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Abstract
Fully supervised models often require large amounts of labeled training data, which tends to be

costly and hard to acquire. In contrast, self-supervised representation learning reduces the amount
of labeled data needed for achieving the same or even higher downstream performance. The goal
is to pre-train deep neural networks on a self-supervised task such that afterwards the networks
are able to extract meaningful features from raw input data. These features are then used as inputs
in downstream tasks, such as image classi�cation. Previously, autoencoders and Siamese networks
such as SimSiam have been successfully employed in those tasks. Yet, challenges remain, such as
matching characteristics of the features (e.g., level of detail) to the given task and data set. In this
paper, we present a new self-supervised method that combines the bene�ts of Siamese architectures
and denoising autoencoders. We show that our model, called SidAE (Siamese denoising autoencoder),
outperforms two self-supervised baselines across multiple data sets, settings, and scenarios. Crucially,
this includes conditions in which only a small amount of labeled data is available.

1 Introduction
Fully supervised machine learning models usually require large amounts of labeled training data,
usually labeled by humans, to achieve state-of-the-art performance. For many domains, however,
labeled training data is often costly and more challenging to acquire than unlabeled data (Jing and Tian,
2020). Existing approaches in the �eld of unsupervised or self-supervised pre-training successfully
reduce the amount of labeled training data needed for achieving the same or even higher performance
(Jing and Tian, 2020). Generally speaking, the aim is to pre-train deep neural networks on a self-
supervised task such that after pre-training, they can extract meaningful features from raw data,
which can then be used as input in a so-called downstream task like classi�cation or object detection.

In the context of image recognition, earlier work focuses on designing speci�c pretext tasks. These
include generation-based methods such as inpainting (Pathak et al., 2016), colorization (Zhang et al.,
2016), and image generation (e.g., with generative adversarial networks (Goodfellow et al., 2014)),
context-based methods involving Jigsaw puzzles (Noroozi and Favaro, 2016), predicting the rotation
angle of an image (Gidaris et al., 2018), or relative position prediction on patch level (Doersch et al.,
2015). Yet, resulting representations are rather speci�c to these pretext tasks, suggesting more general
semantically meaningful representations should be invariant to certain transformations instead of
covariant (Misra and Maaten, 2020; Chen et al., 2020). Following this argument, many recent state-of-
the-art models have been built on Siamese networks (Caron et al., 2020; Chen et al., 2020; He et al.,
2020; Grill et al., 2020; Chen and He, 2021). The idea is to make the model learn that two di�erent
versions of one entity belong to the same entity and that the factors making the versions di�er from
each other do not play a role in its identi�cation. The simple Siamese (SimSiam) (Chen and He, 2021)
model is designed to solve the common representation collapse issue arising from that strategy. It uses
a stop-gradient operation on either of the branches of the model, with each branch corresponding to
one view of the input.

Another widely-known family of models used for pre-training networks to function as feature
extractors are autoencoders (Hinton and Salakhutdinov, 2006). As such, autoencoders build on the
principle of maximizing the mutual information between the input and the latent representation
(Vincent et al., 2010). Good features, however, should not contain as much information as possible
about the input but only the most relevant parts (Tian et al., 2020). Accordingly, an ideal autoencoder-
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based feature extractor for images would only extract information necessary to determine the identity
of an image. This is commonly done by keeping the dimensionality of the latent space lower than that
of the input and by adding noise (e.g., Gaussian noise) to the image before it is fed into the encoder.
This is the idea of a denoising autoencoder (Vincent et al., 2008).

By themselves, both approaches to learning representations lead to simple and e�ective solutions.
This simplicity allows us to leverage both approaches to design an arguably even more powerful
feature extractor, as both strategies result in non-con�icting ways of learning representations.

In this paper, we examine whether a Siamese network and a denoising autoencoder could be
combined to create a new model for self-supervised representation learning that comprises advantages
of both and could therefore compensate for the shortcomings of the individual components. We
introduce a new model named SidAE (Siamese denoising autoencoder), which aims to adopt the
powerful learning principles of both Siamese networks with multiple views of the sample input
and denoising autoencoders with noise tolerance. We show how those can be elegantly used in
cooperation with each other, resulting in a simple yet e�ective model. Our experiments show that
SidAE outperforms its composing parts in downstream tasks in a variety of scenarios, either where
all labeled data is available for the downstream task or only a fraction of it, both with or without
�ne-tuning of the feature extractor.

2 Self-supervised representation learning
As a guiding principle, self-supervised learning leverages vast amounts of unlabeled data to train
models. The key is to de�ne a loss function using information that is extracted from the input itself.
Generally, self-supervision can be used in various domains, including, but not limited to, text, speech,
and video. Here, we will focus on the domain of image recognition.

Self-supervised representation learning in the context of image recognition is used to train models
to extract “useful representations” to improve downstream performance. We consider two stages: (1)
self-supervised pre-training and (2) a supervised downstream task. The goal of the pre-training stage
is to train a so-called “encoder” neural network such that it learns to extract meaningful information
from raw input signals (i.e., pixels). The second stage uses the encoder as a feature extractor. In this
stage, a classi�er, such as a simple fully-connected layer, is trained on top of the representations
extracted from the input by the encoder. The model is trained with a supervised loss using labeled
data. The weights of the encoder can be �ne-tuned (optimized) or frozen (not optimized) on the
downstream task. This highlights how self-supervised learning is advantageous in scenarios with
little labeled data.

The question arises as to what kind of features are considered meaningful and therefore useful,
and how it is possible to tweak models to produce representations that satisfy certain properties. It has
been suggested that representations should contain as much information about the input as possible
(InfoMax principle; (Linsker, 1989)). Yet, others argue that task-speci�c representations should only
contain as much signal as needed for solving a speci�c task, as task-unrelated information could
be considered noise and might even harm performance (InfoMin principle; (Tian et al., 2020)). For
general representations, that, too, holds to some degree. They should be invariant under certain
transformations and thus invariant to so-called “nuisance factors”, e.g., lighting, color grading, and
orientation, as long as those factors do not change the identity of an object. One line of reasoning is
that a model that can predict masked parts or infer properties of the data should have some kind of
“higher-level understanding” of the content (Hena�, 2020; Baevski et al., 2022; Assran et al., 2023).

2.0.1 Siamese networks
The Siamese (also known as joint-embedding (Assran et al., 2023)) architectures are designed in such
way that a so-called backbone network should learn that two distorted versions of an image still
represent the same object. Intuitively, the reasoning is that the features extracted from the same entity
should be similar to each other, even under those distortions.

Our proposed model builds on SimSiam (Chen and He, 2021). Because of its simplicity compared
to other Siamese architectures, it is well-suited as a basis for more complex architectures. In general,
Siamese networks consist of two branches encoding two di�erent versions x1 and x2 (“views”) of
the same input x, which we detail below. Each branch in SimSiam contains both an encoder and a
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Figure 1. Self-supervised learning and two paradigms, Siamese networks (left) and (denoising) autoencoders
(middle), compared to our model SidAE (right).

so-called predictor network, where the encoders for the two branches share their weights. In other
approaches, the weights of the networks di�er. For instance, in MoCo (He et al., 2020) and BYOL (Grill
et al., 2020), the weights of one network are a lagging moving average of the other. Figure 1 (left)
illustrates the architecture of SimSiam, showing the stop-gradient operation for one side for brevity.

In SimSiam and other state-of-the-art models, the encoder comprises a deep neural network, often
referred to as “backbone”. In some cases, there is also an additional so-called projector network. The
projector consists of a few fully-connected layers and simply takes the output of the backbone as its
input. The backbone and projector are jointly referred to as the encoder. A projector is also used in
SimCLR (Chen et al., 2020), where it improves the downstream performance.

The �rst step in pre-training is to extract two di�erent versions (“views”) of an input image
x ∈ ℝ

din . These views are obtained by applying two sets of augmentations t1 and t2, randomly sampled
from a family of augmentations T . The encoder Enc(⋅) and predictor Pred(⋅) networks are then used as

xj = tj (x), zj = Enc(xj ), pj = Pred(zj ),

where x ∈ ℝ
din , xj ∈ ℝ

din , zj ∈ ℝ
dhid , pj ∈ ℝ

dhid . Here, din is the input dimensionality, dhid the hidden
or latent dimensionality, and j ∈ {1, 2}. Using dhid =

1

4
din was found to lead to better results when

compared to dhid = din (Chen and He, 2021).
With this, the model can be trained by minimizing a distance D(pi , zj ) with i, j ∈ {1, 2} and i ≠ j.

Hence, the loss is minimized by making the representations of the images close to each other. Both
negative cosine similarity and cross-entropy can be used as D(⋅, ⋅), but earlier reports show that the
former leads to superior results (Chen and He, 2021). Crucially, a stop-gradient operation is applied
on zj . Thus, while backpropagating through one of the branches, the other branch is treated as a �xed
transformation. More speci�cally, the loss for SimSiam is calculated as

Lsi =

1

2

D(p1, stopgrad(z2)) +

1

2

D(p2, stopgrad(z1)), (1)

where stopgrad(⋅) denotes the stop-gradient operation. This is essential to avoid collapsing solutions
(Chen and He, 2021) and works as a replacement for earlier attempts, such as using one branch with
weights as a lagging moving average of the other (He et al., 2020; Grill et al., 2020).

2.0.2 Denoising autoencoders
Autoencoders are another family of self-supervised models we consider. They share the same under-
lying principle, which is to learn a representation of data by using that representation to reconstruct
the original. The encoder Enc(⋅) ∶ ℝ

din → ℝ
dhid extracts that representation z from the input x,

here referred to as latent representation (or code), while the decoder Dec(⋅) ∶ ℝ
dhid → ℝ

din uses z to
reconstruct the original inputs x. Traditionally, the encoder and decoder tend to “mirror” each other
in their architectures, but that is not necessarily always the case. The model is then trained to make
the reconstruction as close as possible to the original input with

z = Enc(x), x
′
= Dec(z), LAE = D(x

′
, x).

Autoencoders generally build on the concept of maximizing the mutual information between
some input x and a latent code z (Vincent et al., 2010). Yet, they need to be restricted in some way
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such that the model does not simply learn an identity mapping where z is equal to x, usually achieved
by using a smaller dimensionality for z. For a denoising autoencoder, the input x is distorted (e.g., by
applying Gaussian noise), and this corrupted version x̃ is used as input to the model

z = Enc(x̃), x
′
= Dec(z), LDAE = D(x

′
, x).

The loss is minimized in training to make x and x
′ as similar to each other as possible. Note that the

denoising autoencoder does not see x, only its corrupted counterpart x̃, but is still trained to match x.
Therefore, the model should learn to focus more on the crucial information to reconstruct the original
inputs, and optimally, the representations encode only relevant signals without noise.

3 A Siamese Denoising Autoencoder
The newly proposed model contains parts of SimSiam (Chen and He, 2021) and a denoising autoencoder.
The design of the denoising autoencoder was inspired by works of Li et al. (2017) and Wickramasinghe
et al. (2021). To the best of our knowledge, the exact architecture and application as shown here
have not yet been presented. Note that components that appear in multiple models (i.e., the encoder,
decoder, and predictor networks) are the same in SimSiam, SidAE, and the denoising autoencoder.

3.1 Motivation
We hypothesize that a new architecture combining Siamese networks and denoising autoencoders
results in a more powerful method. Since it draws from two ideas complementing each other, they
could compensate for the shortcomings of the individual components. More speci�cally, a denoising
autoencoder is trained on a single corrupted view of the data, while Siamese networks use two views.
Additionally, Siamese networks do not aim to reconstruct the original inputs from the information its
encoder extracted, while the denoising autoencoder does. This di�erence in behavior can be used to
the bene�t of self-supervision, i.e., allowing the denoising autoencoder to access two di�erent views
of the same sample. At the same time, the encoder used by the Siamese part is also encouraged to
keep enough information for the decoder to reconstruct the inputs. This symbiosis is the fundamental
design principle in SidAE.

Intuitively, in contrast to pre-training a network with SimSiam, using SidAE should make the
network learn that two views come from the same object and from which one. While for SimSiam, the
original input is not directly used to optimize the model, as only augmented versions are fed into the
model, and the loss is computed using representations in the latent space. In SidAE, disrupted, local
information is mapped to the original, undisrupted, global information by the denoising autoencoder
part. Autoencoders are optimized to maximize the mutual information between uncorrupted input
and latent representation. Hence, the model is explicitly trained to encode information about the
original input into the latent representations z1 and z2.

Yet, compared to a denoising autoencoder, SidAE should not just be optimized to encode as much
information as possible from the original input into the latent codes (while being robust to noise). It
should also ignore speci�c nuisance factors. This is achieved by the Siamese part of its network. This
should prevent the features from containing irrelevant details. In what follows, we will describe the ar-
chitecture and specify the loss function of SidAE. A visual overview of SidAE is given in Figure 1 (right).

3.2 Architecture
Input.
SidAE uses two views x1 and x2, which are obtained by applying two augmentations t1 and t2, which
we sample from a set of augmentations T . We employ the same augmentation pipeline as in SimSiam
(Chen and He, 2021) for CIFAR-10 which consists of the following transformations stated in PyTorch
(Paszke et al., 2019) notations: (i)RandomResizedCropwith scale in [0.2, 1], (ii)ColorJitter
with brightness=0.4, contrast=0.4, saturation=0.4, and hue=0.1 applied with probability p = 0.8, (iii)
RandomGrayscale applied with probability p = 0.2, and (iv) RandomHorizontalFlip
applied with probability p = 0.5.

For MNIST and Fashion-MNIST, we additionally apply a GaussianBlur with a standard
deviation in [0.1, 2.0] applied with probability p = 0.5. This augmentation has usually been included
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Figure 2. Examples for augmentations used in SidAE showing four CIFAR-10 (left) and four Fashion-MNIST
(right) images along with two augmentations.

for training Siamese networks on ImageNet. Yet, it has not been used for training SimSiam on CIFAR-
10 (Chen and He, 2021), which we follow to ensure our results are fair and comparable, since CIFAR-10
pictures already have a rather low resolution compared to the complexity of the objects shown.
Adding additional blurring would make them hardly identi�able for a human observer, contradicting
the reasoning that the transformations should represent factors under which a human would still
recognize an object. However, Fashion-MNIST and MNIST samples are still recognizable after blurring.
We depict some examples of the transformations in Figure 2.

Encoder.
The backbone network in the encoder is based on the PyTorch (Paszke et al., 2019) implementation of
ResNet-18 (He et al., 2016). As in SimSiam, we replace the last fully connected layer with a 3-layer
projection MLP.

Decoder.
The decoder is another neural network built with the encoder in mind. After the inputs x1 and x2

are encoded into the latent representations z1 and z2, they are fed into the decoder, producing the
reconstructions x′

1
and x

′

2
. The decoder mirrors the encoder in that it upsamples the data step-by-step

to reconstruct an output of the original input size (three channels of size 32 × 32). For this purpose, a
fully connected layer followed by �ve transposed convolution layers are stacked on each other. The
output channels of each transposed convolution are chosen to mirror the downsampling process of
the backbone. Their kernels have a size of 3 × 3, padding = 1, output padding = 1, and stride = 2.
While the encoder uses skip connections, we decided against building residual decoders, resulting in
a rather simple architecture, decreasing complexity, and keeping it similar to SimSiam.

Predictor.
The predictor is a two-layer MLP, the same as in SimSiam (Chen and He, 2021). It maps the latent
representations z1 and z2 to another latent space to produce two embeddings p1 and p2. Both zi and
pj (i, j ∈ {1, 2} and i ≠ j) have the same dimensionality since they are compared to each other later.
We depict the full structure with the encoder, projector, decoder, and predictor in Figure 3.
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Figure 3. The components of the models used in our experiments.
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Loss.
The loss for SidAE comprises two terms, one for the Siamese and one for the autoencoder part
of the network. The former is applied for comparing z1 to p2 and z2 to p1. The latter compares
the reconstructions x

′

1
and x

′

2
to the augmented inputs x1 and x2, respectively. In SimSiam, the

subcomponents of the loss are scaled by 1

2
, which amounts to scaling the whole loss by 1

2
. We do the

same for the autoencoder term of the loss. Additionally, we introduce a weighting term on the Siamese
and autoencoder parts of the loss by setting a parameter w ∈ [0, 1]. This parameter controls the
magnitude of the relative importance of each mechanism in the model. The full loss L

sidae
is given by

L
dae

=

1

2

Dmse(x, x
′

1
) +

1

2

Dmse(x, x
′

2
),

Lsi =

1

2

Dncs(p1, stopgrad(z2)) +

1

2

Dncs(p2, stopgrad(z1)),

L
sidae

= wL
dae

+ (1 − w)Lsi,

where L
dae

is the denoising autoencoder loss and Lsi is the Siamese loss. The distance Dmse is a mean
squared error (MSE) and Dncs is the negative cosine similarity (NCS), given by

Dmse(a, b) =

1

d

d

∑

j=1

(aj − bj )
2 and Dncs(a, b) = −

a
T
b

max(‖a‖2 ⋅ ‖b‖2, �)

,

respectively. Here, a, b ∈ ℝ
d and � = 10

−8 prevents a division by zero.

4 Experiments
We now perform several experiments regarding our proposed SidAE model, compare it against relevant
baselines, evaluate the in�uence of the parameter w, and assess how the amount of pre-training
impacts a downstream task on several real-world data sets. For clarity and to avoid repetitiveness, we
refer below to a denoising autoencoder whenever an autoencoder is mentioned.

4.1 Experimental Setup
Data.
We evaluate on four real-world data sets. CIFAR-10 (Krizhevsky and Hinton, 2009) consists of 50,000
colored training and 10,000 test images of size 32 × 32 with three color channels from ten mutually
exclusive classes. The MNIST data set (LeCun et al., 1995) contains 28 × 28 pixel images of handwritten
digits, thus having ten classes. It consists of 60,000 training and 10,000 test images. Fashion-MNIST
(Xiao et al., 2017) is similar to MNIST but shows fashion items in ten classes. Finally, STL-10 (Coates
et al., 2011) also comprises ten classes with a larger resolution of 96 × 96 pixels with three color
channels. It is designed explicitly for self-supervised tasks and has 5,000 labeled training images, 8,000
labeled test images, and additionally 100,000 unlabeled images. We use a downsized version of STL-10
of the same dimensions as CIFAR-10, i.e., 32 × 32 pixels with three color channels, to keep the models
comparable and avoid variability due to di�erent model capacities.

STL-10 is designated for self-supervised or unsupervised pre-training. Thus, we use the unlabeled
data for pre-training our models and the train and test sets for training and evaluating the model
on the classi�cation task. For the other data sets, we resort to the same training protocol as used in
SimSiam (Chen and He, 2021). We use the training set for self-supervised pre-training and training
the classi�er on the downstream task. The test set is used for evaluation. In addition, we simulate
harder tasks in which we use only a small fraction (i.e., 1%) of the labeled training data for supervised
training on the downstream task. The subsets for each data set are drawn randomly but are the same
throughout all runs to enable a fair comparison. We always use the full training set (or the unlabeled
set in the case of STL-10) for pre-training. To use the same architectures for all data sets, we resize all
images to a resolution of 32 × 32.

Baselines.
We compare SidAE against SimSiam (Chen and He, 2021) and a denoising autoencoder (Vincent et al.,
2008). For SimSiam, we use the same architecture as Chen and He (2021). Thus, the loss of SimSiam
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Figure 4. Classi�cation accuracy as downstream task on CIFAR-10 after di�erent pre-training stages using a
frozen pre-trained backbone. For downstream training 1% (left) and 100% (right) of training data are used,
respectively.

is a symmetrized loss of negative cosine similarities between the two views. The encoder of the
autoencoder uses a ResNet-18 with a three-layer projection MLP as used in SimSiam and SidAE and
the decoder is like in SidAE. The latent dimensionality of SidAE is set to dhid = 2048 since it worked
best for SimSiam in Chen and He (2021). We evaluate other choices of latent dimensionalities in the
appendix. Since SidAE sees two noisy views at a time, we also provide the autoencoder with two
noisy views that are constructed in the same way. We use the mean squared error as a loss for the
autoencoder. Furthermore, we consider classi�cation as a downstream task. There, we also compare
against a fully supervised ResNet-18.

Setup.
We use Python for all our experiments and implement all models in PyTorch (Paszke et al., 2019). All
experiments run on a machine with two 32-core AMD Epyc CPUs, 512 GB of RAM, and an NVIDIA
A100 GPU with 40GB memory. We re-implement SimSiam based on its original implementation and
use the same settings for pre-training. As an optimizer, we use stochastic gradient descent using a
cosine decay schedule with an initial learning rate of 0.03, momentum of 0.9, weight decay of 0.0005,
and batch size of 512.

We pre-train the backbone networks using SidAE, SimSiam, and a denoising autoencoder for 200
epochs and use the frozen pre-trained backbones as feature extractors for a supervised downstream
task, i.e., image classi�cation. Each pre-trained model is evaluated at di�erent stages of pre-training,
i.e., after 25, 50, 75, 100, 125, 150, 175, and 200 pre-training epochs, to assess how the duration of
pre-training a�ects the quality of learned representations. We replace the projector MLP within the
backbone for the classi�er with a fully connected layer with an input dimension equal to z. The
output dimension is set to match the number of classes in each data set. This downstream task is
trained for 50 epochs using a stochastic gradient descent with a learning rate of 0.05, a momentum of
0.9, and a batch size of 256. Since the backbone weights are frozen, only the weights of the last fully
connected layer are trained for the downstream task. We later evaluate the scenario of �ne-tuning
the frozen weights.

4.2 Results
For every experiment, we conduct �ve runs and report on average accuracies, including standard
errors for downstream classi�cation.

For now, we �x the weight w ∈ [0, 1] interpolating the Siamese and autoencoder loss to w = 0.5

and evaluate its in�uence later. Figure 4 shows the e�ect of pre-training in downstream classi�ca-
tion on CIFAR-10. We see that the more pre-training epochs we use, the better the accuracy of the
downstream task. The left-hand side depicts the case where we only have 1% of labeled training data
for the classi�cation task. There, using only 25 pre-training epochs of the self-supervised methods
already outperforms a fully supervised classi�er, showing that pre-training helps. Note that when
100% of the labeled training data is available, it does not necessarily outperform a supervised baseline
without �ne-tuning the encoder, as seen on the right-hand side. Notably, the performance gap for the
supervised baseline between 100% and 1% is way higher than for the self-supervised models. These
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Table 1. Downstream classi�cation accuracies for SidAE using w = 0.5, SimSiam, and a denoising Autoencoder
averaged over �ve runs including standard errors.

Data Pre-Train SidAE SimSiam Autoencoder

CIFAR-10 100% 64.75 (0.27) 57.08 (3.16) 57.44 (0.31)
1% 51.67 (0.28) 44.06 (3.74) 40.67 (0.25)

Fashion-MNIST 100% 88.78 (0.12) 85.10 (0.09) 87.67 (0.05)
1% 81.62 (0.22) 77.84 (0.19) 80.20 (0.31)

MNIST 100% 97.80 (0.13) 96.59 (0.60) 97.23 (0.11)
1% 94.65 (0.49) 79.42 (5.15) 88.41 (0.46)

STL-10 STL-10 61.18 (0.22) 56.74 (0.74) 48.39 (0.22)
CIFAR-10 66.20 (0.31) 56.64 (0.25) 57.08 (3.16)

Figure 5. Classi�cation accuracies on MNIST (left) and Fashion-MNIST (right) using 1% of the training data for
downstream training.

observations support that supervised models need a large amount of training data, performing rather
poorly if only little labeled data is available. Note that SimSiam yields the largest standard errors,
whereas SidAE is more stable. Overall, SidAE outperforms both the autoencoder and SimSiam.

Table 1 shows classi�cation accuracies averaged over �ve seeds after 200 pre-training epochs also
for the other data sets. There, we can see that SidAE also outperforms its baselines on Fashion-MNIST,
MNIST, and STL-10 when compared to its baseline competitors. Figure 5 depicts the classi�cation
accuracies on MNIST and Fashion-MNIST using 1% of the training data for downstream training.
While for CIFAR-10 (Figure 4), SimSiam either outperformed (1%) or performed on-par (100%) with
the autoencoder, the situation is di�erent for MNIST and Fashion-MNIST. SimSiam is especially
unstable on MNIST after 100 epochs. On both data sets, the autoencoder is better than SimSiam.
Besides, our proposed SidAE model yields better results than the fully supervised baseline.

Figure 6. SidAE: The in�uence of the weight w
on CIFAR-10.

The results for using 100% of the training data for down-
stream training yield the same outcome and are hence
not shown.

The In�uence of the weight w in SidAE.
We now investigate the trade-o� of the weight w ∈ [0, 1]

in the loss. If w = 0, only the Siamese loss is used,
while w = 1 means that only the autoencoder loss is
utilized. Figure 6 depicts the in�uence of the weight
w in SidAE for the 1% case measured again by down-
stream accuracies. The performance of the classi�er
when using SidAE with w ∈ {0.125, 0.25} is indeed bet-
ter than the previously used standard choice of w = 0.5.
If the weight for the autoencoder is increased, e.g., using
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Figure 7. Classi�cation accuracies on the �netuned downstream task (CIFAR-10) at di�erent pre-training stages
using encoders pre-trained with di�erent models using 1% (left) or 100% (right) of the training data for the
downstream task.

w ∈ {0.75, 0.875}, the performance decreases and approaches the one from the autoencoder. Note
that the best-performing setting of w = 0.125 increases the performance gap of SidAE in the previous
experiment even more. The results are similar for the 100% case and hence not shown. Table 1
(appendix) shows the results for various choices of w on Fashion-MNIST, MNIST, and STL-10.

Finetuning the Downstream Task.
So far, for training the downstream classi�er, we have kept the pre-trained weights of the encoder
frozen. This was done to judge the capabilities of the pre-training procedure to produce good feature
extractors without the encoder being in�uenced by labeled data. Instead of freezing the weights of the
pre-trained encoder, we now �netune them during supervised downstream training. Hence, unlike
training a ResNet fully supervised from scratch, the model weights are initialized with those acquired
by self-supervised pre-training instead of being initialized randomly. This allows us to investigate
whether pre-training boosts performance or whether a model with randomly initialized weights
without pre-training can reach the same performance. For this experiment, we set w = 0.125 within
SidAE since it yielded the best performance in the previous experiment (Figure 6).

Figure 7 shows the downstream classi�cation accuracies on CIFAR-10 when we allow for �netuning,
i.e., allowing the backbone to adapt to the downstream task. As before, our proposed SidAE model
outperforms both self-supervised baselines in almost all cases. In contrast to earlier experiments, all
self-supervised models now surpass the supervised baseline for 1% (left side) and for 100% (right side)
of the training data. Hence, it is bene�cial to use some form of self-supervised pre-training not only in
scenarios in which only a small amount of labeled data is available but also if there is a good amount
of labeled data.

Results on STL-10.
The STL-10 data is specially designed for self-supervised learning as it comes with a small labeled
training set as well as a set of unlabeled training data. We now pre-train the backbone on the unlabeled
training data of STL-10 and use the frozen backbone as a feature extractor for the classi�cation
downstream task on STL-10 but also on CIFAR-10. This allows us to evaluate whether the feature
extraction can be pre-trained on data sets with similar characteristics.

For this experiment, we set w = 0.25 for SidAE as it yielded the highest downstream accuracy on
both data sets. Yet, similar results are obtained for w = 0.125. The classi�cation accuracies on STL-10
and CIFAR-10 are depicted in Figure 8 on the left- and right-hand side, respectively. For STL-10,
we can observe that SidAE and SimSiam both outperform the fully supervised baseline while the
denoising autoencoder falls short. The situation di�ers for CIFAR-10, where the fully supervised
baseline is still better. However, note that the performance of SidAE is very similar to the case when
the backbone was pre-trained on CIFAR-10 itself (Figure 4). Overall, SidAE performs much better
than both self-supervised baselines.
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Figure 8. Classi�cation accuracies on STL-10 (left) and CIFAR-10 (right) using an encoder pre-trained with the
unlabeled training data of STL-10.

5 Related Work
Many recent state-of-the-art models build on Siamese networks (Caron et al., 2020; Chen et al., 2020;
He et al., 2020; Grill et al., 2020; Chen and He, 2021; Liu et al., 2022). The idea is to make the model
learn that two di�erent versions of one object represent the same object while the factors making
them di�erent from each other do not play a role in its identi�cation. The main challenge is to
avoid collapsing representations, i.e., where all inputs are assigned to the same feature vector. One
widely applied strategy is to use a contrastive loss like InfoNCE (Oord et al., 2018; Misra and Maaten,
2020; Chen et al., 2020), where a large amount of negative samples is required for good performance.
Various approaches have been presented in this context, such as using large batch sizes (Chen et al.,
2020), a memory bank to store negatives (Wu et al., 2018; Misra and Maaten, 2020), or a “queue” of
negatives retaining negatives from previous batches (He et al., 2020). In another approach, Caron et al.
(2020) avoid pairwise comparison by mapping embeddings of images to prototype vectors found by
online clustering. Those alleviate but do not solve the issues of dealing with negative samples: the
computational costs and the quality of the selected samples for training.

Since then, new methods have introduced simpler ways to address the collapsing issue. BYOL
(Grill et al., 2020) completely circumvents the need for negative samples by applying a momentum
encoder, where the weights in one of the branches of the Siamese network are a lagging moving
average of the other one. This makes it di�cult for the model to converge to a collapsed state but
makes the optimization process more complex. SimSiam (Chen and He, 2021) uses a stop-gradient
operation on one of the branches instead, showing that it is su�cient to prevent collapsing solutions.
This is not only conceptually straightforward but also results in a simpler implementation. More
recently, Liu et al. (2022) show that the stop-gradient operation implicitly introduces a constraint that
encourages feature decorrelation, explaining why the simple architecture of SimSiam performs well.

6 Conclusion
This paper is about self-supervised representation learning for which Siamese networks and autoen-
coders are frequently and successfully used. Siamese networks such as SimSiam (Chen et al., 2020)
allow for having multiple, possible noisy views on data, and (denoising) autoencoders (Vincent et al.,
2008) aim to extract essential features of the input in a bottleneck layer by reconstructing a noisy input.

We proposed combining the bene�ts of Siamese networks and denoising autoencoders for learning
meaningful data representations. To achieve this, we introduced a new model called SidAE (Siamese
denoising autoencoder). We empirically evaluated the representations learned by our model in various
scenarios on several real-world data sets. To do so, we considered a downstream task of classi�cation.
Thus, we �rst pre-trained our model on unlabeled training data in a self-supervised fashion before
using the extracted features for learning the supervised classi�er. In our experiments, we compared
SidAE to SimSiam and a denoising autoencoder.

SidAE consistently outperformed both self-supervised baseline models in terms of mean down-
stream classi�cation accuracy in all our experiments. Furthermore, compared to SimSiam, SidAE leads
to results that are more stable regarding initialization seeds and the amount of used pre-training epochs.
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7 Ethics Statement
As with many machine learning models, particularly those based on neural networks, the methods
presented here rely on a large amount of data. We see this as the primary source of ethical pitfalls in our
work since self-supervised methods can learn from unlabeled data, including poorly curated data. The
reason is that the data could implicitly or explicitly contain biases such as over- or underrepresenting
certain content. Here, we dealt with classi�cation as an exemplary downstream task. This over- or
underrepresentation can potentially lead to undesired performance, for example, in a classi�cation
task for underrepresented classes.

Furthermore, using general-purpose feature extractors such as those discussed here should be
done cautiously. It is not necessarily clear what exactly the model learns, e.g., what characteristics are
extracted from the inputs to base the classi�cation on. We draw attention to cases involving critical
decisions and the comprehensibility of those decisions. These issues should also be taken into account
in other downstream tasks.
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Appendix A—Table 1. Downstream classi�cation accuracies for di�erent choices of w in SidAE averaged over
�ve runs including standard errors.

Data Pre-Train w = 0.125 w = 0.25 w = 0.5 w = 0.75 w = 0.875

CIFAR-10 100% 66.20 (0.31) 66.14 (0.18) 64.75 (0.27) 63.07 (0.25) 61.47 (0.23)
1% 55.61 (0.37) 55.34 (0.29) 51.67 (0.28) 49.21 (0.38) 47.18 (0.41)

Fashion-MNIST 100% 87.31 (0.09) 87.89 (0.09) 88.63 (0.12) 88.78 (0.12) 88.71 (0.10)
1% 81.49 (0.21) 81.78 (0.27) 81.90 (0.16) 81.62 (0.22) 80.47 (0.29)

MNIST 100% 97.78 (0.04) 97.70 (0.05) 97.80 (0.06) 97.98 (0.08) 98.10 (0.05)
1% 94.91 (0.20) 94.90 (0.18) 94.65 (0.22) 93.11 (0.13) 92.00 (0.25)

STL-10 STL-10 60.07 (0.18) 61.18 (0.22) 60.44 (0.21) 56.92 (0.20) 53.77 (0.19)
CIFAR-10 64.12 (0.40) 65.42 (0.16) 65.18 (0.19) 63.33 (0.15) 61.59 (0.20)

Appendix 1

The In�uence of the weight w in SidAE.
Within the main body of the paper, we only discussed the in�uence of w in SidAE for CIFAR-10.
Table 1 complements the information from that experiment also with results from Fashion-
MNIST, MNIST, and STL-10. The reported accuracies are reported for 200 pre-training epochs
and are averaged over �ve runs, with numbers in parenthesis indicating the standard error.
Depending on the data set at hand, the classi�cation accuracies are either stable for various
choices of w (e.g., Fashion-MNIST, MNIST 100%) or there is a clear choice of w leading to
better results (e.g., CIFAR-10, STL-10).

These experiments show, that lower values of w tend to perform better on CIFAR-10
and STL-10, which are the more challenging data sets. While this pattern does not occur on
MNIST and Fashion-MNIST, the performance di�erence between the worst-performing and
best-performing values of w is considerably smaller. This indicates that smaller values of w
tend to result in better-performing models.
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(a) 1% (b) 100%

Appendix B—Figure 1. Classi�cation accuracy on the downstream task (CIFAR-10) at di�erent pre-training
stages for SimSiam with di�erent dimensionalities of the latent space dhid using 1% or 100% of the training data
for downstream training.

Appendix 2

Dimensionality of the Latent Space.
According to Chen and He (2021), SimSiam bene�ts from a higher dimensional latent space
and gets saturated at dhid = 2048. Yet, this observation was originally made on ImageNet. We
examine if this still holds for CIFAR-10 too, training variants with dhid = 1024 and dhid = 512.
Likewise, we investigate what in�uence dhid has on the other self-supervised models. We
suspect that a smaller dimensional latent space might be su�cient for this data set since it is
of lower dimensionality and less complex than ImageNet. When varying the dimensionality of
the latent space, Chen and He (2021) also adapt the dimensionality of the hidden layer of the
predictor MLP such that the hidden layer always has 1

4
of the size of the feature space. This is

done to give the predictor a bottleneck structure. We adopt the same principle here.
The results for SidAE and the denoising autoencoder show a small di�erence in performance

for values of dhid (within around 1%). Hence, varying the dimensionality of the latent space
between 2048, 1024, and 512 does not signi�cantly impact these models. The accuracy may
already be saturated at a considerably smaller value of dhid.

SimSiam’s mean accuracy is slightly higher with smaller dhid. A possible interpretation may
be that, for higher dimensional latent spaces, additional noise is encoded in the representations,
harming downstream performance. Yet, as seen in Figure 1, the standard error of the mean is
high, and thus the areas de�ned by the standard error show considerable overlap.
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