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Abstract. Data pooling offers various advantages, such as increasing
the sample size, improving generalization, reducing sampling bias, and
addressing data sparsity and quality, but it is not straightforward and
may even be counterproductive. Assessing the effectiveness of pooling
datasets in a principled manner is challenging due to the difficulty in es-
timating the overall information content of individual datasets. Towards
this end, we propose incorporating a data source prediction module into
standard object detection pipelines. The module runs with minimal over-
head during inference time, providing additional information about the
data source assigned to individual detections. We show the benefits of the
so-called dataset affinity score by automatically selecting samples from
a heterogeneous pool of vehicle datasets. The results show that object
detectors can be trained on a significantly sparser set of training samples
without losing detection accuracy.

Keywords: Training Data Analysis · Ante-Hoc Explanation · Object
Detection · Sample Selection · Dataset Label Prediction · Dataset Origin
Prediction · Selection Bias.

1 Introduction and Related Work

Despite their growing scale, single datasets capture only limited visual aspects
of a target domain, and obtaining more label data takes time and effort. One
way to overcome these limitations is data pooling, the combination of datasets.
Combining datasets results in a larger sample size, providing more instances
for model training, which can lead to more robust and generalizable models,
especially in situations where the original datasets are relatively small. Data
pooling also aims to increase diversity in the data to avoid overfitting to specific
patterns present in one dataset but not in another, but also increase intra-class
variations and scene variation. It can also be useful when dealing with imbalanced
datasets by combining datasets with different class distributions. However, an
arbitrary combination of datasets capturing a specific object category does not
guarantee an improved detection performance and can be counterproductive.
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For example, extending with samples too far away from the target domain can
lead to a decline in the detector’s performance. Combining strongly correlated
datasets can be redundant and provides no new information.

One central problem is that the effectiveness of pooling datasets can not be
assessed in a principled way because the overall information content of individual
datasets is hard to estimate. Towards this end, we propose extending standard
object detection pipelines with an additional inference head to predict a dataset
affinity score. The affinity prediction assigns every detection to the set of pooled
datasets realized as a multinomial logistic regression task. Thus scoring the affin-
ity between detections and training datasets. This enables direct model-depend
feedback to the training data during inference. Thereby, we gain information on
which dataset contributed to individual detections. This can be seen as a kind
of ante-hoc detection explanation. We use the affinity scores to identify datasets
that support the overall detection performance and datasets where the scores
suggest a higher domain gap between the training and target sets. Based on the
assigned dataset affinity distribution, we prune the training set and show that
detectors trained on a significantly sparser set achieve similar detection accuracy.
By providing the dataset affinity score during inference, our approach stands in
contrast to post-hoc explanation methods, producing visual explanations.

These methods specify saliency maps to interpret the object predictions.
There are gradient-based methods such as Grad-CAM [55] or GradCAM++ [8]
where the saliency maps are based on the gradient of the model’s output with
respect to the input features and perturbation-based methods where generating
these maps involve perturbing or altering input features and observing the im-
pact on the model’s prediction (e.g., RISE [48], D-RISE [49], LIME [53]). For
a more detailed view of explainable artificial intelligence (XAI), including post-
hoc explanation methods, we refer to the survey of Burkart et al. [7] and for a
comparison of several saliency maps generation methods for object detection to
Bayer et al. [3].

The dataset affinity score provides information on whether an object in the
target domain can be explained with samples from particular datasets. So, as-
sessing the model performance during processing with estimating the detector’s
uncertainty can be seen as an alternative concept of getting direct feedback on
the target domain. Several techniques have been proposed to integrate uncer-
tainty estimation into a detector. There are approaches using variational infer-
ence by relying on Bayesian neural networks (BNNs) [41] or using Monte-Carlo
dropout [18] as more a practical way to perform approximate inference, such as
the work of Azevedo et al. [2]. Then there are approaches using direct modeling
by assuming a certain probability distribution over the detector outputs (e.g.,
[11]). Further, there are approaches estimating predictive probability using an
ensemble of models where the outputs from each detector are treated as indepen-
dent samples from a mixture model [34]. For a more detailed view of uncertainty
estimation in the context of object detection, we refer to the surveys of Feng et
al.[16] and Hall et al.[25].
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Other concepts to assess the efficiency of data pooling are not part of the
model itself. These concepts use statistical measures like the Kullback-Leibler
divergence or Wasserstein distance to quantify the difference between probability
distributions of domains [27] or make a feature space analysis by examining the
distribution of features in different domains with histograms, scatter plots, or
kernel density estimation [22]. Thus, these concepts use external post-processing
steps to compare learned representation. This comparing and assessing dataset
domain gaps, and therefor data pooling, is closely related to or rather part of
the broader problem of dataset shift.

Dataset shift is a concept that encompasses various distribution changes that
can occur within or between domains, leading to the failure of even high-capacity
models. Reasons for domain shift include seasonal or weather change. For a
detailed overview of dataset shift and related sub-problems, we refer to the work
of [50]. Domain adaptation is a specific technique to address dataset shifts in
cases where the change in data distribution is due to a shift between domains.

In the context of domain adaptation for object detection, corresponding
methods try to align the source domain distribution to a particular target do-
main. Some approaches [9, 10] try to learn invariant features by feature alignment
via adversarial training [19]. Other methods try to align object instances across
domains utilizing category-level centroids [71] or attention maps [59]. Domain
generalization aims to generalize to domains unseen in training. For example, the
approach form Vidit et al. [58] leverages a pre-trained vision model to develop
a semantic augmentation strategy for altering image embeddings.

Besides the problems of data pooling, training from multiple datasets also
faces the problem of varying label sets. To align multiple datasets, we unify the
label sets by mapping sub-categories to a subsuming super-category or, rather,
a more general category. In our case, we subsume different land-vehicle types
such as ’car, ’van’, ’truck’ under the super-category ’vehicle’. In the context of
unifying label sets, Redmon et al. [51] introduced a hierarchical model of visual
concepts (WordTree) to combine the labels of ImageNet [54] and MS COCO
[37]. ImageNet labels are pulled from WordNet [43], a language database that
structures concepts and their relation. Redmon et al. [51] utilizes several classi-
fication scores over co-hyponyms of the WordTree to realize a more fine-grained
object classification along the hierarchical label tree. Nevertheless, considering a
hierarchical tree with different levels of information and intra-class differences,
we follow the concept of mapping all intra-class variations of vehicle classes to
one comprehensive super-category. Merging datasets this way for an object cat-
egory has already been proven to learn more general and robust models. For
example, Hasan et al. [26] combined multiple pedestrian datasets, showing im-
proved cross-dataset performance. For segmentation, Lampert et al. [35] merged
and split different classes from datasets to realize a unified flat taxonomy to be
still compatible with the standard training method.

Although approaches that learn a label space from visual data go beyond this
paper’s scope, we also mention a few to cover this aspect. The task is considered
universal representational or universal detectors. Another approach toward a
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universal detector is the work of Wang et al. [61] They proposed to train a
detector from multiple datasets in a multi-task setting. Zhao et al. [67] train
a universal detector on multiple datasets by manually merging the taxonomies
and train with cross-datasets pseudo-labels generated by dataset-specific models.
In the work of Zhou et al. [69] they fuse multiple annotated datasets without
manually merging by formulating an optimization problem on which dataset-
specific output should be merged.

Since the proposed additional affinity prediction relies on an object detector,
we refer to the following works [30, 38, 63, 64, 68, 72] for an overview on current
trends and state-of-the-art models for object detection.

The main contribution of this paper is to present a new idea to assess the
effectiveness of data pooling. We propose to extend detection pipelines with an
additional inference head to predict the affinity to pooled training data sets. With
minimal overhead, the affinity scores allow direct feedback to training samples
during run-time. The score provides information on which dataset is responsible
for explaining individual detections and the selection of a sparser training set
without performance decrease.

The paper is structured as follows. The next section provides a description of
the proposed additional dataset affinity prediction (section 2). In section 3, the
selected datasets for training and their alignment are described. The evaluation
and achieved results are discussed in section 4. Finally, a conclusion is given in
section 5.

2 Dataset Affinity Prediction

To better assess the efficiency of data pooling, we propose to use an additional
inference head to estimate the affinity to datasets in the data pool for every
detection. Since current object detectors are designed in a way that they inter-
nally use separate heads for different inference tasks, this concept is applicable
to almost all current detection pipelines. Given an image Ik with index k apply-
ing a modified detector with the additional dataset affinity score results in the
following output:

detectorΘ(Ik) → {di,k = (o, b, c,a)}Nd,k

i (1)

Θ are the model parameters. The output is a set of Nd,k detected objects d
with object index i, where o is the objectness or confidence score, b the object
location description in the image (i.e., the bounding box with central point,
width and height of the object b = {bx, by, bw, bh}), c the class labels, and a the
dataset affinity scores where the dimension corresponds to number of datasets
in the training pool. Adding the affinity score is stated as a multinomial logistic
regression task to distinguish between the individual datasets of the combined
training pool.

Here, we exemplarily build on a recent variant of the You Only Look Once
(YOLO) object detection family, in particular on the YOLOv7-X [60] detector.
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objectness score objectness loss Lobj
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dataset affinity label (e.g., "VisDrone") affinity loss Laff

Fig. 1. Schematic visualization of an object detection pipeline with an additional in-
ference head to predict the dataset affinity. The dataset affinity is inferred on object
level or rather for every detected object and not on image level.

YOLO is a so-called single shot detector. This means that objects are detected in
a single forward pass without additional steps such as region proposal networks
[21, 52]. Thus, YOLO variants are particularly suitable for real-time applications.
YOLO variants use separate inference heads for localization and classification
and thus fulfill the requirements to apply the proposed extension. During train-
ing, this is considered with multiple loss terms. In particular, YOLOv7-X uses
an objectness loss Lobj , a classification loss Lcls, and a localization loss Lloc to
form the complete loss function that guides the training process of the model.
The objectness loss assists in accurate object localization and classification by
distinguishing between cells that contain objects and those that do not. Lloc cor-
responds to the bounding box regression head that is responsible for refining the
precise location and size of detected objects. The classification head and hence
Lcls focuses on classifying detected objects into predefined categories. It typically
involves using softmax functions to assign each object to a specific class label.
Relying on the same information as the classification head that distinguishes
between object classes, a similar head is added that distinguishes between every
dataset added in the training set. With this adaptation, the overall loss term,
including the affinity loss Laff , is given by:

L = λobjLobj + λclsLcls + λlocLloc + λaffLaff (2)

Similar to Wang et al. [60], the weighting factors of the loss terms are set to
λobj = 0.7, λcls = 0.3, λloc = 0.05, and we set λaff = 0.3 after a grid search.
Lobjectness uses binary cross entropy. To calculate Lloc the complete intersection
over union (CIoU) is utilized. The classification loss and the affinity loss are
realized using focal loss [36]. However, in the case of a single class detector such
as for ’vehicle’, also binary cross entropy is used as classification loss. A schematic
illustration of the proposed object detection pipeline is depicted in Figure 1.

The model is implemented using Pytorch [47] building on the YOLOv7-X
detector implementation of [60] 1. For training, an ADAM optimizer variant
[32, 40] with a starting learning rate of 0.001 is used.

1https://github.com/WongKinYiu/yolov7 (accessed 14.11.2023)

https://github.com/WongKinYiu/yolov7
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3 Dataset Alignment

Besides getting insights into the training data pool, we follow the concept of com-
bining datasets for an object category to learn more general and robust models.
A problem that arises from this is differing label sets. Concepts of unifying la-
bel sets have already been discussed in section 1. To build a general ’vehicle’
detector, we map different sub-categories of vehicles to the more general parent
class or rather super-category for aligning the datasets in terms of object labels.
In addition to the class labels used, we categorize vehicle datasets according
to two criteria: dataset types and sensor positions (viewing angle) during data
recording. For other dataset characteristics, we refer to the following reviews and
surveys [4, 5, 13, 29, 39, 46, 56, 65, 66].

For dataset types, we distinguish between general datasets and domain-
specific datasets. General datasets, also called foundation data, are designed to
capture a diverse range of objects or scenes. Examples of such datasets include
ImageNet [54], MS COCO [37], and OpenImages [33]. General datasets typically
contain a large number of diverse images with a broad range of object categories,
allowing researchers to test the performance of their models on a wide variety of
objects and backgrounds. Domain-specific or task-specific datasets, on the other
hand, are designed to capture a specific type of object or scene that is relevant to
a particular domain or application. Examples of such datasets for the application
domain of autonomous driving include FLIR [17], Cityscapes [12], and KITTI
[20]. These datasets are often smaller in size compared to general datasets, but
they are curated to capture the specific challenges and characteristics of the do-
main or task, and have only a small set of class labels. The advantage of using
domain-specific datasets is that they are tailored to the specific requirements and
constraints of the application or domain. However, this restriction may hinder
an object detector trained on these datasets from generalizing to other domains.

An additional difference between general and domain-specific datasets is that
general datasets consist of randomly pooled image collections instead of data
recorded with a specific sensor. For example, the image sensors for autonomous
driving. Despite the extremely large variation these datasets have to capture,
the sensor position is always close to ground-level with a specific viewing an-
gle of the scene. Thus, our next criterion to categorize datasets is the sensor
position corresponding to the sensor platform or the altitude of the sensor plat-
form. These are ground-level datasets captured from car sensors or body cams.
Then, there are low, mid, and high-altitude datasets. Low-altitude datasets are
commonly captured with fixed surveillance cams and are widespread in the ap-
plication domain of traffic monitoring. Mid-altitude datasets often come from
the same application domain but are captured with small UAVs. Lastly, high-
altitude datasets or aerial datasets where the data is recorded with a sensor on
a satellite or high-flying drones, etc.

For the combination of datasets in our experiments, we choose the following
datasets to be included in the training set. From the category of general datasets,
the MS COCO dataset is included. The basic object detector YOLOv7-X is also
trained on MS COCO. From the category of domain-specific datasets, we use
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MS COCO DETRAC FLIR IR

VisDrone UAVDT FLIR VIS

Fig. 2. Example images from selected datasets included in the overall training set. The
top images show samples from MS COCO (left), DETRAC (middle), and FLIR IR.
The bottom images depict samples from VisDrone, UAVDT, and FLIR VIS. The gray
areas are masked out regions that are not annotated but labeled as ’ignore regions’.
From the original categories only vehicle categories are considered and mapped to the
super-category ’vehicle’.

Table 1. Key characteristic of the aligned datasets used for training a general ’vehicle’
detector.

dataset dataset type resolution / pixel # images # aligned images # categories # vehicle categories # instances
4MS COCO [37] general 640× 640 328.0k 118.3k 80 (’car’, ’motorcycle’, ’truck’, ’bus’) 68634

4DETRAC [62] domain-specific 960× 540 84.0k 8.1k 4 (’car’, ’van’, ’bus’, ’others’) 46814

3UAVDT [14] domain-specific 1024× 540 80.0k 4.1k 3 (’car’, ’truck’, ’bus’) 33942

8
VisDrone [70] domain-specific 960× 540 10.2k 1.0k 10 (car’, ’van’, ’truck’, ’tricycle’,

’awning-tricycle’, ’bus’, ’motor’, ’other’)
124977

6
FLIR VIS [17] domain-specific 1800× 1600 10.3k 9.3k 15 (’car’, ’motor’, ’bus’, ’truck’, ’scooter’,

’other vehicle’)
76946

6
FLIR IR [17] domain-specific 640× 512 10.3k 9.3k 15 (’car’, ’motor’, ’bus’, ’truck’, ’scooter’,

’other vehicle’)
76946

one dataset from autonomous driving, recorded from ground-level, the FLIR
dataset. We split this dataset into sub-sets along the spectral range (infrared (IR)
and visual-optical (VIS)). Thus the sub-set of the FLIR dataset gets separate
labels for the affinity prediction. From the category of low-level altitude dataset,
recorded from a surveillance cam, the DETRAC dataset [62] is included. The
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boundary between different altitudes to categorize datasets is not sharp. So, from
the category of mid to high-level altitude datasets, we include the VisDrone [70]
and UAVDT dataset [14]. The key characteristics of the selected datasets are
summarized in Table 1. This includes the considered vehicle child classes that
are mapped to the super-category ’vehicle’.

In addition to aligning the labels, datasets, where the ratio of average ob-
ject height to image resolution differs strongly from the ratio present in gen-
eral object datasets, are further adapted. These datasets are the domain-specific
dataset from the categories above ground-level (DETRAC, VisDrone, UAVDT).
For these datasets, the original images are sliced into overlapping patches in the
range of 600 to 800 pixels (see for example Akyon et al. [1]). The patches also fit
better the image resolution of the basic detector of 640× 640 pixel. The actual
patch size is randomly sampled. We set an overlap ratio of 0.1. For datasets
containing video data, such as DETRAC, we only add every 20th frame in the
training set to prevent including extremely correlated frames. Further, image
regions that are not annotated but masking information is provided are colored
gray, preventing negative effects during training. Example images from the se-
lected aligned datasets are shown in Figure 2. It should be noted that the number
of instances is not completely balanced, but every dataset contains at least over
30k instances. Due to the fact that the number of instances per image varies,
perfect balancing is also difficult to achieve.

4 EVALUATION

The evaluation is done on unseen datasets to assess the generalization and ro-
bustness of the object detector. In the experiments, we use our own dataset
captured with the Fraunhofer measuring vehicle MODISSA [6] and the publi-
cally available Multi-Spectral Object Detection dataset (MSOD) [31].

MODISSA measurement vehicle zoomed-in detail

FLIR Blackfly S BFS-PGE-19S4C (VIS)

Device-ALab SmartIR1M0E (IR)

Fig. 3. The MODISSA measurement vehicle with the used sensors for the recording of
the test datasets.
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The MODISSA measuring vehicle is equipped with a range of sensors as
well as a visible and infrared panoramic camera setup. For the recording of the
test datasets, only the front cameras are used. The visible cameras (VIS) are
FLIR Blackfly S BFS-PGE-19S4C with a resolution of 1616 × 1240 pixel, and
the infrared cameras (IR) are Device-ALab SmartIR1M0E with a of 1024× 768
pixel. Figure 3 shows the MODISSA measurement vehicle with a detailed view
of the sensor suite at the front of the vehicle.

Table 2. Key characteristic of the MODISSA [6] test datasets used for evaluation.

dataset dataset type resolution / pixel # images # categories # vehicle categories # instances
4MODISSA Vogelsang (VIS) domain-specific 1616× 1240 10k 6 (’car’, ’motorcycle’, ’bus’, ’truck’) 18214

4MODISSA Vogelsang (IR) domain-specific 1024× 768 8k 6 (’car’, ’motorcycle’, ’bus’, ’truck’) 10250

4MODISSA Realfahrt (VIS) domain-specific 1616× 1240 5.3k 6 (’car’, ’motorcycle’, ’bus’, ’truck’) 6530

4MODISSA Realfahrt (IR) domain-specific 1024× 768 5.3k 6 (’car’, ’motorcycle’, ’bus’, ’truck’) 6530

The test datasets consist of two different recordings called Vogelsang and
Realfahrt, where we distinguish between the spectral ranges. Thus, four test
datasets are separately evaluated. Vogelsang captures mainly a residential area
with parked vehicles and road traffic. For the Realfahrt, only one IR and VIS
camera pair is used. The dataset shows further scenes with road traffic and a
parking lot. There are more dynamic objects than in the Vogelsang dataset. To
ensure privacy-preserving (e.g., image recordings of license plates) and complying
with corresponding guidelines, we follow the data protection concept of Münch et
al. [23, 44]. The annotations contain six classes with four vehicle classes (’car’,
’motorcycle’, ’bus’, ’truck’). Similar to the training data, these sub-categories
are mapped to one ’vehicle’ class. All key characteristics of the MODISSA test
datasets are summarized in Table 2.

Table 3. Key characteristic of the MSOD [31] test datasets used for evaluation.

dataset dataset type resolution / pixel # images # categories # vehicle categories # instances
1MSOD (VIS) [31] domain-specific 640× 480 7.5k 9 (’car’) 7426

1MSOD (NIR) [31] domain-specific 320× 256 7.5k 9 (’car’) 5209

1MSOD (MIR) [31] domain-specific 320× 256 7.5k 9 (’car’) 4472

4MSOD (FIR) [31] domain-specific 640× 480 7.5k 9 (’car’) 5042

The selected public MSOD dataset [31] is a domain-specific dataset for au-
tonomous driving that consists of multi-spectral (VIS, NIR, MIR, and FIR)
images. Similarity to the MODISSA dataset, the different spectral ranges are
separately evaluated. The nine original ground truth class labels include only
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MODISSA Vogelsang
IR VIS

VIS IR

Fig. 4. Exemplary detection results of the universal ’vehicle’ detector trained with the
aligned dataset on the unseen MODISSA Vogelsang dataset. The color of the bounding
boxes encode the assigned dataset. Detections assigned to MS COCO are highlighted
in red . Assigned FLIR IR detections are shown in aqua and detections assigned
to FLIR VIS are shown in lime .

one class (’car’) mapped to ’vehicle’. The images show traffic scene in an univer-
sity environment at daytime and nighttime. All key characteristics of the MSOD
test datasets are summarized in Table 3.

To quantify the results, we use the mean average precision (mAP) object
detector metrics. In particular, mAP@.5 [15] and mAP@.5:.95 [37] are used.
While mAP@.5 is the mAP for an IoU threshold of at least fifty percent, the
mAP@.5:.95 is the average across ten IoU thresholds, hence more strict.

After aligning the label sets as described in section 3, we first train a ’vehi-
cle’ detector with the selected six datasets (MS COCO, DETRAC, VisDrone,
UAVDT, FLIR VIS, FLIR IR) for the experiments. Besides calculating the mAP
values, the maximum score of the affinity prediction is used to estimate the
contributing dataset of a true positive (TP) detection. The distribution of as-
signed training datasets of truly detected vehicles is calculated over the evalu-
ation dataset. It is used to split the training into the sets of the two highest
assigned datasets and the remaining datasets. After training on the split sets,
the performance between detectors is compared. The quantitative results of these
experiments for the MODISSA datasets are shown in Table 4, and some exem-
plary qualitative results are visualized in Figure 4. Detections assigned to MS
COCO are highlighted in red . The assigned FLIR IR detections are shown in
aqua and detections assigned to FLIR VIS are shown in lime .

The results show that the best performance could be achieved by using all the
complete aligned training data. This applies to all MODISSA test datasets. Thus,
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Table 4. Comparison of reference detectors trained on different combinations of aligned
datasets for the MODISSA datasets. In addition, the percentage of assigned datasets
for true positive detection based on the dataset affinity score is depicted.

test dataset spectral range training datasets + percentage of assigned true positive detection mAP ↑
VIS IR MS COCO DETRAC UAVDT VisDrone FLIR VIS FLIR IR mAP@.5 mAP@.5-.95

MODISSA Vogelsang ✓ ✗ ✓(45.6%) ✓(0.1%) ✓(≈ 0%) ✓(≈ 0%) ✓(54.3%) ✓(≈ 0%) 0.921 0.802
MODISSA Vogelsang ✓ ✗ ✓(44.7%) ✗(-%) ✗(-%) ✗(-%) ✓(55.3%) ✗(-%) 0.913 0.785
MODISSA Vogelsang ✓ ✗ ✗(-%) ✓(99.7%) ✓(0.1%) ✓(0.1%) ✗(-%) ✓(0.1%) 0.662 0.482
MODISSA Vogelsang ✗ ✓ ✓(1.2%) ✓(0.1%) ✓(0.1%) ✓(0.1%) ✓(0.1%) ✓(98.4%) 0.914 0.780
MODISSA Vogelsang ✗ ✓ ✓(0.6%) ✗(-%) ✗(-%) ✗(-%) ✗(-%) ✓(99.4%) 0.911 0.781
MODISSA Vogelsang ✗ ✓ ✗(-%) ✓(99.1 %) ✓(0.3%) ✓(0.3%) ✓(0.1%) ✗(-%) 0.528 0.396
MODISSA Realfahrt ✓ ✗ ✓(29.5%) ✓(≈ 0%) ✓(≈ 0%) ✓(≈ 0%) ✓(70.5%) ✓(≈ 0%) 0.822 0.617
MODISSA Realfahrt ✓ ✗ ✓(30.8%) ✗(-%) ✗(-%) ✗(-%) ✓( 69.2%) ✗(-%) 0.780 0.561
MODISSA Realfahrt ✓ ✗ ✗(-%) ✓(99.4 %) ✓(0.4 %) ✓(0.2 %) ✗(-%) ✓(≈ 0 %) 0.716 0.416
MODISSA Realfahrt ✗ ✓ ✓(1.2 %) ✓( 0.1%) ✓(0.1 %) ✓( 0.1%) ✓( 3.9%) ✓( 94.6%) 0.674 0.400
MODISSA Realfahrt ✗ ✓ ✓(1.9 %) ✗(-%) ✗(-%) ✗(-%) ✗(-%) ✓( 98,1%) 0.673 0.400
MODISSA Realfahrt ✗ ✓ ✗(-%) ✓(99.2 %) ✓( 0.3%) ✓(0.3 %) ✓( 0.2%) ✗(-%) 0.449 0.238

increasing the variation and number of training samples helped to generalize to
these datasets. Hence, the concept of merging datasets has also here proven to
learn more robust and general models. When looking at the distribution of the
assigned dataset by the affinity scores, one can see that for the VIS Vogelsang and
Realfahrt mainly the MS COCO and FLIR VIS datasets are classified as origin
dataset. For the IR Vogelsang and Realfahrt, almost all true positive detections
are classified as originating from the FLIR IR dataset. Since the test dataset is
in the application of autonomous driving captured from ground-level, this might
not be surprising. Mainly because only one IR dataset is in the training set.
However, this can be seen as some sanity check that the proposed idea of adding
the dataset affinity prediction as additional inference enables useful feedback
over the training set.

Table 5. Comparison of reference detectors trained on different combinations of aligned
datasets for the MSOD datasets. In addition, the percentage of assigned datasets for
true positive detection based on the dataset affinity score is depicted.

test dataset spectral range training datasets + percentage of assigned true positive detection mAP ↑
VIS NIR MIR FIR MS COCO DETRAC UAVDT VisDrone FLIR VIS FLIR IR mAP@.5 mAP@.5-.95

MSOD ✓ ✗ ✗ ✗ ✓(86.3%) ✓(0.1%) ✓(≈ 0%) ✓(4.0%) ✓(9.6%) ✓(≈ 0%) 0.490 0.293
MSOD ✓ ✗ ✗ ✗ ✓(88.2%) ✗(-%) ✗(-%) ✗(-%) ✓(11.8%) ✗(-%) 0.487 0.280
MSOD ✓ ✗ ✗ ✗ ✗(-%) ✓(99.3%) ✓(0.1%) ✓(0.5%) ✗(-%) ✓(0.1%) 0.314 0.177
MSOD ✗ ✓ ✗ ✗ ✓(49.1%) ✓(0.8%) ✓(0.1%) ✓(0.1%) ✓(43.4%) ✓(6.5%) 0.458 0.260
MSOD ✗ ✓ ✗ ✗ ✓(38.8%) ✗(-%) ✗(-%) ✗(-%) ✓(61.2%) ✗(-%) 0.429 0.238
MSOD ✗ ✓ ✗ ✗ ✗(-%) ✓(99.6 %) ✓(0.2%) ✓(0.1%) ✗(-%) ✓(0.1%) 0.284 0.154
MSOD ✗ ✗ ✓ ✗ ✓(1.8%) ✓(≈ 0%) ✓(≈ 0%) ✓(0.8%) ✓(≈ 0%) ✓(97.4%) 0.496 0.316
MSOD ✗ ✗ ✓ ✗ ✓(7.2%) ✗(-%) ✗(-%) ✗(-%) ✗(-%) ✓( 92.8%) 0.489 0.306
MSOD ✗ ✗ ✓ ✗ ✗(-%) ✓(98.8 %) ✓(0.4 %) ✓(0.8 %) ✓(≈ 0 %) ✗(-%) 0.239 0.141
MSOD ✗ ✗ ✗ ✓ ✓(0.3 %) ✓(≈ 0%) ✓(≈ 0%) ✓(≈ 0%) ✓(≈ 0%) ✓( 99.7%) 0.505 0.293
MSOD ✗ ✗ ✗ ✓ ✓(0.2 %) ✗(-%) ✗(-%) ✗(-%) ✗(-%) ✓( 99,8%) 0.520 0.302
MSOD ✗ ✗ ✗ ✓ ✗(-%) ✓(93.2 %) ✓( 3.8%) ✓(2.5 %) ✓( 0.5%) ✗(-%) 0.153 0.0825

Moreover, when we look at the results achieved using only the data from
the datasets with the highest percentage of assigned dataset affinity, it becomes
visible that the drop in performance is relatively low compared to the full set. In
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MSOD (VIS) MSOD (NIR)

MSOD (MIR) MSOD (FIR)

Fig. 5. Sample detection results of the universal ’vehicle’ detector trained with the
aligned dataset on the unseen MSOD dataset [31]. The color of the bounding boxes
encode the assigned origin dataset. Detections assigned to MS COCO are highlighted
in red . Assigned FLIR IR detections are shown in aqua and detections assigned
to FLIR VIS are shown in lime .

contrast, using the remaining datasets led to a drastic performance drop despite
the total number of training images and instances being higher (see Table 1).
The fact that from the remaining datasets, DETRAC is then the most assigned
dataset also corresponds to the intuition that the low-level altitude dataset is
closest to the test domain.

This also applies to the results of the experiments for the MSOD datasets,
shown in Table 5, and some quantitative results are shown in Figure 5. The
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DroneVehicle KAIST MPD (VIS) KAIST MPD (IR)

DDAD REDS AMVD

Fig. 6. Sample detection results of the universal ’vehicle’ detector on different unseen
datsets (DroneVehicle [57], AMVD[42], KAIST MPD [28], DDAD [24], REDS [45]). The
color of the bounding boxes encode the assigned origin dataset. Detections assigned to
VisDrone are highlighted in blue and to MS COCO in red . Assigned FLIR IR
detections are shown in aqua and detections assigned to FLIR VIS are shown in
lime .

colors of the bounding boxes encode the assigned dataset. Red corresponds to
MS COCO, lime to FLIR VIS, and aqua to FLIR IR. The overall tendency
complies with the result of the MODISSA datasets, although there are minor
differences. The full training pool achieves the best performance for almost all
MSOD test datasets. The only exception is the FIR data, where using only the
main supporting datasets achieved even better results. What can be seen from
these results is the shift along the spectral range what datasets are responsi-
ble for the detections. Whereas for the VIS data, the detector mainly assigns
MS COCO and FLIR VIS. The lower mAP values for the MSOD datasets can
be explained with the lower image resolution and correspondingly lower object
sizes in the image. The shift towards FLIR IR can be seen when considering
images corresponding to higher wavelength spectra. Interestingly, the detector
still relies on MS COCO and FLIR VIS in the NIR data. A minor difference
is that MS COCO is the dataset with the estimated strongest support for the
VIS data. Nonetheless, also these results show the proposed dataset affinity score
can be used to automatically select samples from a heterogeneous pool of vehicle
datasets. Besides, the model is trained on a significantly sparser set of training
samples, there is almost no performance decrease and even a counterproductive
training data combination could be identified. Since the selected dataset pool
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spans across different categories, adding a dataset from often assigned categories
is a way to optimize an object detector on a specific application.

The benefit of the ante-hoc detection explanation provided by the affinity pre-
diction can be seen without a quantitative evaluation. By applying the adapted
detector to desired target domain data, it is possible to directly get insights how
to possible extend the training set and if samples from the target domain can
already be explained by included datasets. Figure 6 shows some exemplary de-
tections on datasets outside the training domain to depict this effect. Images are
taken from the DroneVehicle dataset [57], the KAIST Multispectral Pedestrian
Dataset (KAIST MPD) [28], the Dense Depth for Automated Driving dataset
(DDAD) [24], the REalistic and Diverse Scenes dataset (REDS) [45], and Aerial
Multi-Vehicle Detection Dataset (AMVD). The colors of the bounding boxes
encode the assigned dataset. Red , blue , lime , and aqua correspond
to respectively MS COCO, VisDrone, FLIR VIS, FLIR IR. For the examples
from datasets captured from a high altitude, the VisDrone dataset is assigned.
Although the results, together with the chosen set of aligned datasets and the
test dataset, follow an intuition of what dataset combination should work, the
proposed affinity score can help to find dataset bias and outliers in the data and
offers an additional tool to assess the training data.

5 Conclusion

In this paper, we proposed to add an additional inference head to an object de-
tection pipeline for predicting the training data affinity. Since current detectors
have inherent different heads for separated inference tasks, this extension can be
applied to most current detectors. By merging existing datasets to learn a more
robust model, we first aligned several datasets toward this end. Then, we evalu-
ated an exemplary detector and used the affinity score to assess the contribution
of specific datasets on individual detections. We demonstrated the efficacy of
the dataset affinity prediction by achieving comparable results with significantly
fewer training samples by focusing on datasets with more substantial support,
as indicated by the affinity scores. Moreover, the proposed dataset affinity pre-
diction offers some kind of ante-hoc detection explanation during inference and
helps to assess the effectiveness of pooling datasets.
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