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Abstract. Travel mode choice (TMC) prediction, which can be formu-
lated as a classification task, helps in understanding what makes citizens
choose different modes of transport for individual trips. This is also a
major step towards fostering sustainable transportation. As behaviour
may evolve over time, we also face the question of detecting concept
drift in the data. This necessitates using appropriate methods to address
potential concept drift. In particular, it is necessary to decide whether
batch or stream mining methods should be used to develop periodically
updated TMC models.
To address the challenge of the development of TMC models, we propose
the novel Incremental Ensemble of Batch and Stream Models (IEBSM)
method aimed at adapting travel mode choice classifiers to concept drift
possibly occurring in the data. It relies on the combination of drift de-
tectors with batch learning and stream mining models. We compare it
against batch and incremental learners, including methods relying on
active drift detection. Experiments with varied travel mode data sets
representing both city and country levels show that the IEBSM method
both detects drift in travel mode data and successfully adapts the models
to evolving travel mode choice data. The method has a higher rank than
batch and stream learners.

Keywords: Travel mode choice · stream mining · concept drift

1 Introduction

The growth in the volume of data streams has caused data mining methods,
which analyze bounded and stationary datasets, to be potentially unable to
adapt to shifting data patterns and dynamic phenomena [3]. In addition to
the regular fluctuations and random variations in the data, the concept drift
phenomenon [3, 5] is frequently observed due to reasons such as seasonality [4].
A fast and potentially infinite data stream can be viewed as the output of a
stochastic process that produces data based on a specific probability distribution
at a given time [4]. This distribution may change over time. More precisely,
concept drift arises when the distribution p(x) and/or p(y|x) changes between
consecutive labelled stream instances {x, y} [4].

The travel mode choice datasets typically include features such as duration
and reason of the trip, traveller’s attributes, e.g., age and gender, represented in
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vector x. Each trip record includes as well a travel mode selected by the traveller
[7,10,11], i.e., a class yi ∈ Y , which includes using a car, public transport, cycling
and walking. As trips are made over time, it is not obvious whether classifiers
predicting travel mode should be trained with batch methods assuming station-
ary settings i.e., fixed p(y|x) and p(x) or stream mining methods addressing
concept drift [8]. Stream mining algorithms offer the advantage of continuous
incremental model training. This enables a model to adapt to concept drift, but
it fundamentally alters the training process and the employed machine learning
algorithms by including either passive or active adaptation to concept drift [3].
Alternatively, models can be trained on batches of data, a typical approach. In
this scenario, models can effectively detect patterns present in batches due to
the ability to iterate over data multiple times, often yielding improved outcomes.
Still, their effectiveness might be reduced when the incoming data shifts [6].

Given the formulation of a TMC problem as a classification task, [10, 11], a
question is posed whether online classifiers should be applied to learn possibly
evolving models reflecting the evolving decisions of travellers, or whether the
magnitude of concept drift(s) is not sufficient to use online learners rather than
batch models. The answer is likely to depend on how stationary the process is in
different cities or countries and may even change with time. Hence, we propose
an ensemble method combining multiple batch and online methods to reduce
the risk of selecting an under-performing method. Furthermore, the method we
propose, can utilize multiple batch-learning models, bringing an extra advan-
tage. It enables the use of distinct configurations of drift detection and batch
model retraining strategies, referred to as drift handling strategies, for each batch
learner.

Hence, in this work, we propose the novel Incremental Ensemble of Batch and
Stream Models (IEBSM) method for predicting the preferred mode of transport.
We evaluate both the method and baseline learners using various real datasets
of successively recorded trips provided by respondents. As the distribution p(xi)
of some features present in the TMC data sets is likely to change with time, trip
data offer a compelling illustration of unending and changing data streams. The
primary contributions of this work are as follows:

– We propose the novel IEBSM ensemble method combining drift detectors
with batch and online learners. The method automates the use of multiple
batch and online methods, drift detection and the retraining of batch mod-
els. The experiments we performed show that the IEBSM method yields
performance gains over batch and online methods for various travel mode
choice tasks. It provided highest ranked TMC models. We provide the open
source implementation of the IEBSM method 1.

– We investigate whether statistically significant changes occur in travel mode
choice data for a number of travel mode choice data sets and confirm that
such changes occured in each of the data sets. Moreover, we confirm that

1 All methods have been implemented with inter alia the river (https://riverml.xyz)
and scikit-learn libraries.
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the IEBSM method both detected changes and successfully managed the
introduction of selected updated batch models.

The remainder of this work is organized as follows. In Sect. 2, we provide an
overview of related works. This is followed in Sect. 3 by the proposal of the
novel method aiming to automate the use of varied underlying batch and online
learners under concept drifting data streams. The results of the evaluation of
the method and reference methods are provided in Sect. 4. This is followed by
the conclusions and summary of future works in Sect. 5.

2 Related works

TMC modelling [7, 10, 11] is concerned with predicting the travel mode most
likely used by a person for their trip. Recently, the benefits arising from the
use of machine learning methods for TMC tasks were discussed in [7,10]. In [7],
random forest was shown to yield the best accuracy and computational cost
among the tested classifiers. Over time, aspects such as temporal changes in
the environment, seasonality, and evolving human preferences are all likely to
affect those choices. Hence, in some TMC datasets such as those used in [10],
apart from respondent and trip attributes, such as age, education and distance
travelled, the features related to weather conditions were included. Still, batch
machine learning methods not considering possible changes in travel mode choice
decision boundaries p(y|x) are typically used both in comparative studies [7,10]
and surveys of machine learning for TMC modelling [11].

Apart from batch methods, online incremental learning methods have been
developed as well, which are also suitable for learning in non-stationary envi-
ronments [4]. Notable methods include adaptive random forest [8], which builds
upon the random forest method to enable learning from non-stationary data
streams. This way, real concept drift [4], i.e., a change in p(y|x), can be ad-
dressed by changing the ensemble members. In the case of adaptive random
forest, ensemble members can be replaced with new base learners better match-
ing shifted class boundaries p(y|x). Frequently, the evaluation of online models
relies on first making prediction ŷ = hi(xi) with the current model hi to use the
instance to get a new, possibly different model hi+1 = learn(hi, {xi, yi}) through
incremental training. This approach is referred to as test-then-train [3, 8]. This
illustrates the fact that incremental learning methods respecting stream mining
assumptions are constrained by the fact that they can inspect each example at
most once [3]. This may result in models of a lower performance than the models
built within a batch process relying on the access to the entire data set and the
ability to iteratively revisit all instances during the training.

As traditional ML models deployed in production settings might experience
performance degradation over time, their application to evolving and potentially
infinite data streams called for a new approach. Hence, when Machine Learning
solutions are used in IT systems, a growing emphasis on the Machine Learning
Operations (MLOps) process is observed. MLOps focuses on addressing data
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changes through Continuous Monitoring and Continuous Training steps, ensur-
ing models adapt to data and concept shifts to maintain performance [16]. There
are multiple methods for concept drift detection, mainly focusing on monitoring
data distribution [3]. Similarly, the adaptation of batch models can be performed
in a number of ways, such as retraining from scratch on all available data [18]
or just the latest instance window.

The combination of online and batch learning methods has been considered
before. In [9], neural model training and incremental training of an online learner
was proposed in the form of a hybrid model that switches between the multilayer
perceptron and stream mining models based on their recent accuracy over a slid-
ing window. In [14], the authors combined initially trained batch models (e.g.
decision trees) and gradually converted them into online models. This approach
leverages the simultaneous predictions from both online and batch members.
However, this approach does not involve concept drift detection or model adap-
tation. Instead, it adds new batch learners built on recent instances over time.

Hence, the question arises of how to build TMC classifiers, while considering
concept drift of unknown magnitude. Importantly, not only human preferences
towards different modes can change with time (e.g. depend on the time of the
year) causing p(y|x) changes, but also p(x) clearly changes. Examples include
travel to schools less likely to happen during school holidays.

3 Ensemble of Batch and Online Learners

The method proposed in this work relies on learning an ensemble of base models
including both batch and online models to respond to possible virtual drift, i.e.,
changes in p(x), and real drift i.e., changes in p(y|x). To evaluate the IEBSM
ensembles as well as reference online and batch methods, the test-then-train
approach is applied. Online learners are trained the same way and with the same
data stream irrespective of whether they are evaluated as standalone reference
learners or participate in the ensemble. Similarly, batch learners are retrained
in line with Alg. 1 described below, both when they are evaluated as reference
methods and when they are a part of an ensemble.

3.1 Training of online and batch learners with TMC data streams

For online learning algorithms, the learners are provided with new labelled ex-
amples and updated incrementally, as defined in the test-then-train approach.
In the case of batch learning algorithms, newly arriving {xi, yi} instances are
placed in the cache of the most recent instances. Then, drift detectors assess the
cache to identify concept drift following the predefined drift handling strategy.
If a drift is detected, the batch model undergoes retraining, using data from
the cache under the chosen retraining strategy. Subsequently, the newly trained
model and the previous model are evaluated on the successive ncomp instances.
If the retrained model demonstrates superior performance compared to the old
model, it replaces the previous model in use. This illustrates the challenge of
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batch learning adapted to an online setting, i.e., its dependence on hyperparam-
eters such as ncomp. The batch learning models are trained for the first time using
the initial nfirst fit instances. Prior to the collection of all these instances, a ma-
jority class model generates prediction output as the label of the class that has
been observed most frequently up to that point. In this way, batch and stream
models can be evaluated with the same instances {xi, yi}, i = 1, . . . irrespective
of the duration of the warm-up period of nfirst fit instances.

In our approach, the monitoring strategies used to detect drift rely on the
analysis of the most recent instances. To achieve this, we partition these instances
into two equal batches of s instances i.e., the reference batch and the current
batch. Every s instances, we then compare the distributions of these two batches
by applying statistical tests. A test is applied to each feature separately to detect
possible changes in the distribution of the values of j-th feature xj and label y.
We associate a threshold θ with those tests, the interpretation of which varies
depending on the drift detection method. As the tests to be applied depend on
feature types, we discuss them in detail in Sect. 4. Besides testing for changes
in the input feature/target distribution, we utilise detection techniques that
monitor the performance of a model. A performance drop, defined as the F1

macro score on the current batch falling below α of the F1 macro score on a
reference batch, suggests a concept drift. To initiate retraining, at least one drift
detection method identifying a change in the data distribution of some feature
or a change in model performance must detect a concept drift.

3.2 Building an ensemble of batch and online learners

As defined in Alg. 1, we propose an ensemble-based method that aims to max-
imise the performance of travel mode choice predictions by combining predictions
of both batch and online learners. The method builds an ensemble of N base
learners, some of which can be online learners such as adaptive random forest [8],
while the remaining ones can be batch learners. In line with the test-then-train
approach, for every new instance, each base learners generates a prediction first.
In the case of batch models, we propose to rely on majority class prediction prior
to the collection of a sufficiently large training data set.

The IEBSM ensemble generates the ultimate prediction by aggregating the
outputs from all member models, as shown in lines 16-22 of Alg 1. We propose two
approaches for combining predictions. In both approaches, we record the value of
a performance measure such as F1 for every ensemble member in the prequential
approach, i.e., over a sliding window of instances. Under the Weighted Vot-
ing (WV) approach we combine predictions using weights wi assigned to each
member mi of ensemble M according to their recent performance calculated on
the sliding window of instances. In the case of the Dynamic Switching (DS)
approach, the final prediction of the ensemble is the prediction from the recently
top-performing ensemble member. This corresponds to assigning wi = 1 to the
best model mi, and wj = 0, j ̸= i otherwise.

Next the training of base learners is considered. In the case of online learners,
they are simply provided with the new instance (xi, yi), which may trigger up-
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dates of a model m. In the case of batch learners, first a cache of recent instances
is updated. This is to store data to be used for potential retraining of a batch
model based on a recent data set. Next, drift handling strategy S(m) is used to
define the way drift detection is performed, e.g. whether it is focused on virtual
drift only and/or the performance of model m, and how sensitive drift detec-
tion is, which is defined by the settings of statistical tests. This illustrates the
complexity of using batch learners in the case of concept drifting data streams.

In case a drift is detected, a new model is developed and stored as a shadow
model to potentially replace the original one. This happens once its performance
is found to be actually superior to the performance of the original model. Hence,
in line 33, the new pair of true and predicted labels is used to update the per-
formance of the shadow model m.shadow model, if any, and compare it to the
performance of the original model m and decide whether it should replace the
model m or not. In this way, drift detection is combined with the checking of the
performance of a newly developed shadow model over a window of new instances
not used to train it.

4 Results

4.1 Data streams and libraries

The experiments performed with online, batch, and combined methods were
assessed on real travel mode data streams, with the overview provided in Table 1.
The datasets vary in the number of features, classes, i.e., travel modes, and
instances. Each instance corresponds to an actual trip reported by a survey
participant, with the employed travel mode designated as the target variable.
For a more comprehensive description of data stream preparation, please refer
to the supplementary material, where additional description is provided.

To implement the proposed methods and the evaluation framework, we used
the library River [13] (online learning methods), and the LightGBM package (the
LGBM classifier). For the batch learning methods, except for LGBM, the scikit-
learn library was used, while the concept drift detection implementation relied
on the EvidentlyAI [1].

4.2 Experiments

We conducted a series of experiments for each data stream, which included
online learning experiments, batch learning experiments, and experiments using
the IEBSM method. The precise configurations of online and batch learning
methods are detailed in the supplementary material accompanying this work.

For online learning, we employed the Hoeffding Adaptive Tree (HAT), Adap-
tive Random Forest (ARF), Streaming Random Patches (SRP), Online Gaussian
Naive Bayes ((O)NB), and Online Logistic Regression ((O)LR) algorithms. The
batch learning experiments made use of the Logistic Regression (LR) (with prior
standardization of the training batch), Gaussian Naive Bayes (NB), Decision
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Input: {x1, y2}, . . . , {xi, yi}, . . . - a labelled data stream, c - a method combining
predictions of members, e - a method evaluating members,
S = {S1, . . . , SK}, K ≤ N - a set of drift handling strategies (one per each batch
base learner), each defined by a vector of hyperparameter values controlling the
way drift is detected and a batch model retrained

Data: M = {m1, . . . ,mN} - an ensemble of base learners
1 foreach {xi, yi} ∈ data stream do

2 Ŷi ← [], scoresi ← []
3 foreach m ∈M do
4 if m.type == batch and i <= nfirst fit then

5 Ŷi[m]← get majority class(m.cache)
6 if i == nfirst fit then
7 m = m.first fit()
8 end

9 end
10 else

11 Ŷi[m]← m.predict(xi)
12 end

13 e.update model score(yi, Ŷi[m])

14 end
15 if c == DS then
16 weigths← zeros(len(members))
17 weights[argmax(scoresi)]← 1

18 end
19 if c == WV then
20 weights← (scoresi/sum(scoresi))
21 end

22 ŷi ← argmaxc∈classes{Σmlen−1

j←0,Ŷi[j]==c
weights[j]}

23 foreach m ∈M do
24 if m.type == online then
25 m = m.update model(xi, yi)
26 end
27 if m.type == batch then
28 m.update cache(xi, yi)
29 if m.has concept drift occurred(S(m)) then
30 m.shadow model← train on cached instances(m,S(m))
31 end

32 m← evaluate shadow model(m,m.shadow model, xi, yi, Ŷi[m])

33 end

34 end
35 update performance metrics(yi, ŷi)

36 end

Algorithm 1: Training and evaluation of IEBSM models.

Tree Classifier (DT), LGBM, and Random Forest (RF) algorithms. Further-
more, we applied each batch learning algorithm to the data streams using three
distinct drift handling strategies:

– S1: Basic drift detection of changes in input features, target and model per-
formance drift with θ = 0.03, s = 10, 000, α = 0.2

– S2: Performance drift detection only with s = 10, 000, α = 0.2
– S3: Frequent drift detection of changes in input features, target and model

performance with θ = 0.02, s = 5, 000, α = 0.2, i.e., relying on smaller
windows of 5, 000 instances than in S1.

Batch experiments were equivalent to running Alg. 1 with one batch base learner
and its drift handling strategy. We have chosen the values for the hyperparame-
ters θ and s through preliminary tests aimed at determining the values resulting
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Table 1. The summary of data streams

Data stream Instances Features Classes Description

Ohio (OHI) 122,331 156 12 2001-2003 Ohio survey [15]

London (LON) 81,086 41 4 London Travel Demand Survey [12]

Optima (OPT) 2,265 497 4 Suiss survey data [2]

NTS 230,608 17 4 Dutch National Travel Survey with envi-
ronment and weather features [7, 10]

N-MW 144,905 2,571 21 The National Household Travel
N-NE 145,564 2,437 21 Survey (NHTS) conducted in
N-SE 209,485 2,586 21 2016 and 2017 [17], divided
N-SW 190,279 2,505 21 into five regions of the US
N-W 233,323 2,553 21

in possibly high performance of the models. In the batch-learning experiments,
we employed a retraining strategy, which involved training a new model using
all historical instances that arrived after the last model replacement. After each
retraining, we assessed the performance of a shadow model relative to the old
one, over the following ncomp = 500 instances. Depending on their performance,
we would replace the old model with the new one. The first training took place
after the initial nfirst fit = 2500 examples.

Moreover, we conducted baseline experiments in which we trained each batch
algorithm on the initial 2,500 instances (strategy B1) and subsequently used
that model for predictions on the remaining data stream. We also repeated the
baseline experiments using an initial training set of 25,000 instances (strategy
B2) for a more comprehensive analysis.

Finally, in the experiments including batch models and involving drift detec-
tion and model adaptation we dynamically selected a specific statistical test
based on the input feature/target column. For numerical columns with the
number of unique values n unique > 5 we used Wasserstein Distance when
s > 1, 000; and two-sample Kolmogorov-Smirnov test otherwise. For categorical
columns or numerical (with 2 < n unique <= 5), Jensen–Shannon divergence
when s > 1, 000; or chi-squared test were used otherwise. Finally, for binary
categorical features (n unique = 2): Jensen–Shannon divergence was used when
s > 1, 000; and proportion difference test for independent samples based on
Z-score otherwise.

Combining online and batch learning with the IEBSM method The
experiments using IEBSM included an ensemble of four instances of the same
batch learning classifier, each utilizing a distinct drift handling (DH) strategy,
along with three online learning classifiers: (O)NB, HAT, and ARF. We tested
the LGBM and RF as the batch learning algorithms. We employed a single
batch learning algorithm for all batch members within each IEBSM experiment
to reduce variation arising from diverse algorithms. This allowed us to single out
the impact of distinct drift handling strategies, namely:
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– S4: investigating changes in input features, target, and model performance
with θ = 0.02, s = 2, 500, α = 0.2

– S5: investigating changes in model performance only with s = 2, 500, α = 0.2
– S6: investigating changes in input features, target, and model performance

with θ = 0.03, s = 10, 000, α = 0.2
– S7: investigating changes in input features, target, and model performance

with θ = 0.02, s = 10, 000, α = 0.2

In the S5 and S7 settings, the retraining batch corresponds to the window of
last s instances. In contrast, for S4 and S6, all instances since the last model re-
placement are considered for retraining. The other hyperparameter values (e.g.,
nfirst fit, ncomp) were the same as in the single online/batch learning experi-
ments. The seven ensemble members described above were combined using two
methods c outlined in Section 3.2.

After conducting experiments, it became evident that online learning meth-
ods exhibited significantly inferior performance compared to batch learning meth-
ods. To demonstrate the effect of model combination with the IEBSM method
and eliminate the impact of under-performing online models, we conducted addi-
tional IEBSM experiments: DS-BATCH and WV-BATCH experiments utilizing
only LGBM S4, S5, S6, and S7 models. Moreover, we performed DS-ONLINE
and WV-ONLINE experiments combining HAT, ARF, and (O)NB models solely.
For the nine data streams, we calculated each method’s average ranking position
based on the value of F1 macro score. Table 2 shows the obtained results for the
selected experiments (all experiment results are provided in the supplementary
material).

4.3 Discussion

It follows from Table 2 that batch-learning experiments RF-S3 and LGBM-
S3 employing DH strategies to possibly adapt batch models, outperformed the
baseline experiments RF-B* and LGBM-B* in which RF and LGBM models
trained once on initial batch of data were used next to predict travel modes for all
the remaining instances (B1 and B2 strategies, sample results in Table 2 provided
inter alia for RF as RF-B1 results). This finding demonstrates that implementing
the aforementioned DH strategies significantly benefits batch-learning models
when faced with travel mode choice data. Among different ways the RF and
LGBM models can be updated, strategy S3 stood out as the most effective.

Surprisingly, the online learning methods yielded the poorest performance re-
sults, as illustrated by the SRP results. One potential explanation could be the
abundance of features in our data streams, among which many might be irrele-
vant. The SRP classifier emerged as the most effective online learning method,
albeit with the trade-off of longer execution times.

The use of IEBSM, evaluated in the DS-* and WV-* experiments, enhanced
performance compared to individual batch and online model setups, and pro-
vided the best overall results. This combination successfully mitigated the chal-
lenges caused by the need to choose online and batch learning methods. More-
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Table 2. Ranks of selected methods across all streams and F1 macro score for each
data stream. Data streams were arranged in order based on the increasing number
of features. A ranking score combined with the corresponding position in the overall
ranking (in brackets). † - For the OPT data stream, hyperparameters values set to
s = 100 and s = 250 (instead of 2,500 and 10,000), nfirst fit = 150, and ncomp = 50.
For N-* data streams, the input feature drift detection disabled in DH strategies S1,
S3, S4, S6, S7 due to the performance issues caused by a large number of features.

Method Rank Data stream
(pos.) NTS LON OHI OPT† N-NE N-SW N-W N-MW N-SE

DS-RF 4.33(1) 0.532 0.544 0.206 0.393 0.464 0.464 0.453 0.476 0.453
WV-RF 5.78(2) 0.534 0.546 0.197 0.362 0.460 0.460 0.435 0.458 0.456

DS-LGBM 7.78(3) 0.540 0.549 0.224 0.436 0.377 0.358 0.320 0.368 0.316
RF-S3 8.11(4) 0.520 0.530 0.205 0.382 0.414 0.421 0.417 0.403 0.428

DS-BATCH 8.44(5) 0.541 0.538 0.224 0.446 0.379 0.357 0.320 0.365 0.314
WV-LGBM 9.00(6) 0.542 0.546 0.215 0.438 0.359 0.357 0.306 0.352 0.316
WV-BATCH 10.83(12) 0.539 0.531 0.216 0.459 0.358 0.356 0.307 0.349 0.314
LGBM-S3 12.39(13) 0.530 0.533 0.213 0.453 0.358 0.339 0.302 0.349 0.314
LGBM-B1 18.61(19) 0.355 0.512 0.213 0.307 0.358 0.339 0.302 0.349 0.314
RF-B2 23.11(23) 0.486 0.426 0.196 0.274 0.279 0.229 0.197 0.232 0.220

LGBM-B2 25.00(24) 0.506 0.433 0.162 0.299 0.167 0.179 0.183 0.118 0.142
WV-ONLINE 25.44(26) 0.481 0.504 0.166 0.338 0.077 0.071 0.066 0.081 0.069

SRP 26.22(27) 0.375 0.430 0.177 0.234 0.231 0.161 0.210 0.210 0.195
RF-B1 26.33(28) 0.356 0.516 0.164 0.199 0.253 0.211 0.146 0.189 0.167

DS-ONLINE 26.78(29) 0.375 0.432 0.162 0.312 0.084 0.080 0.074 0.090 0.078

over, utilising multiple batch members with varied DH strategies and varied hy-
perparameters in turn reduced the need to pre-select the optimal strategy. While
the Random Forest algorithm used to develop batch ensemble members yielded
superior results, as shown by the DS-RF outcome, the DS-LGBM demonstrated
faster operation despite the inferior performance.

Interestingly, the IEBSM ensembles comprised solely of batch-learning LGBM
classifiers ([DS/WV]-BATCH) resulted in a worse global rank than the corre-
sponding experiments that combined both LGBM and online classifiers ([DS/WV]-
LGBM). These findings underscore that, even in cases where online learning
demonstrates suboptimal performance, IEBSM ensembles can benefit from the
diversity their members offer. Similarly, when using combining ensembles solely
with online learners ([DS/WV]-ONLINE), a notable enhancement in perfor-
mance, compared to the performance of the experiments utilizing single instances
of HAT, ARF, and O(NB), was observed.

Finally, the role of drift detections and shadow models in the IEBSM ap-
proach can be analyzed. Fig. 1 presents the total number of drift detections and
actual model replacements for all batch members for the highest-ranked method,
i.e., the IEBSM-based DS-RF 2 ensemble, which notably included both online
and random forest models. It follows from the figure, that detections of statisti-

2 Due to the extensive number of experiments conducted, detailed results for all ex-
periments are provided in the supplementary materials.
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Fig. 1. The number of drift detections and model replacements. DS-RF experiments.

cally significant changes in data have occurred in all data streams. These were
followed by the replacement of batch models. Hence, the shadow models built
with more recent data were found to be superior to the original models they
replaced. Newly developed models were only in some cases found to yield better
performance, as the drift count significantly exceeds the actual model replace-
ment count. This confirms that both detection and the evaluation of shadow
models are vital components of the highest-ranked approach to building TMC
models i.e., the DS-RF approach.

5 Conclusions

In the prevailing majority of cases, modelling of travel mode choices is performed
with batch learning methods. However, factors such as seasonality suggest that
when predicting TMC decisions incorporating concept drift detection and adap-
tation could be justified. On the other hand, change detection could occur too
frequently and reduce the potential of newly developed models in turn. A possi-
ble solution to the problem can rely on the use of both online and batch learners.
Our experiments performed with multiple travel mode choice data sets confirm
the need for continuous monitoring and retraining of TMC models. Combining
batch and online learning clearly yields improved performance of the models. Fur-
thermore, the IEBSM method eases the challenge of choosing a learning method
and drift detection settings by employing multiple base members including both
online and batch learners with different drift handling strategies. This resulted
in the best rank of the IEBSM approach.

Future works entail exploring various combining approaches, such as different
ways of assigning member weights. Furthermore, travel mode choice data sets
can be used to foster the development of future stream mining methods.
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Supplement to the article: Hybrid Ensemble-Based Travel Mode Prediction

1 Global ranking
Table 1 illustrates the comprehensive ranking of methods. Across the 9 data streams, all 38 methods were organized based on their F1 macro scores in descending
order. Subsequently, we computed the Ranking score for each method by computing their average ranking position across these nine rankings. The ultimate Ranking
position represents the sequential number of these averages, sorted from the smallest to the nearest value.
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Table 1: Table with the global ranking of used methods

Ranking position Method abbr. Ranking score Ranking position Method abbr. Ranking score

1 DS-RF 4.33 20 DT B2 19.56
2 WV-RF 5.78 21 DT B1 21.67
3 DS-LGBM 7.78 22 LR B2 22.11
4 RF S3 8.11 23 RF B2 23.11
5 DS-BATCH 8.44 24 LGBM B2 25.00
6 WV-LGBM 9.00 25 LR B1 25.11
7 RF S1 9.00 26 WV-ONLINE 25.44
8 LR S3 9.78 27 SRP 26.22
9 DT S1 9.83 28 RF B1 26.33
10 DT S3 10.28 29 DS-ONLINE 26.78
11 LR S1 10.33 30 NB S1 30.44
12 WV-BATCH 10.83 31 HAT 30.78
13 LGBM S3 12.39 32 NB S3 31.22
14 LGBM S1 12.56 33 NB B2 31.78
15 RF S2 13.06 34 ARF 32.00
16 LGBM S2 13.28 35 NB S2 32.50
17 LR S2 14.00 36 NB B1 34.39
18 DT S2 16.39 37 ONB 35.56
19 LGBM B1 18.61 38 OLR 37.22
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2 Data stream preparation
If any of the nine data streams included variables related to the date and time of the journey, the instances were arranged chronologically. In each original data stream,
we removed variables that might lead to knowledge leakage and conducted one-hot encoding for categorical variables. The datasets had minimal missing values, and
for categorical variables, we converted these to a category indicating ’Don’t know / Refuse to answer’. Numerical missing values were replaced with the mode value
computed across the entire dataset. Instances with missing target values were excluded.

3 Online and batch learning models configuration
All batch learning models were initialized with their default hyperparameter values, except for setting the random_seed to 42 where applicable. Within Listings 1 to
5, you’ll find code snippets that define online learning models using the River library.
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1 from river.linear_model import LogisticRegression as LROnline
2 from river import compose
3 from river.preprocessing import StandardScaler
4 from river import optim
5

6 lr_online = compose.Pipeline(
7 StandardScaler(
8 with_std=True
9 ),

10 LROnline(
11 optimizer=optim.SGD(
12 lr =0.005
13 ),
14 loss=optim.losses.Log(
15 weight_pos =1.,
16 weight_neg =1.
17 ),
18 l2=1.0,
19 l1=0.,
20 intercept_init =0.,
21 intercept_lr =0.01 ,
22 clip_gradient =1e+12,
23 initializer=optim.initializers.Zeros()
24 )
25 )

Listing 1: Online Logistic Regression (OLR) model definition

1 from river import forest
2

3 arf = forest.ARFClassifier(seed=42, leaf_prediction="mc")

Listing 2: Adaptive Random Forest (ARF) model definition
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1 from river.tree import HoeffdingAdaptiveTreeClassifier
2

3 hat = HoeffdingAdaptiveTreeClassifier(
4 grace_period =100,
5 delta =0.01,
6 leaf_prediction=’nb’,
7 nb_threshold =10,
8 seed =42
9 )

Listing 3: Hoeffding Adaptive Tree (HAT) model definition

1 from river.tree import HoeffdingTreeClassifier
2 from river import ensemble
3

4 base_model = HoeffdingTreeClassifier(grace_period =100, delta =0.01)
5 srp_model = ensemble.SRPClassifier(model=base_model , n_models=3, seed =42)

Listing 4: Streaming Random Patches (SRP) model definition
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1 from river.naive_bayes import GaussianNB as GNBOnline
2

3 nb_online = GNBOnline ()

Listing 5: Online Gaussian Naive Bayes (ONB) model definition

6



4 Detailed results
Within Table 2, you’ll find a comprehensive breakdown of experiment outcomes across various data streams. The rows are arranged based on both the data stream
and F1 macro score. For ensembles, the presented drift/replacement values represent the aggregated sum across all ensemble members. Additionally, with respect to
both online and baseline methods, the count of drifts and replacements is zero since these methods do not utilize our monitoring and retraining strategies. Figure 1
presents the F1 macro score values for selected methods on all data streams. The data streams were arranged in order based on the increasing number of features.
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Table 2: Table with detailed results for all experiments

Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
0 London 3 DS-LGBM 0.5492 0.7347 0.5830 45.0 17.0 1083.41
1 London 6 WV-LGBM 0.5464 0.7339 0.5838 45.0 17.0 1045.94
2 London 2 WV-RF 0.5455 0.7317 0.5804 54.0 20.0 5789.70
3 London 1 DS-RF 0.5445 0.7331 0.5795 54.0 20.0 5778.41
4 London 5 DS-BATCH 0.5378 0.7198 0.5633 22.0 11.0 583.30
5 London 14 LGBM S1 0.5332 0.7157 0.5580 15.0 8.0 143.40
6 London 13 LGBM S3 0.5331 0.7180 0.5606 6.0 2.0 125.21
7 London 16 LGBM S2 0.5324 0.7144 0.5552 1.0 1.0 100.41
8 London 12 WV-BATCH 0.5306 0.7151 0.5561 22.0 11.0 499.85
9 London 4 RF S3 0.5303 0.7156 0.5578 6.0 1.0 1608.12
10 London 11 LR S1 0.5299 0.6943 0.5312 14.0 9.0 149.13
11 London 7 RF S1 0.5281 0.7137 0.5532 14.0 9.0 1579.17
12 London 8 LR S3 0.5274 0.7065 0.5446 8.0 2.0 158.33
13 London 17 LR S2 0.5163 0.6811 0.5124 1.0 1.0 84.32
14 London 15 RF S2 0.5163 0.6951 0.5295 0.0 0.0 1458.65
15 London 28 RF B1 0.5163 0.6951 0.5295 0.0 0.0 1231.51
16 London 25 LR B1 0.5160 0.6808 0.5119 0.0 0.0 51.99
17 London 19 LGBM B1 0.5118 0.6921 0.5217 0.0 0.0 1278.48
18 London 26 WV-ONLINE 0.5042 0.6584 0.4892 0.0 0.0 536.18
19 London 10 DT S3 0.4534 0.5853 0.3696 6.0 5.0 98.58
20 London 9 DT S1 0.4534 0.5858 0.3708 14.0 5.0 89.98
21 London 21 DT B1 0.4429 0.5645 0.3440 0.0 0.0 38.39
22 London 18 DT S2 0.4411 0.5650 0.3425 0.0 0.0 53.19

8



Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
23 London 24 LGBM B2 0.4333 0.5718 0.3819 0.0 0.0 1102.58
24 London 34 ARF 0.4319 0.7292 0.5698 0.0 0.0 383.62
25 London 29 DS-ONLINE 0.4317 0.7278 0.5685 0.0 0.0 587.02
26 London 27 SRP 0.4304 0.7092 0.5424 0.0 0.0 899.10
27 London 30 NB S1 0.4292 0.5202 0.3408 14.0 7.0 109.38
28 London 23 RF B2 0.4264 0.5672 0.3748 0.0 0.0 1072.53
29 London 22 LR B2 0.4248 0.5646 0.3717 0.0 0.0 49.88
30 London 32 NB S3 0.4236 0.5125 0.3323 6.0 4.0 132.09
31 London 35 NB S2 0.4194 0.5110 0.3305 0.0 0.0 78.13
32 London 36 NB B1 0.4194 0.5110 0.3305 0.0 0.0 52.06
33 London 20 DT B2 0.3840 0.4856 0.2695 0.0 0.0 37.40
34 London 37 ONB 0.3545 0.5518 0.3650 0.0 0.0 125.82
35 London 33 NB B2 0.3523 0.4226 0.2356 0.0 0.0 49.99
36 London 31 HAT 0.3385 0.5092 0.3168 0.0 0.0 319.72
37 London 38 OLR 0.0208 0.0319 0.0020 0.0 0.0 54.64

38 NHTS-MW 1 DS-RF 0.4760 0.7497 0.6402 107.0 59.0 84720.46
39 NHTS-MW 2 WV-RF 0.4577 0.7435 0.6284 107.0 59.0 67835.22
40 NHTS-MW 7 RF S1 0.4424 0.7299 0.6133 34.0 16.0 3796.36
41 NHTS-MW 8 LR S3 0.4237 0.5872 0.4435 11.0 10.0 1089.48
42 NHTS-MW 11 LR S1 0.4161 0.6145 0.4713 31.0 19.0 1420.77
43 NHTS-MW 9 DT S1 0.4105 0.7464 0.6559 32.0 20.0 601.91
44 NHTS-MW 10 DT S3 0.4036 0.7330 0.6374 11.0 9.0 281.73
45 NHTS-MW 15 RF S2 0.4027 0.7137 0.5873 10.0 9.0 3312.46
46 NHTS-MW 4 RF S3 0.4027 0.7137 0.5873 12.0 9.0 2548.20
47 NHTS-MW 17 LR S2 0.3858 0.5747 0.4308 7.0 7.0 818.72
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
48 NHTS-MW 3 DS-LGBM 0.3679 0.7605 0.6610 48.0 1.0 65638.91
49 NHTS-MW 5 DS-BATCH 0.3651 0.7533 0.6536 58.0 1.0 8220.94
50 NHTS-MW 6 WV-LGBM 0.3524 0.7537 0.6507 48.0 1.0 71879.20
51 NHTS-MW 16 LGBM S2 0.3487 0.7465 0.6433 2.0 0.0 585.15
52 NHTS-MW 14 LGBM S1 0.3487 0.7465 0.6433 17.0 0.0 2337.83
53 NHTS-MW 13 LGBM S3 0.3487 0.7465 0.6433 4.0 0.0 655.64
54 NHTS-MW 12 WV-BATCH 0.3487 0.7465 0.6433 58.0 1.0 8219.19
55 NHTS-MW 19 LGBM B1 0.3487 0.7465 0.6433 0.0 0.0 3390.72
56 NHTS-MW 20 DT B2 0.3255 0.6127 0.4939 0.0 0.0 233.86
57 NHTS-MW 21 DT B1 0.2952 0.6805 0.5657 0.0 0.0 329.61
58 NHTS-MW 18 DT S2 0.2948 0.6627 0.5416 0.0 0.0 203.15
59 NHTS-MW 22 LR B2 0.2719 0.3981 0.2659 0.0 0.0 717.05
60 NHTS-MW 23 RF B2 0.2320 0.5948 0.4415 0.0 0.0 2476.18
61 NHTS-MW 27 SRP 0.2097 0.7014 0.5672 0.0 0.0 70330.61
62 NHTS-MW 25 LR B1 0.2092 0.3503 0.2077 0.0 0.0 633.07
63 NHTS-MW 28 RF B1 0.1886 0.6073 0.4082 0.0 0.0 3061.13
64 NHTS-MW 24 LGBM B2 0.1177 0.3566 0.1949 0.0 0.0 2794.48
65 NHTS-MW 29 DS-ONLINE 0.0901 0.3852 0.1730 0.0 0.0 83130.95
66 NHTS-MW 31 HAT 0.0835 0.3012 0.1508 0.0 0.0 36687.71
67 NHTS-MW 26 WV-ONLINE 0.0814 0.4320 0.1386 0.0 0.0 84483.09
68 NHTS-MW 33 NB B2 0.0675 0.0947 0.0208 0.0 0.0 1076.56
69 NHTS-MW 35 NB S2 0.0611 0.1259 0.0301 3.0 0.0 918.80
70 NHTS-MW 32 NB S3 0.0611 0.1259 0.0301 5.0 0.0 1220.80
71 NHTS-MW 36 NB B1 0.0611 0.1259 0.0301 0.0 0.0 681.23
72 NHTS-MW 34 ARF 0.0561 0.4690 0.1121 0.0 0.0 2560.09
73 NHTS-MW 30 NB S1 0.0500 0.0999 0.0281 34.0 12.0 1357.63
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
74 NHTS-MW 37 ONB 0.0267 0.4159 -0.0000 0.0 0.0 23804.50
75 NHTS-MW 38 OLR 0.0128 0.0233 0.0107 0.0 0.0 1773.06

76 NHTS-NE 1 DS-RF 0.4641 0.7792 0.6832 112.0 59.0 87765.85
77 NHTS-NE 2 WV-RF 0.4599 0.7767 0.6777 112.0 59.0 87051.09
78 NHTS-NE 9 DT S1 0.4357 0.7775 0.6969 38.0 17.0 307.42
79 NHTS-NE 7 RF S1 0.4251 0.7543 0.6476 41.0 20.0 2732.06
80 NHTS-NE 11 LR S1 0.4207 0.6539 0.5242 37.0 18.0 669.07
81 NHTS-NE 10 DT S3 0.4162 0.7609 0.6738 16.0 8.0 290.92
82 NHTS-NE 4 RF S3 0.4142 0.7555 0.6488 16.0 9.0 2528.74
83 NHTS-NE 20 DT B2 0.4021 0.6584 0.5486 0.0 0.0 251.94
84 NHTS-NE 5 DS-BATCH 0.3787 0.7813 0.6948 64.0 2.0 7595.85
85 NHTS-NE 3 DS-LGBM 0.3770 0.7851 0.6982 53.0 2.0 65082.30
86 NHTS-NE 17 LR S2 0.3759 0.6412 0.5009 10.0 6.0 437.09
87 NHTS-NE 8 LR S3 0.3750 0.6415 0.5058 18.0 7.0 619.50
88 NHTS-NE 6 WV-LGBM 0.3588 0.7791 0.6888 53.0 2.0 61123.38
89 NHTS-NE 16 LGBM S2 0.3580 0.7750 0.6850 1.0 0.0 1388.38
90 NHTS-NE 14 LGBM S1 0.3580 0.7750 0.6850 27.0 0.0 3097.06
91 NHTS-NE 13 LGBM S3 0.3580 0.7750 0.6850 9.0 0.0 1126.49
92 NHTS-NE 12 WV-BATCH 0.3580 0.7750 0.6850 64.0 2.0 6545.09
93 NHTS-NE 19 LGBM B1 0.3580 0.7750 0.6850 0.0 0.0 3383.84
94 NHTS-NE 15 RF S2 0.3252 0.7225 0.5976 4.0 4.0 2353.08
95 NHTS-NE 18 DT S2 0.3092 0.7174 0.6153 0.0 0.0 141.83
96 NHTS-NE 21 DT B1 0.3089 0.7089 0.6031 0.0 0.0 345.22
97 NHTS-NE 23 RF B2 0.2787 0.6444 0.5067 0.0 0.0 2502.35
98 NHTS-NE 22 LR B2 0.2683 0.4299 0.2942 0.0 0.0 808.16
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
99 NHTS-NE 28 RF B1 0.2528 0.6730 0.5200 0.0 0.0 3169.13
100 NHTS-NE 27 SRP 0.2313 0.7322 0.6144 0.0 0.0 55738.82
101 NHTS-NE 25 LR B1 0.2028 0.4620 0.3152 0.0 0.0 714.31
102 NHTS-NE 24 LGBM B2 0.1666 0.5065 0.3584 0.0 0.0 3561.00
103 NHTS-NE 29 DS-ONLINE 0.0845 0.4079 0.1869 0.0 0.0 78882.46
104 NHTS-NE 31 HAT 0.0829 0.3189 0.1707 0.0 0.0 30021.90
105 NHTS-NE 26 WV-ONLINE 0.0772 0.4524 0.1551 0.0 0.0 76859.47
106 NHTS-NE 33 NB B2 0.0668 0.0839 0.0149 0.0 0.0 960.97
107 NHTS-NE 32 NB S3 0.0655 0.0867 0.0261 15.0 5.0 513.10
108 NHTS-NE 34 ARF 0.0614 0.4816 0.1269 0.0 0.0 1463.03
109 NHTS-NE 30 NB S1 0.0589 0.0866 0.0285 43.0 14.0 523.56
110 NHTS-NE 35 NB S2 0.0511 0.0811 0.0247 5.0 0.0 1560.00
111 NHTS-NE 36 NB B1 0.0511 0.0811 0.0247 0.0 0.0 788.83
112 NHTS-NE 37 ONB 0.0272 0.4279 -0.0000 0.0 0.0 23059.12
113 NHTS-NE 38 OLR 0.0117 0.0250 0.0135 0.0 0.0 1619.25

114 NHTS-SE 2 WV-RF 0.4557 0.7653 0.6543 168.0 85.0 118115.13
115 NHTS-SE 1 DS-RF 0.4530 0.7662 0.6586 168.0 85.0 118014.45
116 NHTS-SE 15 RF S2 0.4285 0.7432 0.6233 18.0 16.0 3600.94
117 NHTS-SE 4 RF S3 0.4285 0.7432 0.6233 23.0 16.0 3690.82
118 NHTS-SE 9 DT S1 0.4277 0.7641 0.6738 47.0 24.0 525.47
119 NHTS-SE 18 DT S2 0.4271 0.7564 0.6628 16.0 12.0 366.81
120 NHTS-SE 17 LR S2 0.4208 0.6426 0.4979 12.0 10.0 580.04
121 NHTS-SE 8 LR S3 0.4201 0.6400 0.4972 12.0 10.0 573.24
122 NHTS-SE 7 RF S1 0.4125 0.7389 0.6166 61.0 28.0 4028.50
123 NHTS-SE 10 DT S3 0.4061 0.7446 0.6465 12.0 7.0 427.95
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
124 NHTS-SE 11 LR S1 0.4012 0.6290 0.4866 55.0 28.0 998.26
125 NHTS-SE 6 WV-LGBM 0.3165 0.7544 0.6478 91.0 2.0 108938.05
126 NHTS-SE 3 DS-LGBM 0.3159 0.7522 0.6455 91.0 2.0 119122.05
127 NHTS-SE 20 DT B2 0.3151 0.6398 0.5197 0.0 0.0 591.60
128 NHTS-SE 16 LGBM S2 0.3141 0.7509 0.6446 2.0 0.0 476.56
129 NHTS-SE 13 LGBM S3 0.3141 0.7509 0.6446 7.0 0.0 996.73
130 NHTS-SE 12 WV-BATCH 0.3141 0.7509 0.6446 91.0 2.0 11946.93
131 NHTS-SE 19 LGBM B1 0.3141 0.7509 0.6446 0.0 0.0 4694.60
132 NHTS-SE 5 DS-BATCH 0.3135 0.7501 0.6436 91.0 2.0 11022.63
133 NHTS-SE 22 LR B2 0.2646 0.4001 0.2605 0.0 0.0 1315.21
134 NHTS-SE 21 DT B1 0.2400 0.6682 0.5370 0.0 0.0 315.66
135 NHTS-SE 23 RF B2 0.2200 0.6321 0.4746 0.0 0.0 4485.57
136 NHTS-SE 25 LR B1 0.2093 0.3930 0.2317 0.0 0.0 279.89
137 NHTS-SE 14 LGBM S1 0.2049 0.6460 0.5059 36.0 6.0 1240.84
138 NHTS-SE 27 SRP 0.1947 0.6935 0.5481 0.0 0.0 92934.53
139 NHTS-SE 28 RF B1 0.1670 0.6251 0.4237 0.0 0.0 4228.90
140 NHTS-SE 24 LGBM B2 0.1424 0.4900 0.3432 0.0 0.0 4700.93
141 NHTS-SE 29 DS-ONLINE 0.0775 0.3746 0.1400 0.0 0.0 124328.69
142 NHTS-SE 31 HAT 0.0691 0.2547 0.1085 0.0 0.0 51264.47
143 NHTS-SE 26 WV-ONLINE 0.0686 0.4416 0.1202 0.0 0.0 126428.51
144 NHTS-SE 33 NB B2 0.0675 0.0800 0.0151 0.0 0.0 1280.62
145 NHTS-SE 30 NB S1 0.0603 0.0885 0.0234 63.0 24.0 938.44
146 NHTS-SE 34 ARF 0.0514 0.4801 0.1063 0.0 0.0 2179.29
147 NHTS-SE 32 NB S3 0.0447 0.0763 0.0214 14.0 7.0 802.59
148 NHTS-SE 35 NB S2 0.0433 0.0745 0.0197 9.0 5.0 693.19
149 NHTS-SE 36 NB B1 0.0398 0.1059 0.0226 0.0 0.0 686.33
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
150 NHTS-SE 37 ONB 0.0274 0.4325 -0.0000 0.0 0.0 36869.95
151 NHTS-SE 38 OLR 0.0108 0.0154 0.0083 0.0 0.0 2448.38

152 NHTS-SW 1 DS-RF 0.4643 0.7807 0.6864 151.0 80.0 99704.80
153 NHTS-SW 2 WV-RF 0.4595 0.7790 0.6819 151.0 80.0 102847.74
154 NHTS-SW 4 RF S3 0.4211 0.7587 0.6553 21.0 14.0 3345.15
155 NHTS-SW 8 LR S3 0.4048 0.6290 0.4918 18.0 14.0 608.19
156 NHTS-SW 11 LR S1 0.4021 0.6386 0.5018 47.0 22.0 1398.39
157 NHTS-SW 9 DT S1 0.3939 0.7632 0.6747 54.0 25.0 433.37
158 NHTS-SW 7 RF S1 0.3920 0.7454 0.6343 54.0 26.0 3677.16
159 NHTS-SW 10 DT S3 0.3859 0.7514 0.6591 13.0 8.0 310.39
160 NHTS-SW 18 DT S2 0.3818 0.7484 0.6551 8.0 7.0 242.74
161 NHTS-SW 3 DS-LGBM 0.3584 0.7827 0.6970 93.0 19.0 85107.34
162 NHTS-SW 5 DS-BATCH 0.3574 0.7789 0.6934 93.0 19.0 7613.78
163 NHTS-SW 6 WV-LGBM 0.3568 0.7873 0.7012 93.0 19.0 104524.58
164 NHTS-SW 12 WV-BATCH 0.3557 0.7833 0.6984 93.0 19.0 7228.98
165 NHTS-SW 20 DT B2 0.3469 0.6540 0.5398 0.0 0.0 249.26
166 NHTS-SW 17 LR S2 0.3442 0.6132 0.4684 9.0 7.0 551.88
167 NHTS-SW 16 LGBM S2 0.3391 0.7721 0.6808 1.0 0.0 596.61
168 NHTS-SW 13 LGBM S3 0.3391 0.7721 0.6808 6.0 0.0 928.74
169 NHTS-SW 19 LGBM B1 0.3391 0.7721 0.6808 0.0 0.0 4628.27
170 NHTS-SW 14 LGBM S1 0.3364 0.7710 0.6793 38.0 1.0 5438.19
171 NHTS-SW 15 RF S2 0.2992 0.7069 0.5762 7.0 5.0 3343.71
172 NHTS-SW 22 LR B2 0.2783 0.5194 0.3395 0.0 0.0 1243.45
173 NHTS-SW 21 DT B1 0.2543 0.6982 0.5878 0.0 0.0 524.11
174 NHTS-SW 23 RF B2 0.2289 0.6303 0.4847 0.0 0.0 4704.03
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
175 NHTS-SW 28 RF B1 0.2110 0.6742 0.5250 0.0 0.0 4091.52
176 NHTS-SW 25 LR B1 0.2108 0.4252 0.2500 0.0 0.0 814.19
177 NHTS-SW 24 LGBM B2 0.1787 0.5422 0.3811 0.0 0.0 5410.17
178 NHTS-SW 27 SRP 0.1613 0.6864 0.5467 0.0 0.0 79355.50
179 NHTS-SW 29 DS-ONLINE 0.0803 0.4301 0.1710 0.0 0.0 109513.14
180 NHTS-SW 26 WV-ONLINE 0.0711 0.4591 0.1493 0.0 0.0 109645.59
181 NHTS-SW 31 HAT 0.0637 0.2021 0.0831 0.0 0.0 57760.73
182 NHTS-SW 34 ARF 0.0611 0.4957 0.1767 0.0 0.0 2899.39
183 NHTS-SW 35 NB S2 0.0565 0.0819 0.0279 9.0 4.0 727.22
184 NHTS-SW 30 NB S1 0.0554 0.0750 0.0270 58.0 25.0 691.29
185 NHTS-SW 32 NB S3 0.0534 0.0674 0.0267 17.0 9.0 639.35
186 NHTS-SW 36 NB B1 0.0506 0.0837 0.0285 0.0 0.0 937.72
187 NHTS-SW 33 NB B2 0.0470 0.0571 0.0185 0.0 0.0 704.75
188 NHTS-SW 37 ONB 0.0263 0.4074 -0.0000 0.0 0.0 38147.17
189 NHTS-SW 38 OLR 0.0114 0.0152 0.0083 0.0 0.0 3322.76

190 NHTS-W 10 DT S3 0.4848 0.7722 0.6836 28.0 14.0 566.05
191 NHTS-W 1 DS-RF 0.4532 0.7744 0.6654 187.0 96.0 143264.35
192 NHTS-W 9 DT S1 0.4527 0.7682 0.6780 50.0 25.0 594.09
193 NHTS-W 2 WV-RF 0.4353 0.7687 0.6537 187.0 96.0 141365.07
194 NHTS-W 15 RF S2 0.4173 0.7470 0.6217 20.0 17.0 4178.44
195 NHTS-W 4 RF S3 0.4173 0.7470 0.6217 30.0 17.0 4214.24
196 NHTS-W 11 LR S1 0.4115 0.6556 0.5178 47.0 29.0 897.65
197 NHTS-W 8 LR S3 0.4095 0.6627 0.5189 21.0 12.0 902.13
198 NHTS-W 7 RF S1 0.3808 0.7412 0.6121 66.0 34.0 4245.50
199 NHTS-W 17 LR S2 0.3802 0.6363 0.4906 9.0 6.0 628.01
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
200 NHTS-W 20 DT B2 0.3685 0.6631 0.5399 0.0 0.0 421.93
201 NHTS-W 18 DT S2 0.3432 0.6910 0.5743 0.0 0.0 198.67
202 NHTS-W 21 DT B1 0.3390 0.6877 0.5709 0.0 0.0 559.44
203 NHTS-W 5 DS-BATCH 0.3204 0.7635 0.6590 99.0 8.0 7590.45
204 NHTS-W 3 DS-LGBM 0.3200 0.7661 0.6615 99.0 8.0 123308.00
205 NHTS-W 14 LGBM S1 0.3175 0.7481 0.6406 36.0 4.0 2099.50
206 NHTS-W 12 WV-BATCH 0.3072 0.7589 0.6516 99.0 8.0 8258.08
207 NHTS-W 6 WV-LGBM 0.3064 0.7638 0.6556 99.0 8.0 110823.18
208 NHTS-W 16 LGBM S2 0.3024 0.7546 0.6454 3.0 0.0 976.63
209 NHTS-W 13 LGBM S3 0.3024 0.7546 0.6454 13.0 0.0 2646.26
210 NHTS-W 19 LGBM B1 0.3024 0.7546 0.6454 0.0 0.0 5477.02
211 NHTS-W 22 LR B2 0.2538 0.4007 0.2539 0.0 0.0 953.67
212 NHTS-W 27 SRP 0.2096 0.7146 0.5687 0.0 0.0 96165.77
213 NHTS-W 23 RF B2 0.1970 0.6438 0.4712 0.0 0.0 4565.17
214 NHTS-W 25 LR B1 0.1921 0.4242 0.2373 0.0 0.0 1291.27
215 NHTS-W 24 LGBM B2 0.1831 0.5814 0.4264 0.0 0.0 4757.49
216 NHTS-W 28 RF B1 0.1465 0.6215 0.3937 0.0 0.0 5196.77
217 NHTS-W 29 DS-ONLINE 0.0739 0.3853 0.1586 0.0 0.0 133554.11
218 NHTS-W 33 NB B2 0.0723 0.0575 0.0176 0.0 0.0 885.35
219 NHTS-W 31 HAT 0.0717 0.2745 0.1379 0.0 0.0 52504.42
220 NHTS-W 26 WV-ONLINE 0.0656 0.4623 0.1293 0.0 0.0 131808.03
221 NHTS-W 30 NB S1 0.0605 0.0861 0.0297 64.0 17.0 1177.87
222 NHTS-W 32 NB S3 0.0554 0.0774 0.0256 25.0 11.0 966.08
223 NHTS-W 35 NB S2 0.0552 0.0815 0.0266 13.0 7.0 887.78
224 NHTS-W 36 NB B1 0.0465 0.0752 0.0194 0.0 0.0 662.44
225 NHTS-W 34 ARF 0.0455 0.4828 0.0712 0.0 0.0 2759.94
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
226 NHTS-W 37 ONB 0.0284 0.4553 0.0000 0.0 0.0 33103.23
227 NHTS-W 38 OLR 0.0135 0.0327 0.0150 0.0 0.0 2684.69

228 NTS 6 WV-LGBM 0.5415 0.6787 0.4374 141.0 39.0 2601.83
229 NTS 5 DS-BATCH 0.5412 0.6642 0.4229 57.0 24.0 1314.61
230 NTS 3 DS-LGBM 0.5397 0.6655 0.4257 141.0 39.0 2706.23
231 NTS 12 WV-BATCH 0.5386 0.6658 0.4241 57.0 24.0 1192.17
232 NTS 2 WV-RF 0.5345 0.6782 0.4312 183.0 57.0 16451.08
233 NTS 14 LGBM S1 0.5343 0.6602 0.4141 54.0 16.0 354.19
234 NTS 1 DS-RF 0.5324 0.6673 0.4226 183.0 57.0 16392.98
235 NTS 13 LGBM S3 0.5299 0.6571 0.4087 25.0 11.0 313.80
236 NTS 7 RF S1 0.5260 0.6628 0.4108 53.0 15.0 4568.37
237 NTS 4 RF S3 0.5202 0.6587 0.4056 25.0 7.0 3900.09
238 NTS 16 LGBM S2 0.5107 0.6465 0.3880 2.0 2.0 281.23
239 NTS 24 LGBM B2 0.5059 0.6253 0.3754 0.0 0.0 3280.94
240 NTS 15 RF S2 0.4916 0.6415 0.3790 2.0 2.0 4200.99
241 NTS 23 RF B2 0.4855 0.6218 0.3626 0.0 0.0 4014.39
242 NTS 8 LR S3 0.4813 0.6437 0.3724 25.0 12.0 225.38
243 NTS 26 WV-ONLINE 0.4806 0.6393 0.3673 0.0 0.0 1184.56
244 NTS 11 LR S1 0.4668 0.6357 0.3539 53.0 24.0 267.63
245 NTS 17 LR S2 0.4547 0.6362 0.3639 2.0 1.0 166.85
246 NTS 22 LR B2 0.4403 0.6026 0.3220 0.0 0.0 143.17
247 NTS 32 NB S3 0.4280 0.5330 0.2650 24.0 9.0 213.61
248 NTS 10 DT S3 0.4236 0.5380 0.2513 24.0 11.0 167.05
249 NTS 9 DT S1 0.4235 0.5360 0.2513 53.0 23.0 207.70
250 NTS 30 NB S1 0.4233 0.5268 0.2572 52.0 15.0 270.74
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
251 NTS 20 DT B2 0.4104 0.5138 0.2319 0.0 0.0 105.36
252 NTS 33 NB B2 0.4072 0.5040 0.2351 0.0 0.0 155.73
253 NTS 29 DS-ONLINE 0.3751 0.6511 0.3742 0.0 0.0 1313.52
254 NTS 27 SRP 0.3748 0.6486 0.3625 0.0 0.0 1091.14
255 NTS 34 ARF 0.3727 0.6766 0.3961 0.0 0.0 1152.61
256 NTS 35 NB S2 0.3643 0.4481 0.2106 0.0 0.0 176.59
257 NTS 36 NB B1 0.3643 0.4481 0.2106 0.0 0.0 147.09
258 NTS 25 LR B1 0.3633 0.6037 0.2988 0.0 0.0 132.41
259 NTS 28 RF B1 0.3555 0.5957 0.2969 0.0 0.0 4155.82
260 NTS 19 LGBM B1 0.3552 0.5817 0.2852 0.0 0.0 4552.39
261 NTS 21 DT B1 0.3492 0.4916 0.1784 0.0 0.0 141.69
262 NTS 18 DT S2 0.3488 0.4899 0.1753 0.0 0.0 123.73
263 NTS 37 ONB 0.3477 0.5436 0.2793 0.0 0.0 153.35
264 NTS 31 HAT 0.2724 0.4438 0.1682 0.0 0.0 473.12
265 NTS 38 OLR 0.1799 0.5534 0.0026 0.0 0.0 80.24

266 Ohio 5 DS-BATCH 0.2242 0.8724 0.6808 50.0 8.0 1074.72
267 Ohio 3 DS-LGBM 0.2239 0.8728 0.6824 94.0 9.0 7419.69
268 Ohio 14 LGBM S1 0.2173 0.8674 0.6678 34.0 2.0 1732.27
269 Ohio 10 DT S3 0.2164 0.8233 0.5893 13.0 9.0 1722.45
270 Ohio 12 WV-BATCH 0.2156 0.8686 0.6684 50.0 8.0 1004.59
271 Ohio 6 WV-LGBM 0.2146 0.8707 0.6685 94.0 9.0 7295.75
272 Ohio 9 DT S1 0.2138 0.8192 0.5756 34.0 17.0 1782.37
273 Ohio 16 LGBM S2 0.2130 0.8664 0.6623 4.0 0.0 193.32
274 Ohio 13 LGBM S3 0.2130 0.8664 0.6623 15.0 0.0 1501.06
275 Ohio 19 LGBM B1 0.2130 0.8664 0.6623 0.0 0.0 2354.07
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
276 Ohio 8 LR S3 0.2068 0.8412 0.6110 12.0 7.0 1726.50
277 Ohio 1 DS-RF 0.2059 0.8712 0.6601 124.0 52.0 16161.06
278 Ohio 18 DT S2 0.2051 0.8179 0.5756 3.0 2.0 111.39
279 Ohio 4 RF S3 0.2051 0.8706 0.6581 16.0 7.0 4002.08
280 Ohio 11 LR S1 0.2021 0.8376 0.6024 36.0 17.0 1992.12
281 Ohio 22 LR B2 0.2014 0.8155 0.5206 0.0 0.0 99.06
282 Ohio 7 RF S1 0.2002 0.8659 0.6421 38.0 18.0 4093.52
283 Ohio 21 DT B1 0.1975 0.8189 0.5752 0.0 0.0 81.40
284 Ohio 2 WV-RF 0.1970 0.8658 0.6390 124.0 52.0 15978.95
285 Ohio 23 RF B2 0.1961 0.8478 0.5767 0.0 0.0 1841.63
286 Ohio 17 LR S2 0.1877 0.8159 0.5585 3.0 2.0 153.50
287 Ohio 20 DT B2 0.1873 0.7963 0.5039 0.0 0.0 73.81
288 Ohio 15 RF S2 0.1871 0.8600 0.6269 5.0 5.0 2372.49
289 Ohio 27 SRP 0.1771 0.8658 0.6481 0.0 0.0 4149.69
290 Ohio 25 LR B1 0.1756 0.7879 0.4946 0.0 0.0 104.80
291 Ohio 26 WV-ONLINE 0.1660 0.8439 0.5689 0.0 0.0 2411.53
292 Ohio 28 RF B1 0.1636 0.8503 0.5969 0.0 0.0 2262.79
293 Ohio 29 DS-ONLINE 0.1619 0.8465 0.5773 0.0 0.0 2506.60
294 Ohio 24 LGBM B2 0.1616 0.7557 0.4283 0.0 0.0 1925.58
295 Ohio 34 ARF 0.1573 0.8483 0.5806 0.0 0.0 722.21
296 Ohio 38 OLR 0.1217 0.7947 0.4823 0.0 0.0 176.67
297 Ohio 37 ONB 0.1131 0.8156 0.4839 0.0 0.0 1170.22
298 Ohio 31 HAT 0.0780 0.3376 0.1058 0.0 0.0 1858.16
299 Ohio 33 NB B2 0.0711 0.3344 0.0759 0.0 0.0 141.96
300 Ohio 35 NB S2 0.0629 0.2798 0.0848 7.0 2.0 200.55
301 Ohio 32 NB S3 0.0629 0.2798 0.0848 18.0 2.0 1951.37
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
302 Ohio 30 NB S1 0.0629 0.2798 0.0848 42.0 2.0 2091.38
303 Ohio 36 NB B1 0.0598 0.3172 0.0886 0.0 0.0 161.69

304 Optima 12 WV-BATCH 0.4590 0.6110 0.3013 117.0 22.0 2541.97
305 Optima 13 LGBM S3 0.4533 0.5894 0.2905 17.0 4.0 717.30
306 Optima 5 DS-BATCH 0.4461 0.5700 0.2606 117.0 22.0 2548.02
307 Optima 6 WV-LGBM 0.4384 0.6547 0.3379 117.0 22.0 8179.01
308 Optima 3 DS-LGBM 0.4365 0.6013 0.2922 117.0 22.0 2684.22
309 Optima 16 LGBM S2 0.4286 0.5603 0.2460 51.0 8.0 926.28
310 Optima 14 LGBM S1 0.4283 0.5603 0.2460 17.0 7.0 12.04
311 Optima 18 DT S2 0.3943 0.5082 0.2047 47.0 10.0 978.93
312 Optima 1 DS-RF 0.3933 0.5978 0.2797 112.0 29.0 2997.41
313 Optima 15 RF S2 0.3915 0.5974 0.2547 49.0 8.0 1019.55
314 Optima 7 RF S1 0.3835 0.5947 0.2527 13.0 9.0 45.91
315 Optima 4 RF S3 0.3823 0.5907 0.2264 15.0 4.0 784.60
316 Optima 8 LR S3 0.3724 0.5395 0.2296 18.0 5.0 756.07
317 Optima 2 WV-RF 0.3617 0.6340 0.2725 112.0 29.0 3000.15
318 Optima 10 DT S3 0.3539 0.4627 0.1647 18.0 3.0 751.16
319 Optima 9 DT S1 0.3537 0.4693 0.1478 13.0 7.0 9.89
320 Optima 11 LR S1 0.3413 0.5139 0.1734 14.0 10.0 13.09
321 Optima 26 WV-ONLINE 0.3384 0.6137 0.2360 0.0 0.0 90.86
322 Optima 17 LR S2 0.3293 0.5161 0.1579 47.0 16.0 974.94
323 Optima 30 NB S1 0.3139 0.4830 0.1445 17.0 7.0 10.76
324 Optima 29 DS-ONLINE 0.3115 0.5700 0.2972 0.0 0.0 70.54
325 Optima 19 LGBM B1 0.3070 0.5143 0.0843 0.0 0.0 34.98
326 Optima 31 HAT 0.3057 0.5492 0.2784 0.0 0.0 43.67
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Data stream Global rank pos. Method abbr. F1 macro Accuracy Kappa Drift count Replacement count Time [s]
327 Optima 21 DT B1 0.3048 0.4344 0.0974 0.0 0.0 2.67
328 Optima 35 NB S2 0.3030 0.4728 0.1141 50.0 11.0 974.51
329 Optima 22 LR B2 0.3002 0.4552 0.1467 0.0 0.0 2.15
330 Optima 24 LGBM B2 0.2989 0.5042 0.1263 0.0 0.0 31.50
331 Optima 32 NB S3 0.2929 0.4464 0.0892 14.0 3.0 750.43
332 Optima 25 LR B1 0.2911 0.4949 0.1185 0.0 0.0 2.86
333 Optima 20 DT B2 0.2813 0.4026 0.0965 0.0 0.0 2.17
334 Optima 23 RF B2 0.2739 0.5064 0.0941 0.0 0.0 29.85
335 Optima 37 ONB 0.2643 0.6137 0.2252 0.0 0.0 20.02
336 Optima 33 NB B2 0.2622 0.4358 0.0686 0.0 0.0 2.10
337 Optima 27 SRP 0.2340 0.5907 0.1727 0.0 0.0 135.40
338 Optima 36 NB B1 0.2161 0.4680 -0.0100 0.0 0.0 2.54
339 Optima 28 RF B1 0.1991 0.5143 -0.0218 0.0 0.0 33.54
340 Optima 34 ARF 0.1883 0.5691 0.0677 0.0 0.0 15.12
341 Optima 38 OLR 0.1495 0.2512 0.0251 0.0 0.0 7.01
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Figure 1: Visualization of F1 macro score for selected methods.
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