of parsing introduces complexity and may require
specialized tools to effectively extract the relevant data for analysis and interpreta-
tion.

rdma statistic [10] is part of the iproute2 package that provides a collection
of utilities for controlling networking and traffic control in Linux. RDMA statistic
shows information about counter configuration depending on the option and the
command selected. However it is restricted to show information about the RDMA
counters of the host machine. In effect, it cannot be extended to obtain information
about RDMA communication happening in the network.

Performance Co-Pilot (PcP), developed by Silicon Graphics, ported to Linux
from 1999 and eventually open-sourced in the mid-2000s, serves as a framework for
supporting performance monitoring and management [16]. It is actively employed
by companies such as Netflix and Red Hat to gather high-resolution performance
metrics. It is available for all major Linux distributions. Within PCP, the Perfor-
mance Metrics Collector Daemon (PMCD) acts as an agent running on hosts slated
for monitoring. PMCD incorporates various Performance Metrics Domain Agents
(PMDA), dynamically loaded libraries with a specified API. Each PMDA collects
metrics from a performance metric domain, such as a kernel or a database server.
PcP connects to PMCD, requests specific metrics, and PMCD directs the request to
the relevant PMDA, subsequently returning the response.

3 HPC In-network monitoring discussion

Effective communication plays a vital role in HPC applications, as a large prob-
lem is divided into smaller parts and distributed across multiple machines within



In-network monitoring strategies for HPC cloud 5

an HPC cluster. Consequently, network utilization and congestion level emerge as
critical metrics in HPC networks [1], attracting research attention to monitor and
analyze these parameters [2, 7]. In this section, we discuss the available approaches
to monitor theses metrics through programmable network devices since there are
few studies in this field [4].

Our research initially delved into the SDK monitoring approach, which entails
utilizing SDKs provided by vendors for specific Smart Switches and Smart NICs,
such as those offered by NVIDIA [14]. These SDKs grant access to hardware coun-
ters, enabling the monitoring and analysis of network performance. However, during
our investigation, we encountered several limitations and challenges associated with
this approach.

First and foremost, relying on an SDK-based monitoring approach is inherently
vendor-specific, rendering it inapplicable to network devices from different vendors.
This lack of cross-compatibility restricts the generalizability of the monitoring ap-
proach. Additionally, certain SDKs, including the NVIDIA Ethernet SDK, were not
publicly accessible and necessitated specific circumstances for vendor-granted ac-
cess. Hence, employing an SDK-based strategy is not the most optimal choice for
developing an open and freely accessible cross-platform monitoring system, consid-
ering these constraints.

Furthermore, we found that some SDKs were still under development and did not
offer complete functionality, despite their documentation promising otherwise. This
lack of comprehensive functionality impeded our reliance on these SDKs for thor-
ough monitoring purposes. Acknowledging these limitations, our research shifted its
focus towards alternative monitoring approaches that provide more comprehensive
and vendor-agnostic solutions for network monitoring. Therefore, we prioritized
standard protocols that furnish a structured framework for collecting, analyzing,
and visualizing network data. Furthermore, we focus on the RDMA RoCE proto-
col rather than InfiniBand since RoCE leverages standard Ethernet infrastructures,
which is widely deployed in cloud infrastructure and familiar to network adminis-
trators.

3.1 Traffic monitoring

Firstly, we examined SNMP in our research. However, our investigation revealed its
limitations in monitoring RDMA traffic. Although certain Smart NICs, like Blue-
Field, offer SNMP for monitoring specific counters [12], our evaluation indicated
incomplete functionality of SNMP at the time of writing this paper. As a result, we
explored alternative standard protocols to address these constraints.

sFlow as a standard monitoring protocol provides real-time visibility and insights
into network traffic and performance [18]. It uses packet sampling technology which
most of the switches support. It’s a sampling mechanism which recently supports
RDMA RoCE traffic monitoring which fulfils all the necessary conditions for a
HPC network traffic monitoring solution. sFlow has two components: a sFlow agent,
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Fig. 1: Testbed consists of three main components to collect and visualize the
observed RDMA RoCE traffic.

which is a software process, needs to be enabled within the switch, and a collector
runs on a host that collects sFlow datagrams. The packet sampling is typically per-
formed by the switching/routing ASICs, providing wire-speed performance. Packet
sampling uses randomness in the sampling process to prevent synchronization with
any periodic patterns in the traffic. On average, 1 in every N packets is captured
and analyzed. While this type of packet sampling does not provide a 100% accurate
result, it does provide a result with quantifiable accuracy. The sFlow packets are
encapsulated and sent in UDP over IP (port 6343 by defaut). The sFlow collector
receives sFlow data, and generates either a simple-to-parse tagged-ASCII output,
or binary output in tcpdump format. To display a real-time trend chart of network
traffic, sFlow provides an open source tools called sFlow-rt/flow-trend.

3.2 Congestion monitoring

Detecting congestion in a network is critical for maintaining a stable and reliable
network environment. There are different techniques to manage congestion when
the congestion is detected such as the use of quality of service (QoS), which prior-
itize certain types of traffic, or injection throttling. Congestion counters allow us to
measure and monitor the level of congestion in a network. Congestion counters in
RDMA protocols may vary depending on the implementation and hardware. In or-
der to monitor congestion counters in the switch, we exploit JSON APIs to perform
commands remotely from a node in the HPC cluster.

Fig. 1 illustrates our in-network monitoring strategy. We implement our monitor-
ing and visualization in a SmartNIC. Network traffic is observed through the sFlow
protocol, and congestion counters are observed through calling JSON API. We vi-
sualize the sFlow datagram through sFlow-RT. In order to visualize the congestion
counters we implemented a plugin for PcP to support RoCE protocol. So, firstly
we implemented new metrics and created PMCD to extract the congestion counters
from the switch and visualize them in PcP. Our implementation is publicly available
at https://github.com/niks16/iNet.

https://github.com/niks16/iNet
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4 Evaluation

Relocating a monitoring system to network devices poses a significant challenge in
terms of allocating resources effectively to optimize the use of resources. To assess
the monitoring strategy and its associated overhead, we devised various scenarios
for evaluation.

We established a test environment compromising three machines, each equipped
with a BlueField-2 operating on Ubuntu 18.04.6. These machines are interconnected
by an NVIDIA SN2100 switch through 100Gbps RoCE links, as shown in Fig. 1.

4.1 monitoring

Open Fabrics Enterprise Distribution (OFED) performance test, also called perftest,
is a collection of tests intended for performance micro-benchmark of RDMA oper-
ations over infiniBand and RoCE protocols [17]. We evaluated the followings tests
in our environment between two nodes:

• ib write bw generates RDMA WRITE traffic and calculates the bandwidth.
RDMA WRITE operation writes to the memory of a remote machine bypass-
ing the CPU and operating system of this remote node.

• ib read bw generates RDMA READ traffic and calculates the bandwidth be-
tween a pair of machines. RDMA READ reads from the memory of a remote
machine, again bypassing the CPU and operating system of the remote node.

We compared the sFlow bandwidth with the OFED performance tests. As can be
seen in Table 1, sFlow reports very similar result to perftest.

Table 1: sFlow and perftest comparison.
RDMA operation sFlow (Gbps) perftest (Gbps)
ib write bw 78.0 79.79
ib read bw 80.0 80.85

Furthermore, we conducted testing of our in-network monitoring strategy utiliz-
ing the HPC message passing protocol, which leverages RDMA in its underlying
layer. Message Passing Interface (MPI) is a popular parallel programming model
for scientific applications. The Open MPI is an open-source implementation of the
MPI that is developed and maintained by a consortium of academic, research, and
industry partners [15]. The Open MPI supports the RDMA UCX library. UCX is an
open-source optimized communication library allowing to choose the communica-
tion protocols by the runtime characteristics of MPI [21]. Open MPI itself supports
different transport protocols to handle communication with different messages sizes
[20]. For example, large messages are sent over Rendezvous protocol, where the
sender first negotiates the buffer availability at the receiver side before the message
is actually transferred. In our study, we conducted experiments utilizing the OSU
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micro-benchmarks [3], varying the UCX RNDV THRESH parameter and closely
monitoring network traffic. Our observations indicate that UCX adapts its RDMA
operations based on the threshold setting. For instance, when setting the threshold to
a higher value (e.g., 20M), all messages are transmitted using RDMA SEND. RDMA
SEND represents a two-sided communication approach, necessitating acknowledg-
ment from the receiver before data transmission. This analysis are important as UCX
exhibits the ability to dynamically adapt its transport protocol and network interface
in response to varying circumstances and not only message size. The utilization of
lightweight in-network monitoring facilitates a comprehensive understanding of the
underlying MPI communication without imposing any burden on the processes run-
ning on the host. Further analysis of UCX RNDV THRESH can be found on our
GitHub repository.

4.2 Monitoring overhead

We evaluated the overhead of our monitoring strategy from augmented network
traffic, CPU and memory consumption:

• The network traffic of monitoring depends on the sFlow parameters settings
such as sampling rate and sFlow counter-poll-interval. We generated RDMA
READ traffic through perftest while systematically varying the mentioned pa-
rameters and recorded the obtained results. As Fig. 2 (a) and (b) show by
increasing the counter-poll-interval and sampling rate the monitoring traffic
caused by sFlow decreases.

Fig. 2: Network load when using sFlow.

• The processing overhead of the collector on SmartNIC is impressively low, with
less than 5% of CPU usage. As for the switch, packet sampling for sFlow is pri-
marily handled by the high-speed switching/routing ASICs, ensuring efficient
and swift processing.

• The memory consumed by collector on the SmartNIC was found to be less than
3% on average, which is considerably low.
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• When using PcP, the system overhead depends on various factors. These include
the number of managed hosts, frequency of logging interval, duration of histor-
ical data retention, number of performance metrics measured and application
performance [8].

Following the analysis of the monitoring accuracy and its overhead, we have es-
tablished that the implementation of an accurate lightweight in-network strategy for
monitoring RoCE RDMA is feasible and achievable through the utilization of stan-
dard protocols. We efficiently utilized only one core of the ARM CPU, leaving a
substantial amount of additional resources. Furthermore, the SmartNIC’s connec-
tion through PCIe to the host enables us to store the observed data at high speeds.
This combination of factors enhances our capabilities for in-depth data analysis and
processing of observed network traffic.

5 Conclusion and Future work

In this research, different strategies for monitoring RDMA RoCE protocol have been
discussed and evaluated to implement an accurate and lightweight in-network moni-
toring in an HPC cloud setting. In this research, network traffic and congestion from
a switch have been monitored. However, as future work we plan to evaluate mon-
itoring of multiple network devices. Moreover, we plan to provide actions based
on the network status through some machine learning methods. Additionally, we
intend to extend our monitoring scope to include both the network and end nodes
using SmartNICs.
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