
Deep learning and MCMC with aggVAE for shifting administrative boundaries:
mapping malaria prevalence in Kenya

Elizaveta Semenova1,5 Swapnil Mishra2,5 Samir Bhatt3,5 Seth Flaxman1,5 H Juliette T Unwin4,5

1Department of Computer Science, University of Oxford
2Saw Swee Hock School of Public Health and Institute of Data Science, National University of Singapore and NUHS

3School of Public Health, University of Copenhagen; School of Public Health, Imperial College London
4School of Public Health, Imperial College London; Department of Mathematics, University of Bristol

5Machine Learning and Global Health Network (www.MLGH.net)

ABSTRACT

Model-based disease mapping remains a fundamental
policy-informing tool in the fields of public health and
disease surveillance. Hierarchical Bayesian models have
emerged as the state-of-the-art approach for disease map-
ping since they are able to both capture structure in the
data and robustly characterise uncertainty. When working
with areal data, e.g. aggregates at the administrative unit
level such as district or province, current models rely on
the adjacency structure of areal units to account for spatial
correlations and perform shrinkage. The goal of disease
surveillance systems is to track disease outcomes over time.
This task is especially challenging in crisis situations which
often lead to redrawn administrative boundaries, meaning
that data collected before and after the crisis are no longer di-
rectly comparable. Moreover, the adjacency-based approach
ignores the continuous nature of spatial processes and can-
not solve the change-of-support problem, i.e. when esti-
mates are required to be produced at different administrative
levels or levels of aggregation. We present a novel, practical,
and easy to implement solution to solve these problems rely-
ing on a methodology combining deep generative modelling
and fully Bayesian inference: we build on the recently pro-
posed PriorVAE method able to encode spatial priors over
small areas with variational autoencoders by encoding aggre-
gates over administrative units. We map malaria prevalence
in Kenya, a country in which administrative boundaries
changed in 2010.

1 INTRODUCTION

Malaria is one of the major causes of mortality in sub-
Saharan Africa, with a disproportionate burden on young
children. In Kenya, a country with a long history of malaria
control, approximately 75% of the population was still at
risk in 2022 [U.S. President’s Malaria Initiative, 2022]. As

malaria control programs continue to create novel control
strategies, district-level disease mapping remains a funda-
mental surveillance tool for analysing the present and his-
torical distribution of the disease in both space and time.
However, disease tracking becomes more difficult in the
situation of crises. For example, political factors have his-
torically driven decentralisation across developing coun-
tries often leading to changes in administrative boundaries.
Many of countries have increased their number of sub-
national administrative units, including more than twenty
countries in sub-Saharan Africa [Hassan, 2016]. Some coun-
tries have experienced multiple changes of boundaries, such
as Kenya. Methodologically, district-level disease mapping
in Kenya can be challenging because administrative bound-
aries changed in 2010: while the old system consisted of 8
provinces and 69 districts (Figure 1, left), the new system
contains 47 districts (Figure 1, middle) which do not coin-
cide with the old boundaries. This change is hard to tackle
with standard disease mapping tools.

Hierarchical Bayesian models are the state-of-the-art ap-
proach for disease mapping [MacNab, 2022, Kang et al.,
2016, Wakefield et al., 2000] since they are able to capture
structure in the data, as well as to characterise uncertainty.
Modern literature builds on a series of foundational works
by Besag [1974], Clayton [1992], Bernardinelli and Monto-
moli [1992], Bernadinelli et al. [1997], Clayton et al. [1993]
who instigated a paradigm shift from the frequentist to the
Bayesian approach in disease mapping. Bayesian disease
mapping since the 1980s and 1990s has Bayesian hierarchi-
cal models as its foundation, with no shortage of examples
in malaria mapping [Gemperli et al., 2006, Gosoniu et al.,
2006, Hay et al., 2009, Reid et al., 2010, Bhatt et al., 2015,
2017, Snow et al., 2017, Weiss et al., 2019]. Markov chain
Monte Carlo (MCMC) simulation methods, especially as
implemented in probabilistic programming languages like
BUGS and Stan, are a common approach to estimation,
learning, and inference of unknown quantities and parame-
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Figure 1: Map of Kenya with district borders before 2010 (left), district borders from 2010 (middle), and computational grid
used (right).

ters. In recent years approximate inference algorithms, such
as integrated nested Laplace approximation (INLA) have
gained popularity [Martins et al., 2013]. While such tools
provide convenient interfaces to a set of predefined (and
well documented) models, they do not provide as much
flexibility for custom model development as probabilistic
programming languages. This limits their applicability to
specific classes of applied research, including the problem
of aggregation and change-of-support which we study here.
MCMC, on the contrary, is a general sampling technique for
sampling from a possibly unnormalised target density π(z),
i.e. the posterior [Robert et al., 1999, Gelman et al., 1995].

MCMC (Markov Chain Monte Carlo) is a computational
method that generates a sequence of samples from a tar-
get distribution by constructing a specific kind of Markov
chain that is guaranteed to converge to the target distribution
asymptotically. In practice, MCMC sampling is performed
for a finite number of iterations N , where N is sufficiently
large for MCMC to converge. MCMC convergence and ef-
ficiency can be assessed via diagnostic tools, such as the
R̂ statistic and effective sample size (ESS) metrics, respec-
tively [Vehtari et al., 2021]. The R̂ statistic, also known as
the potential scale reduction factor, is a measure used to
assess the convergence of multiple MCMC chains by com-
paring the within-chain variance to the between-chain vari-
ance. The ESS statistic quantifies the amount of independent
information obtained from the generated samples, reflecting
the effective size of the sample in terms of capturing the true
underlying distribution. The critically important propertie
of MCMC is that in the asymptotic limit, it guarantees ex-
act samples from the target density. In health policy-related
applications where modelling informs decision-making this
property makes MCMC preferable to non-exact methods
(such as variational Bayes). However, MCMC scales poorly

for problems involving correlation structures, such as Gaus-
sian Processes (GPs). Additional issues inherent to MCMC
are autocorrelation in the produced samples, meaning that
chains must be simulated for a prohibitively long time in
order to obtain reliable uncertainty estimates. It is highly
desirable for disease mapping models to retain modelling
flexibility and reliability of MCMC, and, at the same time,
to improve inference speed and efficiency.

The main modelling tool for capturing spatial correlation in
a disease mapping model is the Gaussian process (GP) prior,
whose realisation over a finite number of points is a multi-
variate Normal (MVN ) distribution mean and covariance
functions. The most common type of spatial data analysed
in this context is areal data, i.e. data obtained via aggrega-
tion of individual observations over spatial areas, such as
administrative units. Statistical models describing areal data
typically rely on the adjacency structure of areal units to ac-
count for spatial correlation. One drawback of this approach
is that it disregards the continuous nature of underlying
processes and potential heterogeneity within each region, es-
pecially large ones. Additionally, adjacency-based methods
are very rigid with respect to the change-of-support prob-
lem, i.e. when administrative boundaries change or when
mapping needs to be done at a different administrative level.
The spatial aggregation process has been proposed in the
literature to address this issue: an observational model is
designed using the integration of the GP over the corre-
sponding region [Tanaka et al., 2019, Yousefi et al., 2019,
Zhu et al., 2021, Johnson et al., 2019].

In this work, we present a novel, practical and easy to imple-
ment solution of the change-of-support problem relying on
a methodology combining deep generative modelling and
fully Bayesian inference. Our approach is twofold:



• We view the spatial process as continuous. Rather than
performing modelling based on the adjacency struc-
ture, we model the latent GP process on a fine spatial
scale over an artificial computational grid covering the
domain of interest and obtain unit-level estimates via
aggregation. This approach has been used before in
order to better capture continuity than adjacency-based
methods.

• We extend the recently proposed PriorVAE [Semen-
ova et al., 2022] method of encoding spatial priors
with variational autoencoders to the change-of-support
problem and malaria prevalence mapping in Kenya. Re-
alisations of GP priors are generated on the fine spatial
grid, and then aggregated to the level of administra-
tive units. The aggregated values are encoded using
the PriorVAE technique. The trained priors, termed
aggVAE, are then used at the MCMC inference stage
instead of combining the generation of GP priors and
the aggregation step at each MCMC iteration.

We show that MCMC using the aggVAE approximate prior
is faster and more efficient within an MCMC inference
scheme than MCMC relying on the exact GP prior.

Our paper is structured as follows: in Section 2.1 we de-
scribe models from classical spatial statistics used to anal-
yse areal data. In Section 2.2 we introduce the field of deep
generative modelling and in particular the VAE architecture.
In Section 2.3 we summarise the PriorVAE method of en-
coding spatial priors. In Section 3 we propose the aggVAE
method allowing to encode aggregated latent GP evaluations.
Our application to malaria prevalence mapping in Kenya
is presented in Section 4 and we conclude by discussing
limitations and future work in Section 5.

2 BACKGROUND

2.1 SPATIAL STATISTICS MODELS OF AREAL
DATA

Classical statistical models describing areal data typically
rely on the adjacency structure of areal units to account for
spatial correlation, that is, near by regions will likely be
similar to each other. The prior on the spatial term in such
models can be written as:

f ∼ MVN (0, Q−1),

where Q denotes the inverse covariance or precision ma-
trix. Adjacency characterises the neighborhood structure
allowing to calculate Q based on the connectedness of the
adjacent graph. These methods take advantage of the ten-
dency for neighboring areas to possess similar features. Be-
sag [1974] first proposed the Conditional Auto-Regressive
(CAR) with

Q = τ(I − αA),

where τ denotes the marginal precision, A is the adjacency
matrix and α is a parameter capturing the amount of spatial
dependence. Variations of this model were later proposed
and include intrinsic CAR (iCAR): [Besag et al., 1991]

Q = τ(D −A),

where D is the diagonal matrix consisting of the total
number of neighbours for each area, proper CAR (pCAR)
[Cressie, 2015] with

Q = τ(D − αA),

Leroux CAR (LCAR) [Leroux et al., 2000] with

Q = τ(α(D −A) + (1− α)I),

Besag-York-Mollié (BYM) model [Besag et al., 1991]:

Q =
1

τs
(D −A) +

1

τiid
I,

BYM2 [Riebler et al., 2016].

2.2 VARIATIONAL AUTOENCODERS (VAES)

A Variational Autoencoder (VAE) is a type of generative
model that uses deep learning techniques to generate new
data samples ŷ ∈ Y ⊂ Rn that resemble the original train-
ing data y ∈ Y . It consists of two parts: an encoder Eϕ(.)
that maps input data to a lower-dimensional representation
(latent space) Z ⊂ Rd, d < n, and a decoder Dψ(.) that
maps the latent representation z ∈ Z back to the original
data space. The encoder and decoder are trained together to
minimise a reconstruction loss, which measures the differ-
ence between the original data and its reconstructed version.
Additionally, a constraint is imposed on the latent representa-
tion to follow a prior distribution q(z|y), such as a Gaussian
distribution, allowing the model to generate new, unseen
data by sampling from the prior and passing it through the
decoder. Following Kingma and Welling [2013], the op-
timal parameters for the encoder and decoder are found
by maximising the evidence lower bound, or, equivalently,
minimising the loss:

LVAE = Eq(z|y) [− log p(y|z)] +KL [q(z|y)||p(z)] .

The prior of the latent space and the variational distribu-
tion are typically chosen to have Gaussian forms: p(z) =
N (0, Id), q(z|y) = N (µz, σ

2
zId).

2.3 ENCODING SPATIAL PRIORS WITH VAES

πVAE [Mishra et al., 2022] and PriorVAE [Semenova et al.,
2022] are two related VAE-based methods that can respec-
tively encode continuous stochastic processes and their finite
realisations. They utilize a trained decoder to approximate
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Figure 2: Attribution of grid points over polygons (districts) before 2010 (left), and after 2010 (right). Grey points correspond
to points falling outside of the country’s borders, and points falling within the same polygon are represented with the same
color.

computationally complex GPs and MVN s for Bayesian in-
ference with MCMC, preserving the rigour of MCMC while
ensuring scalability through the simplicity of the VAE’s
latent space. The key difference between the two methods
is the type of prior they encode and the method of encod-
ing: πVAE uses a low-dimensional embedding of function
classes via a combination of a trainable feature mapping
and a generative model, while PriorVAE directly encodes
fixed, finite-dimensional GP realisations. In this work we
will follow the PriorVAE approach. The method has been
proposed as a scalable solution to the small area estimation
(SAE) problem in spatial statistics as it encodes realisations
of priors presented in Section 2.1. A characteristic property
of PriorVAE is that it needs to be trained on a predefined spa-
tial structure. On one hand, this is a disadvantage compared
to πVAE since PriorVAE is unable to make predictions on
off-grid locations. On the other hand, in the settings when
the spatial structure is known in advance, PriorVAE is pre-
ferred due to its simpler computational setup, as only the
prior-encoding VAE needs to be trained, without the need
for learning of the feature map. The inference workflow
using the PriorVAE method can be described as follows:

• Fix the spatial structure of interest {x1, . . . , xn} - a set
of administrative units, or an artificial computational
grid.

• Draw evaluations of a GP prior GP(.) over the spatial
structure and use the vector of realisations

fGP = (f(x1), . . . , f(xn))
T

as data for a VAE to encode.

• Train a VAE on the generated data to obtain the decoder
Dψ(.).

• Perform Bayesian inference of the overarching model
using MCMC, where fGP is approximated by the
trained decoder Dψ(.) :

fGP ≈ f̂GP = fPriorVAE = Dψ(zd), zd ∼ N (0, Id).

3 ENCODING AGGREGATES OF THE
GAUSSIAN PROCESS PRIOR: AGGVAE

3.1 GP EVALUATIONS OVER A FINE SCALE
GRID

We view the underlying process as continuous and ap-
proximate it by evaluating the GP on a fine spatial grid
G = {g1, ...gn} (Figure 1 (right)) covering the domain of
interest. The grid is regular and has been chosen to ensure
that at least one point of the grid gj lies within each adminis-
trative unit pi. GP prior realisations f(.) are drawn over the
artificial grid G as a multivariate normal distribution with a
covariance matrix following the RBF1 kernel:

f =

f1
...
fn

 ∼ MVN (0,Σ), Σjk = σ2 exp

(
−
d2jk
2l2

)

where fj = f(gj), djk = ||gj − gk|| and σ2, l are hyperpa-
rameters of the Gaussian Process. For the hyperparameters
we used l ∼ InvGamma(3, 3) and σ ∼ N+(0.05) priors.

1Any kernel can be used. We use RBF only as an example.



3.2 COMPUTING GP AGGREGATES OVER
POLYGONS

As the next step, we aggregate GP evaluations to the district
level. Each district is viewed as a polygon pi, i = 1, ...,K,
and the computation takes the form

fpiaggGP =

∫
pi

f(s)ds ≈ c
∑
gj∈pi

fj = cf̄piaggGP. (1)

Here f̄piaggGP =
∑
gj∈pi fj and we have used the midpoint

quadrature rule. The constant c = ∆x∆y with ∆x and
∆y being step sizes of the grid along the x and y axes,
respectively. We can, therefore, construct a vector where
each entry represents a spatial random effect at a district pi:

faggGP =

fp1aggGP
...

fpKaggGP

 ∈ RK . (2)

In practice, we implement 1 via matrix multiplication. For
this, we precompute matrix M consisting of K rows and n
columns with binary entries Mji, indicating whether point
j lies within polygon i (see Figures 2):

Mji = I{gj∈pi}, j = 1, ...,K, i = 1, ..., n.

Hence, M serves as a lookup table, and if f is a vector of
GP draws over the grid, the product Mf gives the vector of
sums

f̄aggGP = Mf =

 f̄p1aggGP
...

f̄pKaggGP.

 (3)

This procedure can be performed both with respect to the
old and new boundaries to obtain vectors f old

aggGP and f new
aggGP,

respectively, using M old and M new precomputed matrices.

3.3 ENCODING GP AGGREGATES

In order to tackle the change-of-support problem, we encode
f̄ old

aggGP and f̄ new
aggGP jointly. We construct a vector of dimension

K1 +K2 of the form

f̄ joint
aggGP =



f̄
pold
1

aggGP
. . .

f̄
pold
K1

aggGP
−−−−
f̄
pnew
1

aggGP

f̄
pnew
K2

aggGP


=

(
M oldf
M newf

)
∈ RK1+K2 .

and apply the PriorVAE method to f̄ joint
aggGP, i.e. we encode

GP aggregates jointly for old and new boundaries with a
VAE using a lower-dimensional representation with inde-
pendent standard Gaussian components z1, ..., zd, d <

K1 +K2, zi ∼ N(0, 1). We denote the new prior of the
area-level spatial effect as faggVAE. This one-step prior can
be used at the inference stage instead of the two step pro-
cedure where first evaluation f1, . . . , fn need to be drawn
and then aggregated to obtain faggGP. We summarise the
encoding and MCMC inference procedure using aggVAE in
Algorithm 1.

• Fix spatial structure of areal units as a collection of
polygons P = {p1, . . . , pK}.

• Create an aritificial computational grid of sufficient
granularity G = {g1, . . . , gn}.

• Precompute the matrix of indicators
M, Mji = I{gj⊂pi}.

• Draw GP evaluations over G using a selected kernel
k(., .): f = (f1, . . . fn)

T .

• Compute GP aggregates at the level of
P : faggGP = cMf

• Train PriorVAE on faggGP (or f̄aggGP) draws to obtain
faggVAE priors

• Use faggVAE at inference within MCMC.

Algorithm 1: Inference procedure using aggVAE

4 INFERENCE USING AGGVAE:
MAPPING MALARIA PREVALENCE IN
KENYA

Malaria prevalence is routinely mapped using disease
surveillance data which was collected, for example, via the
DHS programme. A number of survey clusters (households)
are selected and individuals within a cluster get tested for
the presence or absence of malaria parasite. Malaria preva-
lence can then be modelled as the probability of a positive
test among all tests. In this work we use results of the survey
conducted in 2015. In 2010 administrative boundaries in
Kenya changed (1). We treat the 2015 data as static, i.e. we
assume that the same data was collected once before 2010
and once after 2010 by overlaying it with old and new bound-
aries. District-specific malaria prevalence θi, i ∈ 1, . . .K is
inferred using the Binomial distribution{

npos
i ∼ Bin(ntests

i , θi),

logit(θi) = b0 + fpiaggGP.
(4)

where ntests
i and npos

i are the number of total and positive
RDT tests observed in district i, correspondingly. fpiaggGP in
4 is the two-step spatial prior requiring first the sampling of
the GP draws and the subsequent aggregation step. To avoid
this procedure, we approximate fpiaggGP with fpiaggVAE and use



the following model for inference:{
npos
i ∼ Bin(ntests

i , θi),

logit(θi) = b0 + sfpiaggVAE.
(5)

The additional parameter s is introduced here to account for
us encoding f̄aggGP rather than faggGP, as well as to prevent
our VAEs from oversmoothing; the additional parameter
can correct for that at the inference stage.

Our goal is to compare speed and efficiency in terms of
effective sample sizes (ESS) of MCMC inference using
models described in 4 and 5. Both inference models were
implemented using the Numpyro probabilistic programming
language [Phan et al., 2019, Bingham et al., 2019] and the
encoding of aggVAE was performed using the JAX library
[Bradbury et al., 2018]. We ran both MCMC inference mod-
els using 200 warm-up and 1000 posterior samples. Results
of the comparison are presented in Table 1. The model us-
ing aggGP prior ran 10K times longer, and after 14h has
not fully converged. After 1200 total iterations it has only
achieved R̂ = 1.4. Traceplots and posterior distributions
for the GP lengthscale and variance parameter are presented
on Figures 3 and 4, correspondingly. When comparing spa-
tial random effects (REs) corresponding to old and new
boundaries, aggGP model particularly struggles with the
old ones: maximum Gelman-Rubin statistic is R̂ = 1.10
for REs over the old boundaries, and R̂ = 1.06 for RFs
over the new boundaries. Graphical comparison of the crude
estimates, i.e. observed crude prevalence (θcrude =

npos
i

ntests
i

)
and estimates obtained by the aggGP and aggVAE models
are presented on Figures 5 and 6, correspondingly. Maps
of crude prevalence estimates, estimates obtained by the
aggGP and aggVAE models are presented on Figure 7 for
boundaries before 2010 and on Figure 8 for boundaries from
2010.

5 DISCUSSION AND FUTURE WORK

In this work we have demonstrated the applicability of aggre-
gated GP priors to represent spatial random effect instead of
traditional adjacency-based models, and presented a scalable
solution to the change-of-support problem by jointly encod-
ing GP aggregates using the PriorVAE technique. Modelling
on fine resolution scales is attractive since this approach
allows us to capture continuity, but it is computationally
cumbersome. By introducing the aggVAE prior, we allevi-
ate the computational difficulties. Our results showed that
inference using aggVAE priors is orders of magnitude faster
and more efficient than inference performed using the GP
priors; effective sample size per second is thousands times
higher when using aggVAE prior than combining the orig-
inal GP priors and the aggregation step to obtain aggGP.

2After this time aggGP model has not fully converged; e.g. the
Gelamn-Rubin statistic for the lengthcsale parameter is R̂ = 1.4.

Table 1: Comparison of MCMC for models with faggGP and
faggVAE spatial random effects (REs) using 200 warm-up
and 1000 steps

Model
(used prior)

aggGP
RE

aggVAE
RE

Elapsed time 14h2 8s
Average ESS of the REs 129 231
ESS per minute 0.15 1732

Maximum R̂ of REs,
boundaries before 2010 1.10 1.01

Maximum R̂ of REs,
boundaries from 2010 1.07 1.01

Average ESS of the REs,
boundaries from 2010 132 222

Average ESS of the REs,
boundaries from 2010 125 245

Our work lays foundation for future extensions allowing to
capture heterogeneity of continuous covariates X , such as
environmental factors, at a fine spatial scale, by including
them into the linear predictor of the model as the fixed ef-
fect term: b0 +Xβ + f . We used the RBF kernel to model
GP on the fine spatial scale. This kernel defines smooth
and stationary GP draws. However, the presented method-
ology is kernel-agnostic, and any other kernel can be used
instead, including non-stationary kernels.One drawback of
the PriorVAE method is pertinent in the current work as
well: aggVAE is not explicitly encoding hyperparameters of
the GP, such as lengthscale, and, hence, is not able to infer
them. Future extensions should focus on closing this gap,
e.g. conditional variational autoencoders can be used in-
stead to overcome this issue [Semenova et al., 2023]. Since
aggVAE provides a prior that does not have a closed form
solution but is rather obtained in an empirical way by train-
ing a neural work, theoretical properties of such priors and
their influence on downstream inference should be studied
in more detail.While modelling prevalence, we have taken
the number of positive and negative tests at their face val-
ues. Sensitivity of the test, however, may play a role. We
also treated survey locations as noise-free, while due to
privacy they have 10 km precision. Both facts should be
taken into account while performing modelling for real-life
applications and constitute future work.

Data and Code Availability Data containing adminis-
trative boundaries of Kenya are publicly available: current
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Figure 3: Posterior distribution (left) and traceplot (right) of the GP lengthscale parameter.
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Figure 4: Posterior distribution (left) and traceplot (right) of the GP variance parameter.
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Figure 5: Observed and estimated prevalence produced by the aggGP model. The model has not converged after 1200
MCMC steps and particularly struggles with estimates over the old bounaries.
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Figure 6: Observed and estimated prevalence produced by the aggVAE model.

boundaries3 and old boundaries4 can be freely downloaded.
Malaria prevalence data was obtained from DHS 2015 sur-
vey and contains information on locations of clusters and
test positivity to calculate district-specific prevalence; it can
be requested from the DHS programme5. Code to repro-
duce the results is available at https://github.com/
MLGlobalHealth/aggVAE.

3https://data.humdata.org/dataset/
2c0b7571-4bef-4347-9b81-b2174c13f9ef/
resource/03df9cbb-0b4f-4f22-9eb7-3cbd0157fd3d/
download/ken_adm_iebc_20191031_shp.zip

4https://www.wri.org/data/kenya-gis-data
5https://dhsprogram.com/

https://github.com/MLGlobalHealth/aggVAE
https://github.com/MLGlobalHealth/aggVAE
https://data.humdata.org/dataset/2c0b7571-4bef-4347-9b81-b2174c13f9ef/resource/03df9cbb-0b4f-4f22-9eb7-3cbd0157fd3d/download/ken_adm_iebc_20191031_shp.zip
https://data.humdata.org/dataset/2c0b7571-4bef-4347-9b81-b2174c13f9ef/resource/03df9cbb-0b4f-4f22-9eb7-3cbd0157fd3d/download/ken_adm_iebc_20191031_shp.zip
https://data.humdata.org/dataset/2c0b7571-4bef-4347-9b81-b2174c13f9ef/resource/03df9cbb-0b4f-4f22-9eb7-3cbd0157fd3d/download/ken_adm_iebc_20191031_shp.zip
https://data.humdata.org/dataset/2c0b7571-4bef-4347-9b81-b2174c13f9ef/resource/03df9cbb-0b4f-4f22-9eb7-3cbd0157fd3d/download/ken_adm_iebc_20191031_shp.zip
https://www.wri.org/data/kenya-gis-data
https://dhsprogram.com/
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Figure 7: Map of malaria prevalence in Kenya based on district boundaries before 2010: (a) crude prevalence estimates, (b)
estimates obtained by the aggGP model, and (c) estimates obtained by the aggVAE model.
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Figure 8: Map of malaria prevalence in Kenya based on district boundaries after 2010: (a) crude prevalence estimates, (b)
estimates obtained by the aggGP model, and (c) estimates obtained by the aggVAE model.
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