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Abstract. Human motion trajectory prediction is a very important
functionality for human-robot collaboration, specifically in accompany-
ing, guiding, or approaching tasks, but also in social robotics, self-driving
vehicles, or security systems. In this paper, a novel trajectory prediction
model, Social Force Generative Adversarial Network (SoFGAN), is pro-
posed. SoFGAN uses a Generative Adversarial Network (GAN) and So-
cial Force Model (SFM) to generate different plausible people trajectories
reducing collisions in a scene. Furthermore, a Conditional Variational Au-
toencoder (CVAE) module is added to emphasize the destination learn-
ing. We show that our method is more accurate in making predictions in
UCY or BIWI datasets than most of the current state-of-the-art models
and also reduces collisions in comparison to other approaches. Through
real-life experiments, we demonstrate that the model can be used in
real-time without GPU’s to perform good quality predictions with a low
computational cost.

Keywords: Human Motion Prediction, Social Force Model, Generative
Adversarial Network, Conditional Variational Autoencoder

1 Introduction

Several studies [2,15] about Theory of Mind and mirror neurons, emphasize pre-
diction as an essential tool for humans to increase their performance in social
interactions through an anticipative behavior. A person can build a model about
the internal mental state of people via social interactions to predict future ac-
tions.

In particular, human motion prediction is a very broad field with a large
number of different categories that depend on multiples factors like the person
task, the person model or the person body parts. In the case of human motion
trajectory prediction, a very exhaustive taxonomy based on the model approach
and the contextual cues have been presented in [18].

Human motion trajectory prediction is a complex task very difficult to under-
stand, due to the very different strategies people use to avoid collisions; the vari-
ety of social interactions; the relative nature of consider something an obstacle or
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Fig. 1: Complex cases. The left picture shows a person who randomly changes
the movement direction because is waiting for someone. The right picture shows
a bench that can be an obstacle for some pedestrians or a goal for others.

a goal; and the sudden changes in the movements due to internal unpredictable
stimulus (refer to Fig.1).

The stimuli for pedestrian motion can be internal or external. The inter-
nal stimuli are very difficult to infer because they are related to the particular
person’s thoughts. The external stimuli are related to the environment, but the
response of the stimulus is related to the person’s mental state as well. On the
whole, any response of the person depends on external and internal stimuli and
there aren’t handwritten rules or laws to explain all the cases.

Due to this complex dependence, this work uses the environment information
through the Social Force Model (SFM) [6] and people features like the velocities
and the resultant forces. This information is used to generate a set of possible
paths. The advantage of generating a set of paths is that the multimodal behavior
of pedestrians can be handled.

The remainder of this paper is organized as follows. In section 2, the related
work is introduced. In Section 3, the SFM used to encode the environment infor-
mation is described. In Section 4, a description of the complete approach, that
combines a Generative Adversarial Network (GAN) and a Conditional Varia-
tional Autoencoder (CVAE) is introduced. Section 5 provides an analysis of the
metrics to evaluate the models and make state-of-the-art comparison as fair
as possible. In Section 6, the evaluation by the usual methodology in different
datasets is performed and the real-life experiment results are analyzed. Finally,
in section 7, the conclusions are provided.

2 Related Work

Nowadays, multiple approaches to human motion prediction have been devel-
oped. These models are normally data-driven models to forecast the next skele-
ton 3D movements in concrete tasks like, for example, walking, eating, smoking,
or running [13,8]. Commonly, these data-driven methods formulate the prob-
lem as a sequence-to-sequence task where the data is processed by a Recurrent
Neural Network (RNN) or a Long Short-Term Memory (LSTM). These network
architectures are chosen due to their ability to encode temporal information.
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In human motion trajectory prediction, as a part of human motion prediction,
there are a lot of elements in common like social interaction or multimodal
behavior. By contrast, there are fewer dependencies on the task, and the person
model can be simplified, for example by considering a point or 2D circle.

Physics-based approaches, like Constant Velocity Model (CVM) [21] or Ex-
tended Kalman Filter (EKF), are simpler than other methods, but can give a
good performance, for example, in linear trajectories. These approaches can be
obstacle-aware methods like the Social Force Model [6], which can be combined
with goal estimation [3] for better performance.

Actually, data-driven models are very common in trajectory prediction. Most
of these approaches utilize LSTM architectures. In this paragraph, we discuss
models that do not take into account static obstacles or collisions. A first method
is Social LSTM [1], which uses an encoder-decoder structure with LSTM cells
and a pooling mechanism to encode the people that is close to a person. The
MX-LSTM model [5] considers not only people positions (tracklets), but gaze
direction (vislets) too. A transformer is proposed in the AgentFormer model
[22], which learns simultaneously the social and time dimensions. Social GAN
[4] uses a GAN and a pooling mechanism to generate a multimodal distribution
of the trajectories. In PECNet [12], a CVAE is included to obtain an accurate
estimation of the goals.

Furthermore, obstacle-aware models like Next [9] and SoPhie [19] extract fea-
tures from the image of the scene using a convolutional neural network (CNN)
and then, a RNN is utilized to obtain predictions. Other works, like Trajectron++
[20], use a CNN to incorporate the map information and take into account the
dynamics through an RNN. NSP model [23] uses the Social Force Model (SFM)
and a Neural Differential Equation for the motion prediction. In [11], the scene
features are used to obtain waypoints along the trajectory to improve the results
in a long prediction horizon.

3 Social Force Model

The Social Force Model of Helbing and Molnar [6] for pedestrian dynamics allows
to simulate social interactions as forces. In a scene with a set of pedestrians P
and obstacles O, it is considered that a pedestrian p ∈ P moves towards a goal
with the following attractive force:

fgoalp = k(v0
p − vp) (1)

where vp is the current velocity of the pedestrian and k−1 is the relaxation time
to achieve the desire velocity pointing towards the goal, v0

p.
To consider the influence of pedestrians and obstacles, avoid collisions and

respect social distances, a repulsive force is defined as:

f intz,p = Aze
(dz−dz,p)/Bz d̂z,p (2)

where z can be a pedestrian or obstacle. Az, Bz and dz are parameters that can
be adjusted. dz,p, is the Euclidean distance between z and the pedestrian p. d̂z,p

is the unitary vector in the line between p and z positions, pointing to p.
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Zanlungo et al. [24] consider collision prediction into the interaction force
between pedestrians p, q ∈ P . In this case the repulsive force for pedestrian p is:

f intq,p({vq,p}, {dq,p},vp) = Aq
vp
tp
e−dq,p/Bq

d′
q,p(tp)

d′q,p(tp)
(3)

where {vq,p} is the set of relative velocities between p and other pedestrians.
{dq,p} is the set of vectors with all relative distances between p and other pedes-
trians, pointing to p. tp=minq{tq,p}, where tq,p is the time in which p is at the
minimum distance from q and d′

q,p(tp) is the relative position of p regarding q,
in t=tq,p. When the angle between vq,p and dq,p complies with |θp,q| > π/4,
then tq,p = ∞. Bearing in mind these forces, the resulting force for a pedestrian
p is:

Fp = fgoalp +
∑
q∈P

f intq,p +
∑
o∈O

f into,p (4)

This model has been generalized to robots by means of the Extended Social
Force Model (ESFM). This generalization is very useful for planning in collabo-
rative tasks that involve social-aware navigation [17,16].

4 Social Force GAN Model

In this section, we describe approach which considers SFM, a GAN and a CVAE.

4.1 Problem Formulation

Trajectory prediction in an environment can be considered as a prediction of
multiple positions of points along different discrete times (timesteps). In order
to make predictions, an observation horizon, Tobs and a prediction horizon of
timesteps, Tpred, are established in a trajectory Xi, for a pedestrian i, with the
correspondent ground truth positions (xti, y

t
i) ∈ Xi associated in each horizon:

Xobs
i = {(xti, yti)|t = 1, 2, . . . , Tobs} (5)

Xpred
i = {(xti, yti)|t = Tobs + 1, . . . , Tobs + Tpred} (6)

The main objective is to forecast the future positions of the trajectory:

Yi = {(xti, yti)|t = Tobs + 1, . . . , Tobs + Tpred} (7)

as close as possible to the ground truth positions in the prediction horizon,
Xpred

i . To achieve this goal, the previous positions of the trajectory, Xobs
i , can

be used as information. Other cues as the gaze, the potential goals, the neighbors’
positions or the environment map can also be used.
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4.2 Social Force Representation

SFM is used in this work to obtain an environment representation R, as a part
of the inputs for the Social Force GAN model (SoFGAN). Given a pedestrian
p ∈ P , the environment representation for this pedestrian is calculated using
(2), to calculate repulsive forces because of static obstacles, and using (3) to
calculate forces due to other pedestrians.

These 2 types of repulsive forces could be added separately or in 1 unique
force but, in the last case, the resultant forces would not give a complete de-
scription of the environment, because there are a lot of different combinations
of static obstacles or pedestrians that can give the same resultant forces.

Therefore, to avoid this problem, M angle bins centered in pedestrian p
are considered to divide the space. Using this method, two resultant forces are
calculated for each angle bin. One for the static obstacles and another for the
pedestrians. The two sets of forces are used as the Social Force Representation:

Rp = {Fbin
ped,F

bin
obst} (8)

where each set of forces is:

Fbin
ped = {

∑
q∈Pi

f intq,p}Mi=1 (9)

Fbin
obst = {

∑
o∈Oi

f into,p}Mi=1 (10)

Oi and Pi are the subsets of obstacles and pedestrians whose forces applied in
p are into the angle bin i and comply with

⋃M
i=1Oi = O and

⋃M
i=1 Pi = P . An

example is shown in Fig. 2.

The forces of the static obstacles are calculated modeling obstacles in the
environment as polygons and choosing always the nearest point of the polygon
to p as the obstacle point to calculate the force. The homography matrix of the
images is used to obtain the Cartesian coordinates of the polygons. Taking into
account this representation, the inputs of the SoFGAN model for all timesteps
in the observation horizon are as follows:

– fgoalp : The attractive force calculated using (1) for each pedestrian.

– Rp: The Social Force Representation.

– Xobs
rel : The relative positions of each pedestrian in the observation horizon

and considering the first relative position zero.

– Fobs
total: The necessary forces at each timestep to generate the trajectory

starting at the first position.

– Xobs
r : The relative positions of each pedestrian in the observation horizon

taking as reference the first position in the trajectory.

– gGT
r : The final ground truth position for each trajectory taking as reference

the first position in the trajectory. Only used during training.
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Fig. 2: Social Force Representation. In this example 5 angle bins are con-
sidered. The thick vectors are the resultant forces of the thin vectors in each
angle bin. There are 2 blue forces of 2 pedestrians and 2 red forces of 2 obstacles
applied in a pedestrian located in the center.

Fig. 3: Social Force GAN with CVAE architecture. The GAN generator
provides the predictions using the predicted goals given by the CVAE module.

The forces to generate the trajectory, Fobs
total, are calculated using the rela-

tive positions and the timestep value (to compute their velocities). Considering
∆t = 1 and a unitary mass, the force is calculated as a difference of the straight
sections in the trajectory at each timestep. For the attractive force, the goal is
in the last position of the observation horizon.

4.3 SoFGAN model description

The model can be summarized as:

{Yrel,F
pred
total} = SoFGAN(Xobs

rel , f
goal
p , Rp,F

obs
total,X

obs
r ,gGT

r ) (11)

where Yrel is the set of the predicted relative positions from which the absolute
positions for all pedestrians {Yi}Ni=1 can be calculated. Fpred

total are the necessary
forces to generate at each timestep a new position, to form a second predicted
trajectory. Therefore, SoFGAN can also be considered as a force predictor.

The architecture of the model is basically a GAN, like in [4] and a CVAE
module. The complete model is shown in Fig. 3, where ϕ1, ϕ2, ϕ3 and ϕ4 are
linear transformations. ψ, θg, θe, θd are MLP’s.
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The CVAE module is used to reduce the main source of the prediction errors,
the last position prediction. For that reason, it is used to estimate the goal
trajectories. The inputs for the CVAE are Xobs

r and gGT
r . The second one is

only used during training. During the test, θg and θe are not used. The only
necessary input for the CVAE in the test phase is the observed trajectory because
z is sampled from N(0, αI), a normal distribution with mean zero and a fixed
variance α. If the CVAE module is not used, the GAN inputs are Xobs

rel , f
goal
p , Rp

and Fobs
total. In case of use the CVAE module, the attractive force is substituted

by the CVAE predicted goals, gpred
r , because it improves the model results.

The scores obtained in the discriminator are used as labels to train the model.
The losses used to train the GAN and the CVAE in this approach are the adver-
sarial loss, the variety loss [4] and the CVAE loss. The CVAE loss is composed
by the Kullback-Leibler (KL) divergence and the variety loss applied to the last
predicted position:

Ladv = min
G

max
D

[Ex∼pd
logDθd(x) + Ez∼p(z)log(1−Dθd(Gθg (z)))] (12)

Lvar = min
k

∥Yk
rel −Xk,pred

rel ∥ (13)

LCV AE = λ2DKL(N(µ,σ)∥N(0, I)) + λ3 min
k

∥gpred
r − gGT

r ∥ (14)

Ltotal = Ep∈P [Ladv + λ1Lvar + LCV AE ] (15)

where k is the number of generator samples.

5 Metrics

In this work, as in [22] and [20], k trajectory samples are used to compute
the minimum Average Displacement Error (mADE) and the minimum Final
Displacement Error (mFDE) separately over the sampled scenes that contain
different number of pedestrians.

Another metric to measure the social-awareness of the model is the average %
of colliding pedestrians per frame in a dataset, %c. This value is used in different
works like [19], although they do not give a detailed explanation about how to
obtain this metric. In this work, a collision is detected when 2 pedestrians get
closer than 0.1 m in a frame, but not between successive frames. The %c of
collisions is then computed as follows:

%c =

k∑
j=1

1

k

Nf∑
i=1

1

Nf
(
100N c

ij

Nij
)

 (16)

where Nf is the number of predicted timesteps in the test set, k is the number
of generator samples, N c

ij is the number of colliding pedestrians in timestep or
frame i in the sample j. Nij is the total number of pedestrians in the timestep
i and sample j.

In this work, as usual, the observation horizon is Tobs = 3.2s, which corre-
sponds to 8 timesteps. The prediction horizon is Tpred = 4.8s, which corresponds
to 12 timesteps.
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6 Experiments

The SoFGANmodel has been evaluated through the BIWI [14], UCY [7] datasets
using the leave-one-out cross validation technique as in [1], [4] and [19]. Moreover,
the model has been implemented in ROS to predict people in real-time with a
low computational cost.

6.1 Evaluation Results

Model ETH HOTEL ZARA1 ZARA2 UNIV AVG

SGAN [4] 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18
SoPhie [19] 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15
Next [9] 0.73/1.65 0.30/0.59 0.38/0.81 0.31/0.68 0.60/1.27 0.46/1.00

CVM-20 [21] 0.96/2.09 0.29/0.54 0.52/1.03 0.34/0.70 0.61/1.26 0.54/1.12
PECNet [12] 0.54/0.87 0.18/0.24 0.22/0.39 0.17/0.30 0.35/0.60 0.29/0.48

Trajectron++ [20] 0.57/1.05 0.16/0.26 0.22/0.41 0.16/0.31 0.28/0.56 0.28/0.52
AgentFormer [22] 0.45/0.75 0.14/0.22 0.18/0.30 0.14/0.24 0.25/0.45 0.23/0.39

Y-NET [11] 0.28/0.33 0.10/0.14 0.17/0.27 0.13/0.22 0.24/0.41 0.18/0.27
NSP [23] 0.25/0.24 0.09/0.13 0.16/0.27 0.12/0.20 0.21/0.38 0.17/0.24

SoFGAN 0.44/0.68 0.13/0.18 0.20/0.35 0.17/0.31 0.25/0.46 0.24/0.40
fSoFGAN 0.48/0.79 0.15/0.22 0.22/0.42 0.20/0.38 0.28/0.53 0.27/0.47

Table 1: mADE/mFDE results. Comparison between SoFGAN and other
models for 20 samples. Numbers in bold type are the best results.

The results of the evaluation in terms of mADE and mFDE, for BIWI
and UCY datasets, are shown in Table 1, where SoFGAN is the model with a
CVAE trained using data augmentation. To improve the performance, the 20
samples are selected through a k-means clustering of 1000 samples, as in [11].
fSoFGAN evaluate the mADE and mFDE of the generated trajectories using
the total forces. For SGAN [4], SoPhie [19] and Next [9] the paper results in [9]
are exposed. CMV-20 use 20 samples and it has been implemented because the
evaluation in [21] is different.

The Trajectron++ results are different from the paper because an error in the
velocity and acceleration estimation has been corrected. The Y-NET and NSP
results have been obtained from the papers directly because the datasets and
hyperparameters to reproduce the evaluation are not public. Only the Agent-
Former model is the one that has been tested obtaining slightly better results
than the SoFGAN model.

Table 2 shows the %c for different models where GT is the ground truth.
It is important to underscore that the results of SGAN and SoPhie %c are the
ones that appear in their corresponding papers, although we do not know if their
%c calculation method is the same as our method. The same occurs with NSP
and the Y-NET %c. Nevertheless, the improvement compared with CVM-20 is
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very significant. Although SoFGAN does not provide the best results in terms
of mADE, mFDE and %c, it outperforms most of state of the art methods. The
SoFGAN and NSP models show that the use of forces can be very useful to
encode the environment information and improve the predictions.

Model ETH HOTEL ZARA1 ZARA2 UNIV AVG

GT 0.000 0.000 0.000 0.000 0.056 0.011
SGAN [4] 2.509 1.752 1.749 2.020 0.559 1.717
SoPhie [19] 1.757 1.936 1.027 1.464 0.621 1.361
CVM-20 [21] 1.764 1.430 2.680 2.163 4.172 2.442
Y-NET [11] 0.000 0.000 0.820 1.310 1.510 0.730
NSP [23] 0.000 0.000 0.000 0.660 1.480 0.430

SoFGAN 0.250 0.500 0.707 1.226 3.688 1.274

Table 2: %c across BIWI and UCY datasets for 20 samples.

An ablation study has been performed to demonstrate the benefits of the
CVAE and the data augmentation. M(w/o1) is the model without the CVAE.
M(w/o2) is the M(w/o1) model without data augmentation. The average mADE
and mFDE are shown in Table 3 for the BIWI and UCY datasets.

Model SoFGAN M(w/o1) M(w/o2)

AVG 0.24/0.40 0.25/0.44 0.29/0.52

Table 3: mADE/mFDE results of the ablation study.

6.2 Real-life Experiments

Through a ROS implementation in the Helena robot, real outdoor experiments
have been performed with people. Helena is a transporter robot with a RS-
LiDAR-16 and a Pioneer P3-DX. Although the Helena prediction is not com-
puted, Helena is taken into account as an agent to compute the forces.

The first experiment is to evaluate the predictions when the Helena robot is
not moving. In Fig. 4, from left to right, in the first image the interaction between
2 people in a conversation is shown. The model does not sample trajectories
between them. In the second image, the effect of the obstacle behind the person
cause that most of predictions appear in different directions. In the last image,
the person walks towards Helena. In this case, the predictions take into account
the robot and try to avoid collisions.

The second experiment, shown in Fig. 5, evaluates the interaction between
4 people and the interaction between the group and the robot. From left to
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(a) RViz (b) RViz (c) Real World (d) RViz

Fig. 4: Predictions when Helena is not moving. The predictions are the red
and green lines in the ground. The visualization is obtained using RViz.

(a) RViz: t (b) RViz: t+1 (c) RViz: t + 2 (d) Real World

Fig. 5: Predictions during an encounter between 4 people and Helena.
The predictions are the colored lines in the ground.

right, in the first image, the group is not moving and the predictions are short
and avoid collisions between them. In the second image, the group moves and
the predictions try to avoid collisions with the robot. In the third image, the
people change their velocity directions due to the robot and the blue and green
predictions close to obstacles try to avoid a collision.

6.3 Implementation Details

For this work we have used the Adam optimizer, with a learning rate of 0.0005 for
both generator and discriminator. For the variety loss, the λ1 weight is 0.5 and
the number of samples is 20. When the CVAE module is added, λ1 is the same,
λ2 is 1 and λ3 is 0.5. The CVAE µ parameter for the probability distribution
has 16 components and σ = αI is a 16×16 matrix. For testing µ is zero and α is
3. The parameters for µ and σ have been chosen between other combinations to
obtain a good performance. For noise, the dimension is 32 and the dimensions for
hidden states are 64 for each encoder and 128 for the decoder. The embedding
dimension is 64 and the batch size is 256.

The LSTM encoder and decoder have one layer. The MLP, ψ, used in the
discriminator, has dimensions (64, 1024, 1). The CVAE MLP’s, θg, θe, θd have
these dimensions successively: (2, 8, 16, 16), (32, 8, 50, 32) and (32, 1024, 512,
1024, 2). All the layers use ReLu as activation function and batch normalization,
except for the last layer of θd.

To calculate the Social Force Representation, four angle bins have been con-
sidered. All the models have been trained using Pytorch in a Tesla K40 GPU.
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The real experiments have been performed using a CPU and ROS Melodic.
The Lidar measures are provided to the Spencer tracker [10] to detect moving
obstacles. The static obstacles are considered using the 2-D occupancy grid of
the environment map. This map is used for robot localization and navigation in
ROS. The model can compute the predictions in less than 100 ms.

7 Conclusions

In this work, we have presented a new human trajectory predictor model de-
nominated Social Force Generative Adversarial Network (SoFGAN). This new
trajectory predictor, is based on Social Force Model (SFM) and Generative Ad-
versarial Network (GAN). One of the main advantages of this new trajectory
predictor, is that includes the social forces of the environment and the moving
pedestrians, to improve the human prediction in the next timesteps. Addition-
ally, we have included a CVAE in order to learn the trajectory goal distribution
resulting in an improvement of the model. The experimental results on standard
datasets of complex human motions, show that our predictor gets good results in
comparison to the best state of the art methods that we have tested. Moreover,
we also obtain good results in the percent of colliding pedestrians per frame, %c,
in ETH/UCY datasets. Unlike other authors, we demonstrate that our model
can be used in real time applications with a low computational cost to perform
human-like predictions.
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