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Abstract. We propose a new supervised manifold visualisation method,
slipmap, that finds local explanations for complex black-box supervised
learning methods and creates a two-dimensional embedding of the data
items such that data items with similar local explanations are embed-
ded nearby. This work extends and improves our earlier algorithm and
addresses its shortcomings: poor scalability, inability to make predictions,
and a tendency to find patterns in noise. We present our visualisation
problem and provide an efficient GPU-optimised library to solve it. We
experimentally verify that slipmap is fast and robust to noise, provides
explanations that are on the level or better than the other local expla-
nation methods, and are usable in practice.

Keywords: Manifold visualisation · Explainable AI · Local
approximation

1 Introduction

The goal of manifold visualisation is to find a low-dimensional visualisation of
high-dimensional data. We recently introduced a method that combines manifold
visualisation with explainable artificial intelligence (XAI), called slisemap [6,7].
slisemap creates an embedding of data points such that points nearby in the
embedding have similar explanations. (for a given black box machine learning
model). Figure 1 shows an example of an embedding (left) and explanations in
the form of linear coefficients (right). slisemap has already been used in studying
physical systems [29], for studying molecular properties [4], and to reduce data
dimensionality in manufacturing [27].

The practical application of slisemap is hindered by four shortcomings: (i)
Speed. slisemap scales quadratically with the amount of data, so it is impracti-
cal to visualise large datasets (larger than ∼ 104 points). The solution in [7] is
subsampling: train on a subset of the data and, if necessary, add the remaining
points to the trained slisemap post-hoc. (ii) New data. However, adding new
data is only possible if the value of the target variable is known [7]. (iii) No
predictive model. Since there is no principled way of adding points to the embed-
ding, slisemap cannot predict the values of the target variable. (iv) Behaviour
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Fig. 1. slipmap embedding of the Jets dataset used in a classification task described
in Sect. 4 is shown on the left. The local models explaining the black box classifier have
been clustered, and the mean coefficients for each cluster are shown on the right.

Fig. 2. Both slisemap (left) and slipmap (2nd from the left) correctly find the three
modes for a toy data of 500 points constructed as in Fig. 1 of [7] (y = max(x1,x2,x3)+
N (0, 0.01) and x ∼ N(0, 1)4 ∈ R

4), each of the three visual clusters corresponding to
a linear model fj(x) ≈ xj , where j = argmaxi∈{1,2,3} xi. However, slisemap out-
puts visual clusters, even when the target variable y is Gaussian noise (2nd from the
right). In contrast, slipmap (right) overfits less due to the equally spaced prototypes
and Gaussian kernel (see Sect. 2.1), leading to fewer misleading visual structures; for
slipmap, noise looks like noise.

for noisy data. slisemap works well for low-noise data, but in the presence of
noise, it tends to cluster data in random clusters, as shown in Fig. 2.

The contributions of this paper are: we introduce a new prototype-based
variant, coined slipmap, that solves the scalability issues, define the computa-
tional problem, and present a simple modification to slisemap that allows it
to be a generative model that makes predictions (and is, therefore, an actual
interpretable model). We show that slipmap is fast, the modification results in
a predictive model having good fidelity, and the explanations are stable even in
the presence of noise, and valuable in practice.

Related Work. Starting at the introduction of ISOMAP in 2000 [30], countless
manifold visualisation methods have been developed, of which t-SNE [22] and
UMAP [23] are currently commonly used with several variants proposed (e.g.,
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[15,16]). Manifold visualisations present high-dimensional data in a typically
two-dimensional embedding such that neighbouring points in the embedding are
similar by some pre-defined criteria. Unlike slipmap and slisemap, none of the
prior methods defines the neighbourhood in terms of local explanations. Manifold
visualisations are an indispensable tool in various disciplines where understand-
ing of complex datasets is necessary, from genetics [11,18] to astronomy [3] and
linguistics [19].

XAI is essential due to the increasing complexity and widespread use of black-
box machine learning models. The primary objective in XAI is to understand
and explore black box supervised learning algorithms [14]. Explanation methods
can be divided into model specific and model agnostic, the latter of which can be
applied to any supervised learning model.

XAI methods can further be split into global and local. Global methods try
to explain the global behaviour of the supervised learning model for all data
points. The obvious drawback of this approach is that if the black box model is
too complicated, it is impossible to find a simple explanation that approximates
it with sufficient fidelity. On the other hand, local explanations methods such
as lime [28], shap [21], and slise [5] produce an explanation that is valid only
for individual data items. In this categorisation, slipmap falls into the class of
model-agnostic methods, which provide local explanations for all data points.
However, combined with the embedding, the local explanations effectively pro-
duce a global explanation of the black-box model.

A common approach for local, model-agnostic explanation methods is to
locally approximate the black box model with an interpretable model [5,7,21,
28]. However, most other methods rely on randomly sampling new data points
[21,28]. In contrast, slipmap only uses the training data. As a result, slipmap
is especially useful for explaining models where random sampling of new data
is not straightforward; e.g., with scientific data, generating random data that
obeys all physical constraints is often challenging.

2 Problem Definition

In this section, we define the computational problem we want to solve in Sect. 2.1,
and how we can get interpretable predictions for new data items, in Sect. 2.2.

2.1 SLIPMAP

The main difference between slipmap and slisemap is the introductions of
“prototypes” in the embedding (the regular grid of circles in Fig. 1). In slipmap,
only the prototypes have local models instead of every data item, making the
algorithm faster as we only need to optimise the parameters for a smaller number
of prototypes, yielding a linear computational complexity (Sect. 3.1).

slipmap also uses a Gaussian kernel instead of an exponential kernel (dis-
tances in the exponent are squared). The squared distances and the fixed spacing
of the prototypes reduce the tendency of slipmap to form clusters with random
data. slipmap solves the following optimisation problem:
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Problem 1. (slipmap) Assume you are given a dataset {(xi,yi)}i∈[n],1 prototype
vectors {cj}j∈[p], embedding dimensionality d ∈ N (typically d = 2), and a radius
r ∈ R>0, where xi ∈ R

m are the vectors of features, yi ∈ R
o are the targets,

and cj ∈ R
d are embedding coordinates. Find the embedding zi ∈ R

d and the
local models fj : Rm → R

o, where i ∈ [n] and j ∈ [p], that minimise

L0 =
∑n

i=1

∑p

j=1

e−‖zi−cj‖2
2

∑n
k=1 e−‖zk−cj‖2

2
l(fj(xi),yi), (1)

where ‖·‖2 is the Euclidean distance and l(·, ·) is a loss function for the local
models under the constraint that

radius(Z) =
(∑n

i=1

∑d

k=1
z2

ik/n
)1/2

= r. (2)

We use the following matrices: Xi· = xi, Yi· = yi, and Zi· = zi for i ∈ [n] and
Cj· = cj for j ∈ [p]. The rows Bj· of matrix B ∈ R

p×q contain the parameters
for the local models fj , where q is the number of parameters in the local models.
The loss function in Eq. (1) can be augmented with regularisation terms,

L = L0 +
∑p

j=1

∑q

k=1
(λlasso|Bjk| + λridgeB2

jk), (3)

where λlasso ∈ R≥0 and λridge ∈ R≥0 are the parameters for Lasso and Ridge
regularisation, respectively.

As local, interpretable models, we use linear models for regression problems
and multi-variate logistic regression for classification problems. The loss func-
tions are a quadratic loss for regression and Hellinger loss for classification; see
[7] for details and discussion.

2.2 Mapping from Covariates to the Target Variable

Next, we define a mapping from the covariates to the embedding coordinates
and the local models. In principle, these mappings could be arbitrary functions.
Here, we have chosen the 1-nearest neighbour regression model as the mapping
for simplicity and computational efficiency. The simplicity also makes the whole
prediction procedure very transparent since we “use an interpretable model that
works well for similar data items”.

The implied predictive model f : Rm → R
o for slipmap is then the distance-

weighted average over the local models in the embedding:

f(x) =
∑p

j=1

e−‖zi−cj‖2
2

∑p
k=1 e−‖zi−ck‖2

2
fj(x), (4)

where i = argmini∈[n] ‖x − xi‖2. We can define an equivalent mapping for
slisemap by replacing p with n and cj by zj in Eq. (4).

1 We use shorthand notation [n] = {1, . . . , n}.
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Algorithm 1: The slipmap algorithm, where L is given in Eq. (1). See
the text for discussion.
1 Function Slipmap(X , Y , C, r, d)
2 Z ← PCA(X)·,1:d // Initialise the embedding
3 Z ← Z · r/radius(Z) // Normalise the embedding
4 B ← argminB[L(X ,Y ,Z ,C ,B, r, d)] // Initialise the local models
5 do
6 Z ← Escape(X ,Y ,C ,B, r)
7 Z ,B ← argminZ ,B L(X ,Y ,Z · r/radius(Z),C ,B, r, d)

8 while not converged
Result: Z , B

9 Function Escape(X , Y , C, B, r)
10 Wjk ← e−‖cj−ck‖2

2/
∑p

l=1 e
−‖cj−c l‖2

2 for all j, k ∈ [p]
11 Lij ← l(fj(Xi·),Yi·) for all i ∈ [n] and j ∈ [p]
12 Zi· ← Ck· where k = argmink(LW )ik for all i ∈ [n]

Result: Z · r/radius(Z)

3 Algorithm

This section discusses how we implement and solve Prob. 1, including the com-
putational complexity in Sect. 3.1.

To optimise Eq. (1), we use the gradient-based quasi-Newton LBFGS opti-
miser [20]. We combine the optimiser with a heuristic for escaping local optima,
just as with slisemap [7]. The pseudocode can be seen in Alg. 1.

The algorithm starts by initialising the embedding for the data items and the
local models for the prototypes (lines 2–4 in Alg. 1). Then, it alternates between
the escape heuristic and the optimisation until no better solution is found (lines
6–8). The escape heuristic consists of greedily assigning each item the embedding
of the prototype that minimises the weighted loss (lines 10–12).

slipmap is implemented using PyTorch [26], which enables GPU acceleration.
The source code for our implementation and experiments (Sect. 5) is available
under an open-source licence at https://github.com/edahelsinki/slisemap.

3.1 Computational Complexity

The time complexity of Eq. (1) is O(np), not counting the time for evaluating
a local model on one data item. For many simple models and loss functions,
including linear and logistic regression, the time complexity increases by a factor
of O(m+q+o). The optimisation contributes an unknown number of iterations,
depending on the convergence difficulty. The memory complexity of Eq. (1) is
O(npo+nm+ pq), and the LBFGS optimisation only adds a constant factor for
the history. The complexities are empirically evaluated in Sect. 5.4.

https://github.com/edahelsinki/slisemap
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4 Datasets

We use the following datasets in the experiments (Sect. 5).
Air Quality [25] contains 7355 hourly instances of 12 different air quality

measurements. One of the measurements is chosen as a dependent regression
variable, and the others are used as covariates.

Covertype [8] is a classification dataset of forest cover types containing over
half a million instances with 54 features and seven classes. The instances are
various cartographic variables of natural forests.

Gas Turbine [1,17] is a regression dataset with 36,733 instances of 9 sensor
measurements from a gas turbine to study gas emissions.

HIGGS [31] is a two-class classification dataset consisting of signal pro-
cesses that produce Higgs bosons or are background. The dataset contains nearly
100,000 instances with 28 features.

Jets [10] contains simulated LHC proton-proton collisions. The collisions pro-
duce quarks and gluons that decay into cascades of stable particles called jets.
The classification task is to distinguish between jets generated by quarks and
gluons. The dataset consists of 266,421 instances with seven features.

QM9 [9] is a regression dataset comprising 133,766 small organic molecules.
As the dependent variable, we use HOMO energies obtained from [12], and create
interpretable features with the Mordred molecular description calculator [24].

5 Experiments

In this section, we empirically evaluate slipmap by first comparing predic-
tions on unseen data in Sect. 5.1. Then, we verify the embedding quality in
Sect. 5.2 and local explanations in Sect. 5.3. Finally, we validate the claims about
improved scaling in Sect. 5.4.

All experiments use normalised data (zero mean and unit variance). The
density of the prototype grid is one prototype per unit square, and the reg-
ularisation coefficients λlasso and λridge and the radius r have been optimised
using Bayesian hyperparameter optimisation. All experiments have been run ten
times with different seeds and randomly subsampled datasets. Since slipmap is
implemented with PyTorch [26], we run the experiments with GPU acceleration,
except for the experiments measuring time.

5.1 Predictions

In this experiment, we measure the predictive performance of slisemap and
slipmap, using Eq. (4). We also compare the predictions against the nearest
neighbours to verify that the local models improve the predictions. As target
values, we try both predictions from various black box models and the ground
truth labels, with increasing subsamples of the training data.

In Fig. 3, we see how the losses from the slipmap predictions on unseen test
data approach that of the predictions from the black box models. In some cases,
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Fig. 3. Loss curves for slipmap, slisemap, and nearest neighbour models trained on
predicted y:s and ground truth y:s compared to various black box models. The loss for
regression (top row) is mean squared error; for classification (bottom row), the loss is
Hellinger loss. Lower is better.

such as the Jets dataset, only very little data is needed. Predictions from black
box models provide smoothing, especially for discrete class labels. However, with
sufficient data, slipmap trained on ground truth labels often converge to similar
losses. The AdaBoost regressor is non-optimal for the Gas Turbine dataset since
slipmap and slisemap, trained directly on the ground truth, actually provide
better predictions. Generally, slipmap performs slightly better than slisemap
and clearly better than the nearest neighbour.

5.2 Robustness

Explanations are only helpful if they are consistent. If, for example, slightly
changing the training dataset causes a significant explanation shift, the expla-
nations are less trustworthy.

Local model consistency [29] measures how stable the set of local models
is with respect to resampling the data. If the local models are inconsistent,
the local models are not trustworthy as explanations. To measure local model
consistency, we train two models on subsamples taken from a dataset such that
there is no overlap between the samples. This yields two sets of local models
{f1, f2, ...fp} and {f ′

1, f
′
2, ..., f

′
p}. We then match each local model to its most

similar counterpart and calculate the average distance between the models:

MB = 1 − min
π

∑p
i=1 D(fi, f

′
π(i))

1
n

∑p
i=1

∑p
j=1 D(fi, f ′

j)
, (5)
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Table 1. Comparing local model consistency and neighbourhood stability. Here, we
consider ten samples of 104 items for each dataset, using predictions from the black
box models as labels. As the Air Quality dataset has less than 104 items, the miss-
ing items are generated by resampling the data. slisemap and slipmap show similar
performance, and the best (highest) results are highlighted in bold.

Data Local model consistency ↑ Neighbourhood stability ↑
slipmap slisemap slipmap slisemap

Air Quality 0.460 ± 0.097 0.530 ± 0.252 0.393 ± 0.062 0.263 ± 0.061

Gas Turbine 0.762 ± 0.051 0.682 ± 0.190 0.641 ± 0.039 0.433 ± 0.103

QM9 0.328 ± 0.106 0.443 ± 0.272 0.369 ± 0.086 0.164 ± 0.036

Covertype 0.540 ± 0.260 0.348 ± 0.380 0.301 ± 0.062 0.276 ± 0.082

Higgs 0.515 ± 0.193 0.167 ± 0.376 0.604 ± 0.206 0.771 ± 0.183

Jets 0.662 ± 0.061 0.865 ± 0.075 0.382 ± 0.075 0.523 ± 0.132

where D(fi, f
′
j) = ‖Bi· − B′

j·‖2 is the Euclidean distance (similarity) between
the local model parameters and π is the permutation minimising the distance
between the local models.

Neigbourhood stability measures the stability of the embedding with respect
to resampling. It measures how well models trained on partly overlapping data
retain the relative locations of the data items in the embedding, i.e., whether
or not the neighbouring relations between the items are preserved. To measure
neighbourhood stability, we train models on datasets sampled such that half of
the items overlap. Let S be the set of overlapping points. Then, for each shared
item, we form the set of neighbours in both learned embeddings (denoted as
N(i) = {j ∈ S|‖zi − zj‖2 < 1} and N ′(i) = {j ∈ S|‖z′

i − z′
j‖2 < 1}) and

calculate the Jaccard similarity between the neighbour sets:

Mneighbourhood = |S|−1
∑

i∈S |N(i) ∩ N ′(i)|/|N(i) ∪ N ′(i)| (6)

Table 1 shows a comparison between the explanation robustness of slipmap
and slisemap. slipmap performs comparably to slisemap with respect to local
model concistency and neighbourhood stability. As discussed in [7], local expla-
nations have inherent ambiguity; a given data item can have multiple local expla-
nations with comparable performance. The neighbourhood stability results show
slipmap also exhibits this behaviour.

5.3 Local Explanation Comparison

In this section we quantitatively compare the local models from slipmap with
other model-agnostic, local explanation methods: lime [28] (with and without
discretisation), (partition) shap [21], slise [5], and slisemap [7]. These all pro-
vide explanations in the form of local, linear approximations. As metrics, we
consider the following:

Time. How long does it take to get one explanation (dividing the setup time
between the data items)?
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Table 2. Comparing local explanation methods. We measure how well the approxima-
tion predicts the selected data item (local loss), the five nearest neighbours (stability),
and the number of other data items with a loss less than a threshold. All explanations
are based on 5,000 data items, and the best results are highlighted in bold.

Data Method Time (s) ↓ Local loss ↓ Stability ↓ Coverage ↑
Air Quality lime 3.648 ± 0.02 0.147 ± 0.07 0.180 ± 0.05 0.079 ± 0.00

lime (nd) 0.062 ± 0.02 0.041 ± 0.01 0.046 ± 0.01 0.464 ± 0.04
shap 0.723 ± 0.21 0.000 ± 0.00 0.049 ± 0.02 0.217 ± 0.01
slise 13.723 ± 2.36 0.000 ± 0.00 0.019 ± 0.01 0.853 ± 0.01
slipmap 0.005 ± 0.00 0.004 ± 0.00 0.021 ± 0.01 0.366 ± 0.01
slisemap 0.366 ± 0.14 0.001 ± 0.00 0.018 ± 0.00 0.759 ± 0.02

Gas Turbine lime 2.982 ± 0.02 0.205 ± 0.07 0.259 ± 0.07 0.219 ± 0.02
lime (nd) 0.030 ± 0.00 0.186 ± 0.07 0.180 ± 0.07 0.299 ± 0.04
shap 0.693 ± 0.10 0.000 ± 0.00 0.116 ± 0.05 0.333 ± 0.03
slise 26.577 ± 4.90 0.000 ± 0.00 0.056 ± 0.02 0.407 ± 0.04
slipmap 0.007 ± 0.00 0.004 ± 0.00 0.052 ± 0.02 0.325 ± 0.03
slisemap 0.482 ± 0.19 0.007 ± 0.00 0.048 ± 0.01 0.270 ± 0.04

QM9 lime 6.256 ± 0.09 0.773 ± 0.23 0.778 ± 0.25 0.153 ± 0.02
lime (nd) 0.029 ± 0.00 0.323 ± 0.05 0.366 ± 0.04 0.179 ± 0.01
shap 1.326 ± 0.79 0.000 ± 0.00 0.299 ± 0.07 0.207 ± 0.01
slise 28.176 ± 3.71 0.000 ± 0.00 0.218 ± 0.04 0.393 ± 0.01
slipmap 0.013 ± 0.00 0.011 ± 0.00 0.158 ± 0.03 0.303 ± 0.02
slisemap 0.737 ± 0.22 0.016 ± 0.00 0.160 ± 0.04 0.292 ± 0.01

Higgs lime 8.425 ± 0.13 0.025 ± 0.00 0.033 ± 0.00 0.349 ± 0.01
lime (nd) 0.032 ± 0.00 0.034 ± 0.00 0.037 ± 0.00 0.333 ± 0.01
shap 0.561 ± 0.04 0.000 ± 0.00 0.038 ± 0.00 0.315 ± 0.00
slise 24.785 ± 2.35 0.000 ± 0.00 0.042 ± 0.00 0.445 ± 0.01
slipmap 0.003 ± 0.00 0.023 ± 0.01 0.040 ± 0.00 0.337 ± 0.03
slisemap 1.103 ± 0.35 0.034 ± 0.00 0.041 ± 0.00 0.302 ± 0.00

Jets lime 2.346 ± 0.02 0.011 ± 0.00 0.016 ± 0.00 0.106 ± 0.01
lime (nd) 0.063 ± 0.01 0.013 ± 0.00 0.014 ± 0.00 0.179 ± 0.01
shap 0.246 ± 0.01 0.000 ± 0.00 0.007 ± 0.00 0.163 ± 0.01
slise 10.357 ± 1.34 0.000 ± 0.00 0.006 ± 0.00 0.431 ± 0.02
slipmap 0.018 ± 0.01 0.000 ± 0.00 0.006 ± 0.00 0.357 ± 0.02
slisemap 1.956 ± 0.57 0.000 ± 0.00 0.006 ± 0.00 0.308 ± 0.02

Local loss. [5,21] How well does the approximation match the black box model
for the selected data item using the losses mentioned in Sect. 2?

Stability. [2,5] Does a slight change in the input need a significant change in
the explanation? Measured by calculating the mean loss of the local models on
the five nearest neighbours.

Coverage. [7,13] Does the explanations generalise to other data items? Mea-
sured by counting the number of data items with a loss less than a threshold.
The threshold is the 0.3 quantile of the losses from a global linear approximation.
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Fig. 4. Comparison of time and memory scaling between slisemap and slipmap.
slipmap is consistently faster as sample size increases and needs radically less memory
in all six datasets (notice the logarithmic scale). Lower is better.

The results can be seen in Table 2 where slipmap performs comparably or
better than slisemap. slipmap does not guarantee a zero local loss like slise
and shap, but they are generally quite small (whereas lime sometimes have a
smaller loss for the synthetic neighbourhood than the item being explained [5]).

5.4 Scaling

This experiment shows that slipmap scales better with the number of data items
than slisemap, both in time and in memory. We measure the time on a CPU (to
avoid the overhead of GPU communication on small data sizes) and the memory
on a GPU, since that is usually the limiting factor slisemap. As the left panel of
Fig. 4 demonstrates, for each dataset, slipmap converges faster than slisemap
by at least an order of magnitude. The difference is even more dramatic when
considering memory complexity (Fig. 4 right panel), as slipmap scales linearly
(Sect. 3.1) compared to the quadratic scaling of slisemap [7].

6 Conclusions and Future Work

We propose slipmap, a novel model-agnostic method for explainable AI.
slipmap finds all local explanations for a complex black-box regression or classifi-
cation model and produces an informative embedding where data items with sim-
ilar explanations (local models) are embedded nearby. We substantially improved
our earlier work by making our algorithm fast and robust to noise, leading to
fewer false patterns in the embedding (Fig. 2). We have shown that the local
explanations produced by slipmap have high fidelity, good stability, and cov-
erage. When trained on the predictions of the black-box model (instead of raw
target values), slipmap is, in our use cases, always able to mimic the black-box
model with almost perfect fidelity.

Also, even though slipmap is not meant to replace purpose-built classifica-
tion and regression models, it performs similarly to the state-of-the-art models
in real-world use cases.
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slipmap allows adding data items to the embedding and making predictions,
even when the target variable is unknown, unlike the original slisemap, extend-
ing the usage of slipmap from a pure XAI method (which requires a pre-trained
regression or classification model to work) to a more general supervised data
exploration tool (which finds an interpretable predictive model for the data).
In the future, we can still improve on slipmap, e.g., by replacing the simple
nearest neighbour model and kernel density estimate for making the predictions
with a more general model, such as Gaussian Processes. The improved scala-
bility, especially the GPU memory requirements, also unlocks applications with
larger datasets.
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